
Classes
& Objects

Data Structures

Thus far, all of our data has been stored in variables or arrays
one variable holds one piece of data

one array holds multiple pieces of data of the same datatype

Data structures enable our programs to organize our data in more efficient,
sensible ways

We’ll see three types of data structures this semester
variables (all semester)

arrays (remainder of semester)

classes (this week)

Allows us to group together pieces of data that define a real world concept
even if they are of different datatypes!

e.g., a professor is made up of a first/last name, courses they teach…

A class provides a definition of what pieces of data define a real world concept

An object defines a particular instance of that class

Classes

UWL as Object-Oriented Data

Professor
(name, list of classes, office)

objects

Allie Sauppé Marty Allen Elliot Forbes Jason Sauppe Sam Foley Tom Gendreau
CS120, CS364 CS120, CS227 CS272, CS370 CS225, CS270 CT100, CS441 CS340, CS470

class

Wing 214 Wing 210 Wing 219 Wing 207 Wing 220 Wing 211

Identifier
name of the class

should be singular, start with a capital letter (e.g., Professor, Student)

Attributes
data that defines every object of that class type

Methods
define the actions that can be taken with objects of that class type

Components of Classes

Object-oriented programs are
comprised of objects from

multiples classes interacting.

Java is made up of thousands of
classes. But, we can create our own

classes for our needs too.

Classes in Java

public class Professor {

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

}

only part of the class
(missing many details)

Classes in Java: Identifier

}

Name of the class

Should be singular

Should start with a capital letter (e.g.,
Professor, Student)

public class Professor {

}

Classes in Java: Attributes

public

}

}

Data that defines every object of that
class type

Variable declarations at a minimum
can also initialize/instantiate if needed

Also referred to as global variables
have scope throughout the class

New concept: visibility
public, private, protected

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

Classes in Java: Methods

public

}

Define the actions that can be taken
with objects of that class type

Work like methods from last week

Key differences
lack of static keyword

use of this keyword

no main method

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

Classes in Java: Constructor Method
Method to create (instantiate) an
object of this class type

Named the same as the class

Lacks a return type

Seen these throughout the semester
 Scanner(System.in);

public

}

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}
Scanner scan = new

Example: Constructor

public class UWL {
public static void main(String[] args) {

Professor aSauppe = new Professor("Sauppe", "Allie");
}

}

public class Professor {

private String firstName;
private String lastName;

public Professor(String ln, String fn) {

firstName = fn;
lastName = ln;

}
}

Example: Constructor

public class UWL {
public static void main(String[] args) {

Professor aSauppe = new Professor("Sauppe", "Allie");
}

}

public

private
private

public

}
}

>

Example: Constructor

public
public

}
}

public class Professor {

private String firstName;
private String lastName;

public Professor(String ln, String fn) {

firstName = fn;
lastName = ln;

}
}

> new Professor("Sauppe", "Allie");

>

memory

"Sauppe"

fn (String)

"Allie"

ln (String)

Example: Constructor

public
public

}
}

public class Professor {

private String firstName;
private String lastName;

public Professor(String ln, String fn) {

firstName = fn;
lastName = ln;

}
}

> new Professor("Sauppe", "Allie");

memory

"Sauppe"

fn (String)

"Allie"

ln (String)

(Professor)

firstName = "Allie"
lastName = "Sauppe"

>

public class UWL {
public static void main(String[] args) {

Professor aSauppe = new Professor("Sauppe", "Allie");
}

}

Example: Constructor

public

private
private

public

}
}

memory

(Professor)

firstName = "Allie"
lastName = "Sauppe"

> aSauppe

Methods are always affiliated with a class

Available data
variables declared in the method

parameters

global variables for that class

Classes & Methods

What we saw previously…

calculateAge: Before

public static int calculateAge(int bYear, int bMonth, int bDay, int tYear, int tMonth, int tDay) {

int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;
}

calculateAge: After

public class Student {
private String firstName;
private String lastName;
private int bYear;
private int bMonth;
private int bDay;

// ...

public int calculateAge(int tYear, int tMonth, int tDay) {
int age = tYear - bYear;

if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {
age--;

}

return age;

}
}

public class UWL {
public static void main(String[] args) {

// ...
// students have already been instantiated
// Josh born 11/1/1997, Eliza born 12/2/1997
int jamesAge = james.calculateAge(2017, 11, 7);
int elizaAge = eliza.calculateAge(2017, 11, 7);

}
}

Example: Methods
memory

eliza (Student)

bYear = 1997
bMonth = 12
bDay = 2

public class Student {
// ...
public int calculateAge(int tYear, int tMonth, int tDay) {

int age = tYear - bYear;
if(bMonth > tMonth || (bMonth == tMonth && bDay > tDay)) {

age--;
}
return age;

}
}

james (Student)

bYear = 1997
bMonth = 11
bDay = 1

Used to control access to classes, methods, and attributes

Three options
public: can be accessed from any class

private: can only be accessed from its own class

protected: we’ll get to this later

Visibility applies to classes, method, and global variables
public class Professor

public static void printArray(char[] arr)

private String firstName

Visibility

Classes are usually public
tend to only be useful to us if they can be accessed from other classes

Attributes are usually private
don’t want people to change them at will

forces change through methods, which provide guarantees

Methods are most likely public, but private is also common
public methods used to work with objects of that type

private methods used to help internal class functionality

Visibility Rules of Thumb

Since attributes are usually private, need some way to access them

Getter methods get the value of an attribute

Setter methods set the value of an attribute
can be used to ensure the attribute is only set to sensible values

e.g., only possible values for birth month are 1-12

Example for firstName attribute
public String getFirstName()

public void setFirstName(String fn)

Getter and Setter Methods

Modifier used for classes, methods, and variables
we’ll only talk about variables

Variables with the final keyword can only be assigned a value once

Examples from Math class
Math.PI (3.14159…)

Math.E (2.71828…)

Final variables are written in all uppercase, with underscores for spaces
e.g., MAX_COURSE_LOAD

final Keyword

The static keyword controls whether a resource (e.g., method, variable)
belongs to the class or an object of that class type

static: do not need to have instantiated an object of that class type to use it

non-static: must have an object instantiated of that class type

Overarching question: Do I need to know one or more attribute values from an
object to use this?

yes? non-static
default should be non-static

no? static

Static vs Non-Static Methods

Generally, methods/variables will be non-static
conforms to object-oriented principles

Static methods can only access static attributes
non-static methods can access all attributes

Examples of static methods from Java:
everything from the Math class

Math.pow(double x, int y)

Math.max(double x, double y)

Static Rules of Thumb

How to Call Methods

<Class>.<methodName>(<args>)

or

<methodName>(<args>)

Is the method I want to call static?

yes no

<object>.<methodName>(<args>)

or

<methodName>(<args>)

will assume the class you are currently in must already be in the class;
will assume the object you are currently using

1. Class name

2. Attributes
name, type, visibility, initialization/instantiation?

3. Constructor method
parameters come from attributes

4. Other methods
getters/setters, methods specified in requirements

Steps to Creating a New Class

Easy way to represent basic components
of a class (name, attributes, methods)

Part of unified modeling language (UML)
used to communicate structure of programs

Visibility prefaces identifier
+ for public

— for private

for protected

Static attributes/methods are underlined

Class Diagram

— firstName : String
— lastName : String
— birthYear : int
— birthMonth : int
— birthDay : int

+ Student(String, String,
 int, int, int)
+ getFirstName() : String
+ setFirstName(String) : void
+ calculateAge(int, int, int) : int

Student

Attributes list type after colon

Methods list only parameter types

Return type appears after method,
prefaced with a colon

constructor will not list a return type

list void if no return type

Class Diagram

— firstName : String
— lastName : String
— birthYear : int
— birthMonth : int
— birthDay : int

+ Student(String, String,
 int, int, int)
+ getFirstName() : String
+ setFirstName(String) : void
+ calculateAge(int, int, int) : int

Student

Used to identify current state of object

Lists current values for each attribute

Does not list methods

Object Diagram

firstName = "Jimmy"
lastName = "Gordon"
birthYear = 1994
birthMonth = 4
birthDay = 8

Student

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

ma = as;

System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

>

>

>

as

ma

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

ma = as;

System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma
>

no longer any variable
referring to this object!

(orphaned object)

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

ma = as;

System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma
>

cannot reestablish a
reference to this object;

collected by Java’s
garbage collector

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

ma = as;

System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

as

ma>

Allie Allie

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

>

>

>

as

ma
>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null
Marty Allie

always treat variables of a
class type and the objects

they refer to as two
separate entities

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

>

>

>

as

ma
>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null

>

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

Professor temp;

temp = as;
as = ma;
ma = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + ma.getFirstName());

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

as

ma

temp null
Marty Allie

Objects/Arrays & Methods

int[] array = {3, 1, 2, 5, 9};

swap(array, 1, 4);

public static

arr
}

array

int[]

3 1 2 5 9

>

>

Objects/Arrays & Methods

int

>

public static void swap(int[] arr, int i1, int i2) {
 int temp = arr[i1];
 arr[i1] = arr[i2];

arr[i2] = temp;
}

>

swap(array, 1, 4);

array

int[]

3 1 2 5 9

arr

Objects/Arrays & Methods

int

>

public static void swap(int[] arr, int i1, int i2) {
 int temp = arr[i1];
 arr[i1] = arr[i2];

arr[i2] = temp;
}

swap(array, 1, 4);

array

int[]

3 1 2 5 9

arr

>

temp (int)

1

Objects/Arrays & Methods

int

>

public static void swap(int[] arr, int i1, int i2) {
 int temp = arr[i1];
 arr[i1] = arr[i2];

arr[i2] = temp;
}

swap(array, 1, 4);

array

int[]

3 9 2 5 9

arr

>

temp (int)

1

Objects/Arrays & Methods

int

>

public static void swap(int[] arr, int i1, int i2) {
 int temp = arr[i1];
 arr[i1] = arr[i2];

arr[i2] = temp;
}

swap(array, 1, 4);

array

int[]

3 9 2 5 1

arr

>

temp (int)

1

Objects/Arrays & Methods

>

public static

arr
}

array

int[]

3 9 2 5 1

int[] array = {3, 1, 2, 5, 9};

swap(array, 1, 4);

Used to refer to the object we are currently using
e.g., this object

Can be used just like any other object

this Keyword

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

as.renameProf("Allison");

ma.renameProf("Martin");

public void renameProf(String newName) {
 this.firstName = newName;
}

method contained
in the Professor class

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

as.renameProf("Allison");

ma.renameProf("Martin");

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

>

>

>

as

ma
public

}

public void renameProf(String newName) {
 this.firstName = newName;
}

Object Tracing With Methods

Professor

Professor

ma

Professor

firstName = "Allie"
lastName = "Sauppe"

Professor

firstName
lastName

>

>

as

ma

as.renameProf("Allison");
this

public void renameProf(String newName) {
 this.firstName = newName;
}

Object Tracing With Methods

Professor

Professor

ma

Professor

firstName = "Allison"
lastName = "Sauppe"

Professor

firstName
lastName

>

>

as

ma

as.renameProf("Allison");
this

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

as.renameProf("Allison");

ma.renameProf("Martin");

Professor

firstName = "Allison"
lastName = "Sauppe"

Professor

firstName = "Marty"
lastName = "Allen"

>

as

ma
>

public

}

Object Tracing With Methods

Professor

Professor

as

Professor

firstName
lastName

Professor

firstName = "Marty"
lastName = "Allen"

as

ma
>

public void renameProf(String newName) {
 this.firstName = newName;
}
>

ma.renameProf("Martin");

this

Object Tracing With Methods

Professor

Professor

as

Professor

firstName
lastName

Professor

firstName = "Martin"
lastName = "Allen"

as

ma
>

public void renameProf(String newName) {
 this.firstName = newName;
}

ma.renameProf("Martin");

>
this

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor ma = new Professor("Allen", "Marty");

as.renameProf("Allison");

ma.renameProf("Martin");

Professor

firstName = "Allison"
lastName = "Sauppe"

Professor

firstName = "Martin"
lastName = "Allen"

as

ma
>

public void renameProf(String newName) {
 this.firstName = newName;
}

