Normalization and Functional Dependencies

- 1NF
- Redundancy and Anomalies
- Functional Dependencies
- Attribute Closure
- Keys and Super keys
- 2NF
- 3NF
- BCNF
- Minimal Cover Algorithm
- 3NF Synthesis Algorithm
- Decomposition of Tables

Attribute Closure

- Find all attributes dependent on a particular set of attributes.
- The closure of a set of attributes, X, is designated by X⁺

Attribute Closure Algorithm Under FD Set F

- closure := X; // since $X \subseteq X^+$ repeat old := closure; if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq$ closure then closure := closure $\cup V$ until old = closure
- If $T \subseteq closure$ then $X \rightarrow T$ is implied by **F**

- Let R = {A, B, C, D, E, F}
- Let the FD set be
 - $ABF \rightarrow C$
 - $CF \rightarrow B$
 - $-CD \rightarrow A$
 - BD \rightarrow AE
 - $-\,C \rightarrow F$
 - $-B \rightarrow F$
- Find the closure of ABC

ABC+ : ABC : F

Keys and Super Keys

- A set of attributes, X, in a super key for a table
 T if X ⊆ T and X -> T
- Another way of saying this is that $\mathsf{T}\subseteq\mathsf{X}^{\scriptscriptstyle +}$
- A set of attributes, X, in a key for a table T if it has the super key property and no proper subset of X has the super key property

: C

• Let R = {A, B, C, D, E, F}	ABF+: ABF
 Let the FD set be 	: C
$\begin{array}{l} - & ABF \rightarrow C \\ - & CF \rightarrow B \\ - & CD \rightarrow A \\ - & BD \rightarrow AE \\ - & C \rightarrow F \\ - & B \rightarrow F \end{array}$	ABD+: ABD : E : F : C
Is ABF a super key for R?Is ABD a super key for R?	Is ABD a key?
 What attribute must be part of any key for R? 	: AE : F

Create 3NF Tables

- Identify all attributes, R, and FDs, F
 - A table containing all attributes in R is called the universal table
 - The designers must work with the customers to identify R and F
 - The FDs in F represent "real world" constraints of the data that can be entered into the database
- Create a minimal cover FD set, G, from F
- Apply the 3NF synthesis algorithm using the FD set G and the set of attributes R

Minimal Cover Set

- A minimal cover set, G, of an FD set F is an FD set such that
 - G is equivalent to F
 - No FD can be removed from G to create a

"smaller" FD set equivalent to F

- No FD in G can have an attribute removed from the FD to create a "smaller" FD set equivalent to F
- Minimal cover sets are not unique

Minimal Cover Algorithm for FD Set F

- Step 1: Make all RHS single attributes — Use decomposition of RHS on all FDs
- Step 2: Remove redundant attributes from LHS
 G = F
 repeat

```
old = G
for each XB -> A \in G
if X -> A is implied by G (i.e. A \in X<sup>+</sup>)
then G = G - {XB -> A } \cup {X -> A}
until old == G (i.e. keep going until G does not change)
```

Minimal Cover Algorithm for FD Set F

 Step 3: Remove redundant FDs from G (G was produced in step 2) H = Grepeat old = HFor each X -> A \in H if H is equivalent to $H - \{X \rightarrow A\}$ (i.e. $A \in X^+$ where X⁺ is found using FD set $H - {X \rightarrow A}$ then $H = H - \{X -> A\}$ until old == H (i.e. keep going until H does not change)

Minimal Cover Algorithm for FD Set F

- Step 4: Combine FDs that have the same LHS
 - Use the Union rule
 - Sometimes this step is considered part of the 3NF synthesis algorithm

- Let R = {A, B, C, D, E, F}
- Let the FD set be
 - $ABF \rightarrow C$
 - $-\operatorname{CF} \rightarrow \operatorname{B}$
 - $-CD \rightarrow A$
 - BD \rightarrow AE
 - $-\,C \rightarrow F$
 - $-B \rightarrow F$
- Find a minimal cover FD set.

3NF Synthesis Algorithm

- Input: Set of attributes R and FDs F
- Step 1: Create a minimal cover for F called G
- Step 2. For each FD in G create a table. Call the tables T₁,T₂, ...
- Step 3: If none of the T_i contain a super key for the universal table create a new table containing the attributes of a key for the universal table

- Let R = {A, B, C, D, E, F}
- Let the FD set be
 - $ABF \rightarrow C$
 - $CF \rightarrow B$
 - $-CD \rightarrow A$
 - BD \rightarrow AE
 - $-\,C \rightarrow F$
 - $-B \rightarrow F$
- Create a set of 3NF tables from R and the FD set.

- Lossless Decomposition
 - A decomposition of T into T1 and T2 is a lossless if and only if T1 \cap T2 -> T1 or T1 \cap T2 -> T2
 - A decomposition of T into T1 and T2 is a lossless if for every valid T (valid relative to the FDs) T = T1 Natural Join T2

- Dependency Preserving Decomposition
 - $_$ Let T₁ and T₂ be a decomposition of T with FD set F
 - $_$ Let F_1 and F_2 be the FDs from F+ that lie in T_1 and T_2 respectively
 - The decomposition is dependency preserving if and only if $F^+ = F_1 \cup F_2$

- The 3NF synthesis algorithm is equivalent to a series of lossless, dependency preserving decompositions into a set of 3NF tables
- A lossless decomposition of the universal table into a set of BCNF tables is possible but the decomposition might not be dependency preserving

- To remove a 3NF or BCNF violator through decomposition do the following
 - Let T contain attributes X, attributes Y and attribute A
 - Let X -> A be violator that lies in T
 - Decompose T into T1 and T2 where T1 contains attributes X and attribute A and T2 contains attributes X and attributes Y
 - The decomposition is lossless because $X = T1 \cap T2$ and X is a super key for T1

- Let R = ABCDEFGH
- Let the FD set be
 - $A \rightarrow E$
 - $BE \rightarrow D$
 - AD→BE
 - BDH \rightarrow E
 - $AC \rightarrow E$
 - $F \rightarrow A$
 - E→B
 - D→H
 - BG \rightarrow F
 - CD \rightarrow A

- Find keys for the universal table
- Create a minimal cover FD set
- Create a set of 3NF tables
- If any of the tables are not in BCNF decompose them into BCNF tables

- Universal table {A,B,C,D,E,G,H,K,L,M}
- FDs
 - ABE -> CK
 - _ AB -> D
 - C -> BE
 - EG -> DHK
 - D->L
 - DL -> EK
 - KL -> DM

- Find keys for the universal table
- Create a minimal cover FD set
- Create a set of 3NF tables
- If any of the tables are not in BCNF decompose them into BCNF tables