Conditionals

Control Flow Statements

Thus far, all our programs execute in a linear fashion

Control flow statements enable our programs to have various types of
branching
We'll see three types of control flow statements

conditionals

loops

methods

Conditional Statements

Basic premise: if some expression is true, then execute this code

“If the user’s purchase is more than S50, do not charge shipping”

More complex conditional statements enable different logic

“If there are 8 or more people eating, then charge 20% gratuity. Otherwise, charge 15%
gratuity.’

“If income is less than $25,000, tax at a rate of 15%. If income is $25,000-550,000, tax at a
rate of 20%. If income is greater than $50,000, tax at a rate of 25%.”

Types of Conditional Statements

N Lo l—/] e
T ToT T3l vieT
1f 1f-else 1f-else 1f 1f-else 1f-else

statements statements statements statements

Types of Conditional Statements

.

!
1f
statements

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

_ \ e)
CXPIressIion //code to execute if boolean expression is true
S truel 1
lexpresson //code to execute after 1f statement
I S false

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

v >if () {

//code to execute 1f boolean expression 1s true

¥

//code to execute after 1f statement

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

v if) {

CXPIressIion //code to execute if boolean expression is true

Struel }

//code to execute after 1f statement

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

v if) {

CXPIressIion //code to execute if boolean expression is true

i
L

¥

> //code to execute after 1f statement

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

v >if () {

//code to execute 1f boolean expression 1s true

¥

//code to execute after 1f statement

1f Statements

Allows us to make a decision on whether or not to execute some code

if the boolean expression is true, execute the code in the brackets

otherwise (i.e., if the boolean expression is false), skip the code in the brackets

v if () {

//code to execute 1f boolean expression 1s true

¥

expression
S false

> //code to execute after 1f statement

Types of Conditional Statements

v

3

1f-else
statements

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

expression

o
-

CXPression //code to execute if boolean expression is true

S false } else {
//code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

v if () {
|

N.B.: notice the lack of boolean expression with the else block!

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

v >if () {
//code to execute 1f boolean expression 1s true
} else {

//code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

_ \ if () {
SARINESSION > //code to execute if boolean expression is true
s true b} else {
//code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

v if () {

expression //code to execute if boolean expression is true
} else {

S true
//code to execute 1f boolean expression 1s false

¥

| > //code to execute after i1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

v >if () {
//code to execute 1f boolean expression 1s true
} else {

//code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

v | if () {
CXPIESSION //code to execute if boolean expression is true
S false >} else {
> //code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

\ _ if) 1
CXPIESSION //code to execute if boolean expression is true
S false } else {
//code to execute 1f boolean expression 1s false

¥

> //code to execute after i1f-else statement

1f-else Statements

Makes a decision to execute one block of code or another block of code
if the boolean expression is true, execute the code in the block underneath the if

else (i.e., if the boolean expr. is false), execute the code in the block underneath the else

expression

o
-

CXPression //code to execute if boolean expression is true

S false } else {
//code to execute 1f boolean expression 1s false

¥

//code to execute after 1f-else statement

v if () {
|

N.B.: exactly one of these two blocks will execute!

Types of Conditional Statements

picd

1f-else 1f
statements

1f-else 1f Statements

Makes at most one decision amongst many boolean expressions
if the boolean expression is true, execute the code in the block underneath the if

else if the previous boolean expr. is false and the boolean expr. in the else if is true,
execute the code in the block underneath the else if

otherwise (i.e., if the previous boolean exprs. are false), skip all the code in the brackets

Can have one or more else 1if statements

1f-else 1f Statements

expr. 11s true

expr. 2 1s true
(&& expr. 1is false)

expr. 3 1s true
(&& expr. 1is

false && expr.

2 is false)

if all exprs.
are false

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

N.B.: we could have greater or fewer else if
blocks; this example happens to have two

1f-else 1f Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

expr. 11s true >

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

expr. 11s true

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

> //code to execute after i1f-else 1f statement

1f-else 1f Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
>t else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
expr. 2 is true b else 1f () {
(&& expr. 1is false) > //code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

expr. 2 1s true
(&& expr. 1is false)

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

> //code to execute after i1f-else 1f statement

1f-else 1f Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
>t else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

>1 else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else if () 1
expr. 3is true //code to execute 1f boolean expression 2 1s true
&& expr. 15 // and the previous boolean expressions are false
false && expr. :
} else if () 1

2 is false)

> //code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

expr. 3 1s true
(&& expr. 1is

false && expr.

2 is false)

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

> //code to execute after i1f-else 1f statement

N.B.: the order of the if and else if
statement(s) matters!

1f-else 1f Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
>t else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

>1 else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

//code to execute after 1f-else 1f statement

1f-else 1f Statements

if all exprs.
are false

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true
// and the previous boolean expressions are false

¥

> //code to execute after i1f-else 1f statement

N.B.: in this case, we execute none of
the if or else if statements

Types of Conditional Statements

G J'

1f-else 1f-else
statements

1f-else 1f-else Statements

Makes exactly one decision amongst many boolean expressions
if the boolean expression is true, execute the code in the block underneath the if

else if the previous boolean expr. is false and the boolean expr. in the else if is true,
execute the code in the block underneath the else if

else (i.e., if all previous boolean exprs. are false), execute the code in the block underneath
the else

Can have one or more else 1if statements

Must have exactly one else statement

1f-else 1f-else Statements

expr. 11s true

expr. 2 1s true
(&& expr. 1is false)

expr. 3 1s true
(&& expr. 1is

false && expr.

2 is false)

if all exprs.
are false

it () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false
} else 1f () {

//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

N.B.: we could have greater or fewer else if
blocks; this example happens to have two

1f-else 1f-else Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

it () 1
//code to execute 1f boolean expression 1 1s true
>t else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false
} else 1f () {
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false
>1 else 1f () {
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else if () 1
expr. 3is true //code to execute 1f boolean expression 2 1s true
&& expr. 15 // and the previous boolean expressions are false
false && expr. :
} else if () 1

2 is false) . : :
> //code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

expr. 3 1s true
(&& expr. 1is

false && expr.

2 is false)

it () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false
} else 1f () {

//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

> //code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

>if () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

it () 1
//code to execute 1f boolean expression 1 1s true
>t else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false
} else 1f () {
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

it () 1
//code to execute 1f boolean expression 1 1s true
} else 1f () {
//code to execute 1f boolean expression 2 1s true
// and the previous boolean expressions are false
>1 else 1f () {
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

if all exprs.
are false

it () 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false
} else 1f () {

//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
>1 else {
> //code to execute 1f the previous boolean

// expressions are false

¥

//code to execute after 1f-else 1f-else statement

1f-else 1f-else Statements

if all exprs.
are false

() 1

//code to execute 1f boolean expression 1 1s true
} else 1f () {

//code to execute 1f boolean expression 2 1s true

// and the previous boolean expressions are false

} else if () 1
//code to execute 1f boolean expression 3 1s true

// and the previous boolean expressions are false
} else {

//code to execute 1f the previous boolean

// expressions are false

¥

> //code to execute after 1f-else 1f-else statement

N.B.: we will always execute exactly
one of these blocks

In A Nutshell

We have three types of conditional blocks: if, else 1if, and else

Every conditional statement...

must start with exactly one 1f block

1f blocks are always the first statement

can be followed by zero or more else 1if blocks

can have exactly zero or one else blocks

else blocks are always the last statement (if included)

If there is an else block, exactly 1 block will execute

f there is no else block (i.e., just if, orif + else if), then either O or 1 blocks will
execute

A Note on Naming Variables...

Sensibly naming variables becomes more important with control flow
statements

What is the following code used for?

if (x =="A"&& y == "'S") {
System.out.println("Match found");

A Note on Naming Variables...

Sensibly naming variables becomes more important with control flow
statements

What is the following code used for?

1f (firstInitial == 'A" && lastInitial == 'S') {
System.out.println("Match found");

Activity Diagrams: Symbols

A Control flow

Merge/split

O
® Start
®

-Nnd

Activity Diagrams: Symbols

Activity Represents a single activity, a set of
Instructions

In software...

one or more statements

O “‘read in user input’

Activity Diagrams: Symbols

control flow: the order of execution

Communicates the order of activities

E— Control flow e.g., you print a prompt before reading
Input

print prompt

read input

O
@
®

Activity Diagrams: Symbols

Used to merge or split control flow

Handle different sequences of activities

e.g., asking user for age

scan user input

Merge/split

charge ticket price

Activity Diagrams: Symbols

Denotes where the algorithm begins
and ends

print prompt

Start print output

End

Combining Conditional Statements

Power of programming comes from combining control flow statements
placing one conditional statement after another
nesting one conditional statement inside another

Can do this in as many possible combinations as you can imagine!

but, you typically don’t need to get too complex

greater complexity often indicates a lack of clear problem solving strategy

To Consider

You know you need to use a conditional statement, but how to pick?

Ask yourself...
if none of my conditions work out, do | have a default outcome? have an else
are my outcomes mutually exclusive of one another? have an if + else if(s)

do | want to be able to execute two or more of my outcomes? use a sequence of
conditionals

