
Arrays

Data Structures

Thus far, all of our data has been stored in variables
one variable holds one piece of data

Data structures enable our programs to organize our data in more efficient,
sensible ways

group related pieces of data together

We’ll see three types of data structures this semester
variables (all semester)

arrays (this week)

classes (in a few weeks)

Exercise: Storing Multiple Pieces of Data

Suppose we wanted to store the names of everyone in this class

What information do we need to know?

How can we store that information in a program?

What if the user was providing the names through the console? Could we
adapt to changes to how many people are in the class? (e.g., 27 vs 33?)

What Is An Array?

variables
age (int)

11

firstName (String)

"James"

array

temp (double)

32.5

firstNames (String[])

"James" "Amy" "Beth" "Harold" "Remus" "Eliza"

0 1 2 3 4 5

Array Properties

Arrays allow us to store a collection of data values together

All data stored in an array must be of the same data type
e.g., all Strings, all ints, all booleans

Must predetermine the size of our array
e.g., if we say our array will hold 27 names, we cannot modify it to store 33 names

however, we can always store less data (e.g., 15 names)

We refer to data by its variable name and index (i.e., position) in the array
indexes are zero-based, just like with Strings

the length of the String is not zero-based

Setting Up An Array

Three steps:
declaring the array sets up the variable name and data type

only change is the addition of square brackets, e.g., []

names (String[])

Setting Up An Array

Three steps:
declaring the array sets up the variable name and data type

only change is the addition of square brackets, e.g., []

instantiating the array sets up the size (i.e., length)

names (String[])

null null null null null null

0 1 2 3 4 5

The absence of data

Keyword in Java to indicate that there is nothing (i.e., no data) referred to by
this variable/spot in the array

Always (always always) initialize/instantiate variables/arrays!
except for primitives, these are set to null until initialization/instantiation

What Is Null?

Java throws an exception when your program attempts to use a null values
accessing an array that has not been instantiated

accessing a spot in the array that has not been initialized

will see this other places too (e.g., classes)

NullPointerException

Exception in thread "main" java.lang.NullPointerException
 at Example.main(Example:8) name of the exception that

caused our program to crashline number where the
exception occurred

Setting Up An Array

Three steps:
declaring the array sets up the variable name and data type

only change is the addition of square brackets, e.g., []

instantiating the array sets up the size (i.e., length)

names (String[])

null null null null null null

0 1 2 3 4 5

Setting Up An Array

Three steps:
declaring the array sets up the variable name and data type

only change is the addition of square brackets, e.g., []

instantiating the array sets up the size (i.e., length)

initializing the array assigns initial values to each spot in the array

names (String[])

"James" "Amy" "Beth" "Harold" "Remus" "Eliza"

0 1 2 3 4 5

Definition: Declaring & Instantiating An Array

declare an array

<dataType>[] <identifier>; // both of these lines do the same thing
<dataType> <identifier>[];

instantiate an array

<identifier> = new <dataType>[<length>];

declare and instantiate an array

<dataType>[] <identifier> = new <dataType>[<length>];

Example: Declaring & Instantiating An Array

declare an array of type String called names

String[] names; // both of these lines do the same thing
String names[];

instantiate an array of type String with length 6

names = new String[6]; // notice we do not use the square brackets here

declare and instantiate an array of type String called names with length 6

String[] names = new String[6];

Example: Array Initialization

initialize an array of type String called names

names[0] = "James";
names[1] = "Amy";
names[2] = "Beth";
names[3] = "Harold";
names[4] = "Remus";
names[5] = "Eliza";

names (String[])

"James" "Amy" "Beth" "Harold" "Remus" "Eliza"

0 1 2 3 4 5

null null null null null null

>
>
>
>
>
>
>

Example: Declaring, Instantiating, and Initializing

declare an array of type String called names

String[] names; // both of these lines do the same thing
String names[];

instantiate and initialize an array with our name Strings

names = {"James", "Amy", "Beth", "Harold", "Remus", "Eliza"};

declare, instantiate and initialize an array with our name Strings

String[] names = {"James", "Amy", "Beth", "Harold", "Remus", "Eliza"};

Example: Array Access

access each value in the array and print it out

System.out.println(names[0]);
System.out.println(names[1]);
System.out.println(names[2]);
System.out.println(names[3]);
System.out.println(names[4]);
System.out.println(names[5]);

names (String[])

"James" "Amy" "Beth" "Harold" "Remus" "Eliza"

0 1 2 3 4 5

Definition: Array Length

access the length of an array

<identifier>.length;
names.length;

Like Strings, can often be helpful to know the length of an array

Unlike Strings, we use .length

notice no parentheses!

Example: Array Access

access each value in the array and print it out

for (int i = 0; i < names.length; ++i) {
 System.out.println(names[i]);
}

names (String[])

"James" "Amy" "Beth" "Harold" "Remus" "Eliza"

0 1 2 3 4 5

Java throws an exception when your program attempts to access a value
beyond the length of the array

similar to attempting to access a character index not available in a String

ArrayIndexOutOfBoundsException

name of the exception that
caused our program to crash

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
 at Example.main(Example:8)

line number where the
exception occurred

Definition: String Methods

toCharArray: converts a String to an array of char values

str.toCharArray();

equals: checks for equality between one String and another (case sensitive!)

str.equals(str2);

==: checks to see if two String values point to the same memory location

str == str2;

arguments: nothing

returns: a char array containing each character in the String, in order

toCharArray

<String>.toCharArray();

String exampleStr = "Hi!";

char[] arr = exampleStr.toCharArray();

memory

exampleStr (String)

"Hi!">

>

names (char[])

'H' 'i' '!'

>

arguments: a String to compare to

returns: a boolean value; true if the two Strings are the same, false if not

equals

<String>.equals(<String>);

String exampleStr = "Hi!";

boolean same = exampleStr.equals("Hi!");

memory

same (boolean)

exampleStr (String)

"Hi!">

>

true

>

arguments: a String to compare to

returns: a boolean value; true if the two Strings are the same, false if not

equals

<String>.equals(<String>);

String exampleStr = "Hi!";

boolean same = exampleStr.equals("hi!");

memory

same (boolean)

exampleStr (String)

"Hi!">

>

false

>

arguments: two String values to compare

returns: a boolean value; true if the Strings are at the same memory location

==

<String> == <String>;

String str1 = "Hi!", str2 = "Hi!";

boolean same = str1 == str2;

memory

str2 (String)

str1 (String)

"Hi!">

>

"Hi!"

>

same (boolean)

false

Primitive data types (boolean, char, int, double, …)
always use ==

will check to see if the two are the same value

.equals() does not exist for primitive data types

Class data types (String, …)
will almost always use .equals()

will check to see if the content of the two objects is the same

we can define what equality means!

== will check if the memory location of the two objects is the same

== vs equals()

Data structures can contain multiple pieces of information in a single place

Often want to manipulate these
searching

sorting

Searching & Sorting

Examine each index until we find what we are looking for

Searching An Array

Know there are one vs many occurrences
one: can stop after it’s found

many: must continue until the end of the loop

Searching for first vs all occurrences
one: can stop after the first is found

many: must continue until the end of the loop

Searching Modifications

Numerous sorting algorithms available
many algorithms + their efficiency (i.e., complexity) will be discussed in 340

In this class
selection sort

insertion sort

Sorting An Array

Considered one of the classic sorting algorithms

Very simple, but very inefficient
will do the job for this class

Basic premise:
scans through the array multiple times, looking for the next smallest element each time

moves the smallest element to the front of the array

Selection Sort

Array is divided into two parts: sorted (left part) and unsorted (right part)
initially, everything is unsorted

Scan through the unsorted part for the smallest element

Swap the smallest element with the leftmost unsorted value

Length of sorted part increases by one, length of unsorted part decreases by
one

Repeat

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

8 3 2 5 9 7

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 0

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 1

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 2

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 3

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 9 8

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 9 8

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 4

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 8 9

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 8 9

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

smallestIndex = 5

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for the
smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part decreases
by one

Selection Sort

2 3 5 7 8 9

Considered one of the classic sorting algorithms

Very simple, but very inefficient
will do the job for this class

Basic premise:
scans through the array multiple times, looking at the next unsorted element

moves that unsorted element into a sorted place in the final list

Insertion Sort

Array is divided into two parts: sorted (left part) and unsorted (right part)
initially, first element is sorted, everything else is unsorted

Look at the leftmost unsorted value

Move it down the sorted list until it is in the correct place

Length of sorted part increases by one, length of unsorted part decreases by
one

Repeat

Insertion Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

8 3 2 5 9 7

Insertion Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

3 8 2 5 9 7

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

2

Insertion Sort

3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 8 97

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 7 98

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

32

Insertion Sort

5 7 98

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part decreases
by one

chars have a strict ordering, just like numbers
comes from underlying numeric representations every char has

char Datatype & Sorting

