
Loops

Program Structure: Code Blocks

Defined by opening and closing
curly bracket (e.g., { & })

Can be nested
innermost opening curly bracket
matches innermost closing curly
bracket

can nest conditionals, loops

/**
 * Our first program
 */
public class ExampleClass {

public static void main(String[] args) {

// Your code goes here!

}

}

scope defines the region of code where a variable can be used

Scope is defined by code blocks
variables declared inside a code block are local to that block

variables anywhere inside that block (even nested blocks!)

variables cannot be used outside that block

Scope and Variables

Last week, how to make decisions about whether or not to execute code

This week, how to make decisions about whether to execute code again

Example
previously saw how we could use conditionals to calculate a single person’s age

loops will allow us to repeat that same code for multiple people

Control Flow in Programs

Often want to repeat code zero or more times

Two options
copy and paste code multiple times

use a loop

What problems arise with the first option?

Why Loops?

Loops allow us to repeat one or more statements while some boolean
condition is true, and stop when the condition is false

Loops

conditional
statements

true

false

loops

true

false

do-while
loops

Types of Loops

while
loops

true

false

true

false

true

false

for
loops

do-while
loops

Types of Loops

while
loops

true

false

true

false

true

false

for
loops

While the condition is true, execute the statements inside the loop

While Loops

true

false

while (<boolean expression>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

5

>
is this true?

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

5

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

5
>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

5

5

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

5

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

5

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

>
is this true?

5

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

>

5

true

false

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

5

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

6

5
6

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

5
6

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

5
6

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

>
is this true?

5
6

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

>

5
6

true

false

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

5
6

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

7

5
6
7

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

8

5
6
7

true

false

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

8

5
6
7

>

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

8

>
is this true?

5
6
7

While the condition is true, execute the statements inside the loop

While Loops

true

false

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

memory

value (int)

8

5
6
7

>

Conditionals decide whether or not to execute a block of code once

Loops decide whether or not to execute a block of code multiple times

Loops vs Conditionals

conditional
statements

true

false

loops

true

false

Parts of a Loop

int value = 5;

while (value < 8) {

System.out.println(value);
 value++;

}

//code to execute after while loop

Every loop has four parts

Parts of a Loop

while

}

//code to execute after while loop

Every loop has four parts
initialization

set up a variable that will control the loop

int value = 5;

Parts of a Loop

int

while

}

//code to execute after while loop

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop stops

value < 8

Parts of a Loop

int

while

}

//code to execute after while loop

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop stops

work
the code the loop will repeat

System.out.println(value);

Parts of a Loop

int

while

}

//code to execute after while loop

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop stops

work
the code the loop will repeat

progress
how the loop moves closer to termination

 value++;

Usually, we want loops to stop at some point, resume with code after loop
isn’t true for all applications

will always be true for this class!

finite loops are those that stop

infinite loops are those that repeat forever
will require you to manually terminate your program

Finite vs Infinite Loops

Types of Loops

while
loops

true

false

true

false

for
loops

do-while
loops

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

true

false

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

0 only done once!

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

1 is this true?

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

2

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

3

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

1 is this true?

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

2

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

3

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while loop

1 is this true?

true

false

Explicitly recognizes the four parts of a loop in a single structure

For Loops

for (<var init>; <boolean expr>; <progress>) {

//code to execute if boolean expression is true

}

//code to execute after while looptrue

false

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)>

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for

}

//code to execute after while loop

memory

i (int)

5

> int i = 5

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for

}

//code to execute after while loop

memory

i (int)

5

>
is this true?

i < 8

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

5

>
is this true?

i < 8

true

false

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

>

true

false

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

true

false

5

> 5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

true

false

5

> i++

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

5

> i++

6

true

false

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for

}

//code to execute after while loop

memory

i (int)

6

>
is this true?

i < 8

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

6

>
is this true?

i < 8

true

false

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

>

true

false

6

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

true

false

5
6

> 6

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

true

false

5
6

> i++

6

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

5
6

> i++

7

true

false

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for

}

//code to execute after while loop

memory

i (int)

7

>
is this true?

i < 8

5
6

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

7

>
is this true?

i < 8

true

false

5
6

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

>

true

false

7

5
6

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

true

false

5
6
7

> 7

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

true

false

5
6
7

> i++

7

“For i = 5, print the value of i while i is less than 8…”

For Loops

for

}

//code to execute after while loop

memory

i (int)

5
6
7

> i++

8

true

false

5

“For i = 5, print the value of i while i is less than 8…”

For Loops

true

false

for

}

//code to execute after while loop

memory

i (int)

8

>
is this true?

i < 8

5
6
7

“For i = 5, print the value of i while i is less than 8…”

For Loops

for (int i = 5; i < 8; i++) {

System.out.println(i);

}

//code to execute after while loop

memory

i (int)

5
6
7

8

>
true

false

For loop variables are one of the few places where you can get away with
single letter variable names

but, if you can come up with a sensible name, use it!

Why use the for loop?
for loops ensure you have all four parts of the loop there

easier to miss one or more with the while loop

For Loop Notes

For loops are used when we know how many times we want the loop to
execute

While loops are used when we aren’t sure how many times we want the loop
to execute

In reality, can use for or while loops interchangeably
…although it is often more natural to use one over the other in most cases

should be able to understand how both work!

For Loop vs While Loop

do while
loops

Types of Loops

while
loops

true

false

true

false

true

false

for
loops

Similar to a while loop, but checks the condition last

Do While Loops

true

false

do {

//code to execute if boolean expression is true

} while (<boolean expr>);

//code to execute after while loop

remember me!

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

5

>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

5
>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

5>

5

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

6

5

>
is this true?

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

6

5

>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

6

5

>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

6
>

5

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

6>

5
6

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

7

5
6

>
is this true?

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

7

5
6

>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

7

5
6

>

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

7
>

5
6

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

7>

5
6
7

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

8

5
6
7

>
is this true?

Similar to a while loop, but checks the condition last

Do While Loops

true

false

int value = 5;

do {

System.out.println(value);
 value++;

} while (value < 8);

//code to execute after while loop

memory

value (int)

8

5
6
7

>

When we want to guarantee that our work is performed at least once

Primary use is for checking validity of user input
we always want to ask for input once

only if the input is invalid do we want to ask again

Why Do While Loops?

int input;

do {

System.out.print("Enter a "
 + "number [1-10] ");
 input = scan.nextInt();

} while (input < 1 || input > 10);

//code to execute after while loop

