Query Processing and Relational Algebra 2

Relational Algebra Operators

- Select
- $\sigma_{\text {condition }}$
- Project
- $\Pi_{\text {attr list }}$
- Union
- Set Difference
- Intersection
- \cap
- Cartesian product - x

Relational Algebra Operators

- Joins
- Natural join
- Equi join and Theta join
- $\bowtie_{\text {Condition }}$
- Division
- - or /
- Renaming
- Expression[$\left.\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{n}\right]$

Problems

- Library L
- Copy C
- Book B
- Writes W
- Author A

Problems

- Find libnums of libraries with a capacity greater than 200.
$-\Pi$ libnum $\left(\sigma_{\text {capacity }}>200 \mathrm{~L}\right)$

Problems

- Find the titles of books with copies housed in a library with a capacity greater than 200.
$-\Pi$ title $\left(\sigma_{\text {capacity }}>200(B \bowtie C \bowtie L)\right)$
$-\Pi$ title $\left(B \bowtie C \bowtie\left(\sigma_{\text {capacity }}>200 L\right)\right)$

Problems

- Find the names of authors who have written a book housed in a library with a capacity greater than 200
$-\pi$ first, last $\left(\sigma_{\text {capacity }}>200(A \bowtie W \bowtie B \bowtie C \bowtie L)\right)$

Problems

- Find aid and name of authors who have not written any books
$-\pi$ first, last $(A \bowtie((\pi$ aid $A)-(\pi$ aid $W)))$

Problems

- Find booknum and title of books with no copies. $-\Pi$ booknum, title $(B \bowtie((\pi$ booknum $B)-(\pi$ booknum $C)))$

Problems

- Find the booknum and title of books with a copy in every library
$-(\Pi$ booknum, title, libnum $(B \bowtie C)) /(\Pi$ libnum $L)$

More Relational Algebra Problems
Suppose relations R and S contain Size(R) and Size(S) tuples.
What are the minimum and maximum number of tuples in the results of relational algebra expression shown to the right (assume union compatibility where needed)?

- R U S
- R $\cap S$
- R-S
- $\pi_{A} R$ where A is an attribute of R
- RxS
- $R \bowtie S$ where A is the common attribute in R and S
- R / S assume all attributes of S are also attributes of R

Result Size

- RUS
- Max: Size(R) + Size(S)
- Min: greater of $\operatorname{Size}(\mathrm{R})$ and $\operatorname{Size}(\mathrm{S})$

Result Size

- $\mathbf{R} \cap \mathbf{S}$
- Max: Smaller of Size(R) and Size(S)
- Min: 0

Result Size

- R-S
- Max: Size(R)
- Min: 0
- If everything in S is in R the $\operatorname{Size(R)-Size(S)~}$

Result Size

- $\pi_{A} R$
- Max: Size(R)
- Min: 1

Result Size

- R x S
- $\operatorname{Size}(\mathrm{R})$ * $\operatorname{Size(S)}$

Result Size

- $\mathbf{R} \bowtie S$ where A is the common attribute in R and S
- Max: Size(R) * Size(S)
- Min: 0
- If A is the primary key in R and a foreign key in S and no A's in S are NULL then Max is Size(S) (Note correction mentioned in video)

Result Size

- R / S assume all attributes of S are also attributes of R
- Max: Size(R) / Size(S)
- Min: 0

