
Primitive Data Types

variable: a piece of computer memory that holds a data value

Two parts to every variable:
1. identifier: the name by which we refer to the variable

2. data type: the type of data the variable holds (e.g., string, number, boolean)

Variables

Two categories: primitive type and class type

Types of Data Type

represents basic data types

examples:
char //holds a single character
int //holds integer values
double //holds decimal values
boolean //holds true/false values

Primitives Classes

represents more complex data

examples:
String //** holds textual data
Scanner //reads input
Date //represents day/month/year
Math //complex mathematical ops

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

Primitive Data Types in Java

Integer Numeric Types (can only be whole numbers)

Decimal Numeric Types (can be whole or decimal numbers)

Character Type

Logical Type

char 2 bytes any keyboard character

boolean 1 byte true or false

byte
short
int
long

1 byte
2 bytes
4 bytes
8 bytes

-128 127
-32678 32677

-2147483648 2147483647
-9223372036854775808 9223372036854775807

through
through
through
through

float
double

4 bytes
8 bytes

7 decimal digits of accuracy
15 decimal digits of accuracy

declare a single variable

int age;

Declaration & Initialization of Primitive Variables

declare & initialize a single primitive variable

int age = 29;

declare & initialize multiple primitive variables of the same type

int age = 29, weight, temp = -10;

initialize a primitive variable

age = 29;

Declaring & Initializing Numeric Data Types

integer numeric types

int age = 29;
int temp = -4;

decimal numeric types

double height = 5.33;
double length = 5.0; // note the use of the decimal!
double width = 3; // note the lack of a decimal!
double outdoorTemp = -4.25;
double mole = 6.022E23;
double verySmallNumber = 5.6E-15;

Numerical Operators in Java (int)

Unary Prefix Operator

Binary Infix Operators

Unary Prefix/Postfix Operators

-

+
-
*
/
%

++

negation

addition
subtraction
multiplication
division (quotient)
modulus, mod (remainder)

increment by 1
decrement by 1--

-6

6 + 4 (= 10)

6 % 4 (= 2)

6 - 4 (= 2)
6 * 4 (= 24)
6 / 4 (= 1)

3

4

3

4

Division of two integers results in two values: the quotient and remainder
quotient describes how many times the divisor goes into the dividend

remainder describes the amount “left over” from the division

Division & Modulus (Mod) for int

19 / 4 =

19 % 4 =

19 / 4 = 4.75

traditional math int math

 // 3/4= 4 3/4

Operator Precedence

Will work the same way you’re familiar with from math
work from left to right across a mathematical statement, starting with highest precedence

mod has the same level of precedence as multiply and divide

2 + 19 / (4 + 1) - 5 % 3
2 + 19 / (5) - 5 % 3

2 + 3 - 5 % 3
2 + 3 - 2
5 - 2
3

Numerical Operators in Java (double)

Unary Prefix Operator

Binary Infix Operators

Unary Prefix/Postfix Operators

-

+
-
*
/
%

++

negation

addition
subtraction
multiplication
division (quotient)
modulus, mod (remainder)

increment by 1
decrement by 1--

-6.2

6.2 + 4.1 (= 10.3)

6.2 % 4.1 (= 2.10…)

6.2 - 4.1 (= 2.1)
6.2 * 4.1 (= 25.42)
6.2 / 4.1 (= 1.51…)

N.B.: you will rarely (if ever) use this with doubles!

Prefix/Postfix Increment/Decrement (int & double)

Frequently want to increase/decrease
an int/double variable by 1

We can use the increment/decrement
operators as shorthand to do this

Two forms: prefix and postfix
prefix has the operator before the
variable

postfix has the operator after the variable

Always use it by itself!

int age = 29;

age = age + 1;
age = age - 1;

++age; //age = 30 after this line
age++; //age = 31 after this line

--age; //age = 30 after this line
age--; //age = 29 after this line

age = age--; //never do this!
age = ++age; //never do this!

Arithmetic Shortcut Operators (int & double)

+=

Operator

-=

*=

/=

%=

int x = 5;

Example

x += 2;

x -= 2;

x *= 2;

x /= 2;

x %= 2;

Equivalent To

x = x + 2;

x = x - 2;

x = x * 2;

x = x / 2;

x = x % 2;

Result

x = 7

x = 3

x = 10

x = 2

x = 1

More Complex Operations

What if we want to…
take the square root of a number?

display a number in a particular format (e.g., currency)?

generate a random number?

We can use classes, which represent/manipulate more complex data

Math Class

Provides a range of methods for advanced mathematical operations
square root/powers

logarithms

trigonometric functions

constant values (e, π)

Math Class

returns the result of calculating (e.g., 23)

Math.pow(<base>, <exponent>);

returns the result of calculating (e.g., √9)

Math.sqrt(<expression>);

p
< expression >

< base ><exponent>

returns the absolute value of < value >

Math.abs(<value>);

Math Class

returns the smaller value between <num1> and <num2>

Math.min(<num1>, <num2>);

returns the larger value between <num1> and <num2>

Math.max(<num1>, <num2>);

returns the value of π as a double

Math.PI;

DecimalFormat Class

Allows us to format numeric values in particular way
currency

specific number of decimal places

Uses a pattern String to indicate formatting

0: displays a digit

#: displays a digit, unless a leading zero (then omitted)

. : displays a decimal

, : displays a comma

Example: DecimalFormat

double x = 0.329523;
DecimalFormat df1 = new DecimalFormat("0.0");
DecimalFormat df2 = new DecimalFormat("0.00");
DecimalFormat df3 = new DecimalFormat("00.00");
DecimalFormat df4 = new DecimalFormat(“#0.00");

System.out.println("X = " + df1.format(x));
System.out.println("X = " + df2.format(x));
System.out.println("X = " + df3.format(x));
System.out.println("X = " + df4.format(x));

X = 0.3
X = 0.33
X = 00.33
X = 0.33

Example: DecimalFormat

double wage, hours;
double pay;

// Ask user for their 'wage' and 'hours' worked
// Calculate their pay for the week

pay = hours * wage;
System.out.print("Total pay for " + hours + " hours of work ");
System.out.print("is $" + pay);

Enter Wage : 20.00
Enter Hours: 51.0
Total pay for 51.0 hours of work is $1020.0

Example: DecimalFormat

double wage, hours;
double pay;
DecimalFormat df = new DecimalFormat("$###,##0.00");

// Ask user for their 'wage' and 'hours' worked
// Calculate their pay for the week

pay = hours * wage;
System.out.print("Total pay for " + hours + " hours of work ");
System.out.print("is " + df.format(pay));

Enter Wage : 20.00
Enter Hours: 51.0
Total pay for 51.0 hours of work is $1,020.00

Sometimes, we might want to mix int & double values

Consider the following equation; what does it evaluate to?

Mixing int & double Values

double x = 2.5 + 9 / 2;
2.5 + 4 ;

??? ;
N.B.: uses int division! Java
assumes numbers without a

decimal (e.g., 3 vs 3.0) are ints
when not stored in a variableJava requires both inputs of an operator to be of the same data type

achieves this through the process of coercion

coercion: automatically changing a value’s type to enable an operation
always coerced to the widest type necessary

There is a strict ordering on types

Coercion

byte
short
int
long

1 byte
2 bytes
4 bytes
8 bytes

-128 127
-32678 32677

-2147483648 2147483647
-9223372036854775808 9223372036854775807

through
through
through
through

float
double

4 bytes
8 bytes

7 decimal digits of accuracy
15 decimal digits of accuracy

narrower
types

wider
types

Mixing int & double Values

double x = 2.5 + 9 / 2;
2.5 + 4 ;

6.5 ;
intdouble int

intdouble double

double

What if we want to force
double division here?

Mixing int & double Values

double x = 2.5 + 9 / 2.0;
2.5 + 4.5 ;

7.0 ;
intdouble double

double double

double

casting: explicitly changing the data type of a value
can cast to a narrower or wider type

always initiated by the programmer

Casting

int num;
num = (int) 5.33; // results in num = 5
double perc;
perc = 93 / (double) 100; // results in perc = 0.93
perc = 93 / ((double) 100); // results in perc = 0.93
perc = (double) num / 100; // results in perc = 0.05

(<dataTypeToCastTo>) <expression>;

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

The char Data Type

Similar to String, but contains exactly one character

uses single quotes (‘) instead of double quotes (“)

Has a few operations, but we’re only concerned with assignment for now

Will primarily use it with String methods

String exampleStr = "Hello, home!";

int index = exampleStr.indexOf('h'); //index = 7
char charPos = exampleStr.charAt(5); //charPos = ','

N.B.: char values

Declaring & Initializing the char Data Type

character type

char letterA = 'a';
char space = ' ';
char bang = '!';

can be an escape sequence too

char singleQuote = '\'';
char tab = '\t';
char lineBreak = '\n';

T gh i s si s a t r i n ." "

Strings

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

charchar char char char

Strings are a collection of char values concatenated together

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

Logical Data

Can express exactly one of two values: true or false
in programming, we also think of these as 1 (true) and 0 (false)

Operators are used to express logical ideas that can be evaluated
&& (and)

|| (or)

! (not)

Can express whether or not two statements are true
it is raining and it is cold

I attend UWL and I am a science major

If one or both of the statements are false, then the entire expression is false

Evaluation:
0 && 0 is 0
0 && 1 is 0
1 && 0 is 0
1 && 1 is 1

&& (and)

Truth table: a table where each row corresponds to one combination of inputs,
columns for statements give the input values, and subsequent columns give
the truth value for the results of individual operators

Truth Tables

P Q P && Q

0 0 0

0 1 0

1 0 0

1 1 1

&& (and)

P Q P && Q

0 0 0

0 1 0

1 0 0

1 1 1

0 = false
1 = true

Can express whether one or both of two statements are true
it is raining or it is cold

I attend UWL or I am a science major

If one or both of the statements are true, then the entire expression is true

|| (or)

In English, we use “or” to present two mutually exclusive possibilities
e.g., “Did you have pizza or spaghetti for dinner?”

possible answers: pizza, spaghetti, neither, both (maybe?)

Logically, the answer could be “yes” or “no”
no: you had neither

yes: you had spaghetti, or pizza, or both

Spectrum of possible answers does not work with our logical value system
we instead work with true (yes) or false (no)

Nuances of ||

|| (or)

P Q P || Q

0 0 0

0 1 1

1 0 1

1 1 1

0 = false
1 = true

Can express the opposite value of a single statement
it is not raining

I am not a science major

If the statement is true, the expression is false, and vice versa

! (not)

! (not)

P !P

0 1

1 0

0 = false
1 = true

Often want to express more complex ideas
“Show up to lab or don’t show up to lab and submit exercise three”

Want to know the outcome of every possible scenario (set of inputs)

Can combine statements into larger expressions
goToLab || (!goToLab && submitEx3)

How to evaluate possible outcomes?
use truth tables

one statement at a time

Expressing More Complex Ideas

goToLab submitEx3

Example: Truth Table for Complex Expressions

goToLab || (!goToLab && submitEx3)

Create one column per variable
list in alphabetical order

For N variables, you will have 2N additional rows
in this case, 22 = 4

Fill rows with every combination of 0s and 1s
easiest way? count in binary

i.e., count using only 0s and 1s

goToLab submitEx3

11
12
13
14
15

16
17
18
19

2
3
4
5
6
7

8
9

Counting

Decimal Binary

0
1

10

20
21
22
23

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

Counting

Decimal

2
3
4
5
6
7

0
1

Binary

0
1

10
11

100
101
110
111

00
00
0
0

Example: Truth Table for Complex Expressions

goToLab submitEx3

0 0

0 1

1 0

1 1

goToLab || (!goToLab && submitEx3)

Create one column per variable
list in alphabetical order

For N variables, you will have 2N additional rows
in this case, 22 = 4

Fill rows with every combination of 0s and 1s
easiest way? count in binary

i.e., count using only 0s and 1s

Precedence for Logical Operators

Description Operator(s)

precedence ()

negation !

logical AND &&

logical OR ||

P Q P || Q

0 0 0

0 1 1

1 0 1

1 1 1

P Q P && Q

0 0 0

0 1 0

1 0 0

1 1 1

+ *

It matters!
Work out P && Q || R two ways: performing || first and performing && first

goToLab || (!goToLab
&& submitExercise3)

0

1

1

1

!goToLab && submitEx3

0

1

0

0

!goToLab

1

1

0

0

Example: Truth Table for Complex Expressions

goToLab submitEx3

0 0

0 1

1 0

1 1

goToLab || (!goToLab && submitEx3)
P Q P && Q

0 0 0

0 1 0

1 0 0

1 1 1

P Q P || Q

0 0 0

0 1 1

1 0 1

1 1 1

The boolean Data Type

Can only contain one of two values: true or false

Declaration/initialization/assignment work the same as int, double, char

Uses the logical operators (i.e., !, ||, &&)

boolean entree = true;
boolean salad = false;
boolean soup = true;

boolean validOrder = entree && (salad || soup);

What is validOrder set to?
true

boolean Operators

Uses the logical operators (i.e., !, ||, &&)

Also uses relational and equality operators

Description Operator(s)
precedence ()

negation !

relational < > <= >=

equality == !=

logical AND &&
logical OR ||

Relational and Equality Operators

< (less than)
8 < 3 (false), 3 < 8 (true)

> (greater than)
8 > 3 (true), 3 > 8 (false)

<= (less than or equal to)
6 <= 6 (true), 6 <= 7 (true)

7 <= 6 (false)

>= (greater than or equal to)
6 >= 6 (true), 6 >= 7 (true)

7 >= 6 (false)

== (equality)
6 == 6 (true), 8 == 3 (false)

!= (inequality)
6 != 6 (false), 8 != 3 (true)

Example: boolean Expressions

boolean x = 2.5 > 3 || !(4 != 5.1);Description Operator(s)
precedence ()

negation !

relational < > <= >=

equality == !=

logical AND &&
logical OR ||

double doubleint int

}
boolean

2.5 > 3 || !(true);

double booleanint2.5 > 3 || false ;
 false || false ;
 false ;

Operator Precedence

We can mix types, operators in a single expression

Description Operator(s)

precedence ()
prefix ! —

multiplicative * / %
additive + —

relational < > <= >=
equality == !=

logical AND &&
logical OR ||

boolean x = 2.5 + 4 > 3 || !(4 % 2 != 5.1);
2.5 + 4 > 3 || !(0 != 5.1);
2.5 + 4 > 3 || !(true);
2.5 + 4 > 3 || false ;

6.5 > 3 || false ;
true || false ;

true ;

Short-Circuit Evaluation

Two situations where evaluation of && and || will be terminated early
false && …
true || …

Java will always compute the lefthand side of an operator first

2.5 + 4 > 3 || !(4 % 2 != 5.1)
6.5 > 3 || !(4 % 2 != 5.1)

true || !(4 % 2 != 5.1)
 true

divByNum = 2 >= 1 / num;divByNum = 2 >= 1 / num;

Short-Circuit Evaluation

Two situations where evaluation of && and || will be terminated early
false && …
true || …

Java will always compute the lefthand side of an operator first

2.5 + 4 > 3 || !(4 % 2 != 5.1)
6.5 > 3 || !(4 % 2 != 5.1)

true || !(4 % 2 != 5.1)
 true

int num = ...; //user input
boolean divByNum;

divByNum = num != 0 && 2 >= 1 / num;

entire expression evaluates to
false if num != 0 is false (i.e., if

num is 0)

