Query Processing and Relational Algebra 2
Relational Algebra Operators

- Select: \(\sigma_{\text{condition}} \)
- Project: \(\pi_{\text{attr list}} \)
- Union: \(\cup \)
- Set Difference: \(- \)
- Intersection: \(\cap \)
- Cartesian product: \(\times \)
Relational Algebra Operators

• Joins
 – Natural join
 • \(\bowtie \)
 – Equi join and Theta join
 • \(\bowtie_{\text{Condition}} \)

• Division
 – \(\div \) or /

• Renaming
 – Expression\([A_1, A_2, ...A_n]\)
Problems

- Library L
- Copy C
- Book B
- Writes W
- Author A
Problems

• Find libnums of libraries with a capacity greater than 200.
 \[\pi \text{ libnum} (\sigma_{\text{capacity} > 200 \ L}) \]
Problems

• Find the titles of books with copies housed in a library with a capacity greater than 200.
 \[\pi \text{title} \left(\sigma_{\text{capacity} > 200} \left(B \bowtie C \bowtie L \right) \right) \]
 \[\pi \text{title} \left(B \bowtie C \bowtie \left(\sigma_{\text{capacity} > 200} L \right) \right) \]
Problems

• Find the names of authors who have written a book housed in a library with a capacity greater than 200
 \[\pi \text{ first, last} \left(\sigma_{\text{capacity} > 200} \left(A \bowtie W \bowtie B \bowtie C \bowtie L \right) \right) \]
Problems

• Find aid and name of authors who have not written any books
 \[\pi \text{ first, last } (A \Join (((\pi \text{ aid } A) - (\pi \text{ aid } W)))) \]
Problems

• Find booknum and title of books with no copies.
 \[\pi \text{ booknum, title} (B \bowtie ((\pi \text{ booknum } B) - (\pi \text{ booknum } C))) \]
Problems

• Find the booknum and title of books with a copy in every library
 \[(\pi \text{booknum, title, libnum} (B \bowtie C)) \div (\pi \text{libnum} L) \]
More Relational Algebra Problems

Suppose relations R and S contain $\text{Size}(R)$ and $\text{Size}(S)$ tuples. What are the minimum and maximum number of tuples in the results of relational algebra expression shown to the right (assume union compatibility where needed)?

- $R \cup S$
- $R \cap S$
- $R - S$
- $\pi_A R$ where A is an attribute of R
- $R \times S$
- $R \bowtie S$ where A is the common attribute in R and S
- R / S assume all attributes of S are also attributes of R
Result Size

• R U S

• Max: Size(R) + Size(S)

• Min: greater of Size(R) and Size(S)
Result Size

- $R \cap S$

- Max: Smaller of Size(R) and Size(S)

- Min: 0
Result Size

- $R - S$
- Max: $\text{Size}(R)$
- Min: 0
- If everything in S is in R the $\text{Size}(R) - \text{Size}(S)$
Result Size

• $\pi_A R$

• Max: Size(R)

• Min: 1
Result Size

- $R \times S$
- $\text{Size}(R) \times \text{Size}(S)$
Result Size

- \(R \bowtie S \) where \(A \) is the common attribute in \(R \) and \(S \)

- Max: \(\text{Size}(R) \times \text{Size}(S) \)

- Min: 0

- If \(A \) is the primary key in \(R \) and a foreign key in \(S \) and no \(A \)'s in \(S \) are NULL then Max is \(\text{Size}(S) \) (Note correction mentioned in video)
Result Size

- **R / S** assume all attributes of S are also attributes of R
- Max: \(\text{Size}(R) / \text{Size}(S) \)
- Min: 0