
Homework 3  
Extendable Hashing

“Due” April 5

Homework 3

• Implement the DBTable and the ExtHash
classes and a driver class to test the classes.
The DBTable class implements the basic parts
of a database table and the ExtHash class
implements an extendable hash index. Shown
on the following slides are the methods for the
DBTable and the ExtHash classes.

• The DBTable must use the ExtHash to find rows
in the table. Every DBTable method will use
ExtHash.

DBTable

• The rows in the DBTable will include an
integer key and one or more fixed length
strings.

• The DBTable maintains a list of free slots
(space in the file previously used for rows that
have been removed)

• When a new row is inserted the DBTable
should reuse a free slot if one is available.
Otherwise the new row is inserted at the end
of the file.

Homework 3 (DBTable Example)
Addr Contents

0 2

4 10

8 20

12 276

20 50 Anton Chekhov

84 468

148 10 Vladimir Nabokov
1212 60 Alonzo Church

276 84

340 20 Mark Twain

404 70 Gottlob Frege

468 0

532 40 Hannah Arendt

568 30 George Eliot

numOtherFields

Length 1

Length 2

Free

Hash Values

Key Hash Value
10 1000
20 0111
30 1110
40 1001
50 0101
60 1100
70 0010

Bucket File
 0 2 Bucket

Size 4 2 2 60 10 212 148

 36 2 2 40 50 532 20

 68 2 2 70 30 404 568

 100 2 1 20 340

 Addr nBits nKeys Keys DBTable Addrs

Directory
Hash Bits 0 2

4 4

12 36

20 68

28 100

Addr Bucket Address

DBTable

public class DBTable {

 RandomAccessFile rows; //the file that stores the rows in the table
 long free; //head of the free list space for rows
 int numOtherFields;
 int otherFieldLengths[];
 //add other instance variables as needed

DBTable
 private class Row {
 private int keyField;
 private char otherFields[][];
 /*
 Each row consists of unique key and one or more character array fields.

 Each character array field is a fixed length field (for example 10
characters).

 Each field can have a different length.

 Fields are padded with null characters so a field with a length of
 of x characters always uses space for x characters.
 */

 //Constructors and other Row methods

 }

DBTable
 public DBTable(String filename, int fL[], int bsize) {
 /*
 Use this constructor to create a new DBTable.

 filename is the name of the file used to store the table
 fL is the lengths of the otherFields
 fL.length indicates how many other fields are part of the row
 bsize is the bucket size used by the hash index

 A ExtHash object must be created for the key field in the table

 If a file with name filename exists, the file should be deleted before the
 new file is created.
 */

 }

DBTable
 public DBTable(String filename) {
 //Use this constructor to open an existing DBTable
 }

 public boolean insert(int key, char fields[][]) {
 //PRE: the length of each row in fields matches the expected length
 /*
 If a row with the key is not in the table, the row is added and the method
 returns true otherwise the row is not added and the method returns false.

 The method must use the hash index to determine if a row with the key
 exists.

 If the row is added the key is also added into the hash index.
 */

 }

DBTable

 public boolean remove(int key) {
 /*
 If a row with the key is in the table it is removed and true is returned
 otherwise false is returned.

 The method must use the hash index to determine if a row with the key
 exists.

 If the row is deleted the key must be deleted from the hash index
 */

 }

DBTable

 public LinkedList<String> search(int key) {
 /*

 If a row with the key is found in the table return a list of the other fields in
 the row.

 The string values in the list should not include the null characters used for
 padding.

 If a row with the key is not found return an empty list

 The method must use the hash index index to determine if a row with the
 key exists
 */

 public void close() {
 //close the DBTable. The table should not be used after it is closed
 }
}

ExtHash

public class ExtHash {

 RandomAccessFile buckets;
 RandomAccessFile directory;
 int bucketSize;
 int directoryBIts; //indicates how many bits of the hash function are
 used by the directory
 //add instance variables as needed.

 private class Bucket {
 private int bucketBits; //the number of hash function bits used
 by this bucket

 private int count; // the number of keys are in the bucket
 private int keys[];
 private long rowAddrs[];

 //constructors and other method

 }

ExtHash

 public ExtHash(String filename, int bsize {
 //bsize is the bucket size.
 //creates a new hash index
 //the filename is the name of the file that contains the table rows
 //the directory file should be named filename+”dir”
 //the bucket file should be named filename+”buckets”
 //if any of the files exists the should be deleted before new ones are made

 }

 public ExtHash(String filename) {
 //open an existing hash index
 //the associated directory file is named filename+”dir”
 //the associated bucket file is named filename+”buckets”
 //both files should already exists when this method is used

 }

ExtHash
 public boolean insert(int key, long addr) {
 /*
 If key is not a duplicate add key to the hash index
 addr is the address of the row that contains the key
 return true if the key is added
 return false if the key is a duplicate
 This method might need to extend the directory or create new
 buckets
 */
 }

 public long remove(int key) {
 /*
 If the key is in the hash index, remove the key and return the address of
 the row.
 return 0 if the key is not found in the hash index
 This method might have to recover space for the buckets or decrease the
 size of the directory
 */
 }

ExtHash

 public long search(int k) {
 /*
 If the key is found return the address of the row with the key
 otherwise return 0
 */

 }
 public int hash(int key) {
 //return the hash value
 //note simplification

 return key;
 }

 public void close() {
 //close the hash index. The index should not be accessed after close is called
 }
}

Homework 3: Other Issues

• Inserting a new key might require
modifying the directory

• Removing a key might require modifying
the directory

• Undergraduates can work in pairs but
graduate students must work alone

Homework 3

• You will demonstrate your program to me.
I will give you a driver to use for the
demonstration but you must develop your
own driver to test your implementation
before you demo.

• After the demonstration you will upload
one zip file to Canvas. The zip file should
contain 2 java files: DBTable.java and
ExtHash.java

