
Methods

Methods are a named set of instructions
calculating a person’s age (given their birthday and today’s date)

determining the number of ingredients in a recipe (given a list of ingredients)

Allows us to just say what we want without describing how to calculate it
when we ask a friend to determine someone’s age, they know how to do the calculation

Methods

Scanner [nextLine() nextInt()]: read in this type of value from the user

DecimalFormat [format()]: reformat this number according to some pattern

Math [abs() pow()]: perform this operation and give us the result

String [substring() toCharArray()]: manipulate the String and give us the
result

Some Methods Seen Thus Far

Example: toCharArray()

String exampleStr = "Hi!";

char[] arr = new char[exampleStr.length()];

for (int i = 0; i < arr.length; i++) {
arr[i] = exampleStr.charAt(i);

}

If we want to convert a String to an array, we write the code ourselves…

Example: toCharArray()

If we want to convert a String to an array, we write the code ourselves…

…or we can call a method (Java’s named instruction for this task)

String exampleStr = "Hi!";

char[] arr = exampleStr.toCharArray();

Methods allow us to define a named set of instructions

Components
method name (a valid identifier)

parameters: what info do we need to run the method

returned value: what (if anything) will the method give us back (i.e., return)?

Method Basics

Write out the code for calculating age (ignoring the method component)
assume variables bYear, bMonth, bDay, tYear, tMonth, tDay

where the b = birthday and t = today

Then consider…
what might you call this set of instructions?

what info do you need from the user to run these instructions? what are the datatypes of
this info?

what value (if anything) do you expect to get back? what is the datatype of this value?

Example: Calculating Age

Methods are defined outside of main, but inside the class

For now, we want to define the name, parameters, return type

Anatomy of a Method

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

Follows same rules as other identifiers (e.g., variables)

Should follow same conventions as variable names

Example: Name (Identifier)

public

}

 calculateAge

Comma-separated list of datatype/variable name pairs

Scope is only the method they are in!

Example: Parameters

public

}

 (int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

}

Many (but not all!) methods will return a value

Method must a) define the return type, b) specify what value will be returned

Example: Return

public

}

 int

return age;

}

Example: Method Signature

Methods define a name, parameters, and what is returned

All of these make up the method signature (also called method header)

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay)

Method Execution

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

public static void main(String[] args) {

int myAge = calculateAge(1997, 10, 19, 2017, 10, 31);

}

Method Execution

public

}

public static void main(String[] args) {

int myAge = calculateAge(1997, 10, 19, 2017, 10, 31);

}

>

Method Execution

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

public

}

>

1997, 10, 19, 2017, 10, 31

calculateAge(1997, 10, 19, 2017, 10, 31);

Method Execution

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

public

}

memory

age (int)

>

1997, 10, 19, 2017, 10, 31

>

calculateAge(1997, 10, 19, 2017, 10, 31);
20

>

>

Method Execution

public

}

public

}

> calculateAge(1997, 10, 19, 2017, 10, 31);

Method Execution

public

}

public

}

> calculateAge(1997, 10, 19, 2017, 10, 31);20

public static void main(String[] args) {

int myAge = calculateAge(1997, 10, 19, 2017, 10, 31);

}

Method Execution

public

}

memory

myAge (int)

20>

Allow us to write code once, reuse multiple places

What are the advantages of this?

Why Methods?

Allow us to write code once, reuse multiple places

What are the advantages of this?
need to change how a calculation is done? will only change in one place

won’t make mistakes when copying/pasting code

concise

code will read more English-like
e.g., when looping through an array, the method call clearly shows we are calculating the age of each student

Why Methods?

parameters are the variables the method requires as input
this is what goes in-between the parentheses in the method signature

arguments are the values given to the method
they are passed in

this is what goes in-between the parentheses in the method call

these are what’s assigned to the parameters

Parameters vs Arguments

Parameters vs Arguments

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

public static void main(String[] args) {

int myAge = calculateAge(1997, 10, 19, 2017, 10, 31);

} parameters

arguments

Parameters only have scope in their method

Variables only have scope in the method they are declared in
e.g., variables declared in other methods cannot be used in main

Scope

Methods with a return type must always have at least one return statement
usually, but not always, at the bottom

Code after an executed return will never be executed

Return

public static int evenOrOdd(int num) {
if (num % 2 == 0) {
return true;

} else {
return false;

}
}

public static int evenOrOdd(int num) {
if (num % 2 == 0) {
return true;

}

return false;
}

Some methods don’t return anything
we call these void methods

return statements are unnecessary

Return type is replaced with the keyword void

Useful for printing

Void Methods

We’ll defer discussion of public and static

for now, always use them

Anatomy of a Method

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

Primitive type?
modifications made in a method do not affect the original variable

Array or a class type?
modifications made in a method do affect the original variable

we’ll see more of this with classes

Are Arguments Modified?

A method…similar to all the other methods!

This is the method Java calls to start your program

String[] args is an array of String arguments

options for how to run your program

e.g., debugging, what to do with output

can see this by running programs on the command line

The main Method

