Normalization and Functional Dependencies

- 1NF
- Redundancy and Anomalies
- Functional Dependencies
- Attribute Closure
- Keys and Super keys
- 2NF
- 3NF
- BCNF
- Minimal Cover Algorithm
- 3NF Synthesis Algorithm
- Decomposition of Tables
Attribute Closure

- Find all attributes dependent on a particular set of attributes.
- The closure of a set of attributes, X, is designated by X^+
Attribute Closure Algorithm Under FD Set F

- $\text{closure} := X; \quad // \text{since } X \subseteq X^+$

repeat
 $old := \text{closure};$
 if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq \text{closure}$
 then $\text{closure} := \text{closure} \cup V$
until $old = \text{closure}$

- If $T \subseteq \text{closure}$ then $X \rightarrow T$ is implied by F
Let $R = \{A, B, C, D, E, F\}$

Let the FD set be

- $ABF \rightarrow C$
- $CF \rightarrow B$
- $CD \rightarrow A$
- $BD \rightarrow AE$
- $C \rightarrow F$
- $B \rightarrow F$

Find the closure of ABC
Keys and Super Keys

- A set of attributes, X, in a super key for a table T if $X \subseteq T$ and $X \rightarrow T$

- Another way of saying this is that $T \subseteq X^+$

- A set of attributes, X, in a key for a table T if it has the super key property and no proper subset of X has the super key property
Let $R = \{A, B, C, D, E, F\}$

Let the FD set be:
- $ABF \rightarrow C$
- $CF \rightarrow B$
- $CD \rightarrow A$
- $BD \rightarrow AE$
- $C \rightarrow F$
- $B \rightarrow F$

- Is ABF a super key for R?
- Is ABD a super key for R?
- What attribute must be part of any key for R?
Create 3NF Tables

• Identify all attributes, R, and FDs, F
 – A table containing all attributes in R is called the universal table
 – The designers must work with the customers to identify R and F
 – The FDs in F represent “real world” constraints of the data that can be entered into the database

• Create a minimal cover FD set, G, from F

• Apply the 3NF synthesis algorithm using the FD set G and the set of attributes R
Minimal Cover Set

- A minimal cover set, G, of an FD set F is an FD set such that
 - G is equivalent to F
 - No FD can be removed from G to create a “smaller” FD set equivalent to F
 - No FD in G can have an attribute removed from the FD to create a “smaller” FD set equivalent to F

- Minimal cover sets are not unique
Minimal Cover Algorithm for FD Set F

- Step 1: Make all RHS single attributes
 - Use decomposition of RHS on all FDs

- Step 2: Remove redundant attributes from LHS

 \[G = F \]
 repeat
 \[
 \text{old} = G
 \]
 for each XB -> A ∈ G
 if X -> A is implied by G (i.e. A ∈ X+)
 then G = G – \{XB -> A\} ∪ \{X -> A\}
 until old == G (i.e. keep going until G does not change)
Minimal Cover Algorithm for FD Set F

Step 3: Remove redundant FDs from G (G was produced in step 2)

\[H = G \]

repeat

old = H
For each \(X \rightarrow A \in H \)

if \(H \) is equivalent to \(H - \{X \rightarrow A\} \) (i.e. \(A \in X^+ \) where \(X^+ \) is found using FD set \(H - \{X \rightarrow A\} \))
then \(H = H - \{X \rightarrow A\} \)

until old == H (i.e. keep going until \(H \) does not change)
Minimal Cover Algorithm for FD Set F

• Step 4: Combine FDs that have the same LHS
 – Use the Union rule
 – Sometimes this step is considered part of the 3NF synthesis algorithm
Problem

• Let $R = \{A, B, C, D, E, F\}$
• Let the FD set be
 - $ABF \rightarrow C$
 - $CF \rightarrow B$
 - $CD \rightarrow A$
 - $BD \rightarrow AE$
 - $C \rightarrow F$
 - $B \rightarrow F$
• Find a minimal cover FD set.
3NF Synthesis Algorithm

- Input: Set of attributes R and FDs F
- Step 1: Create a minimal cover for F called G
- Step 2. For each FD in G create a table. Call the tables $T_1, T_2, ...$
- Step 3: If none of the T_i contain a super key for the universal table create a new table containing the attributes of a key for the universal table
Problem

• Let $R = \{A, B, C, D, E, F\}$
• Let the FD set be
 – $ABF \rightarrow C$
 – $CF \rightarrow B$
 – $CD \rightarrow A$
 – $BD \rightarrow AE$
 – $C \rightarrow F$
 – $B \rightarrow F$
• Create a set of 3NF tables from R and the FD set.
Decomposition of Tables

• Lossless Decomposition
 – A decomposition of T into T1 and T2 is a lossless if and only if \(T_1 \cap T_2 \rightarrow T_1 \) or \(T_1 \cap T_2 \rightarrow T_2 \)
 – A decomposition of T into T1 and T2 is a lossless if for every valid T (valid relative to the FDs) \(T = T_1 \) Natural Join T2
Decomposition of Tables

• Dependency Preserving Decomposition
 – Let T_1 and T_2 be a decomposition of T with FD set F
 – Let F_1 and F_2 be the FDs from F^+ that lie in T_1 and T_2 respectively
 – The decomposition is dependency preserving if and only if $F^+ = F_1 \cup F_2$
Decomposition of Tables

• The 3NF synthesis algorithm is equivalent to a series of lossless, dependency preserving decompositions into a set of 3NF tables

• A lossless decomposition of the universal table into a set of BCNF tables is possible but the decomposition might not be dependency preserving
Decomposition of Tables

• To remove a 3NF or BCNF violator through decomposition do the following
 – Let T contain attributes X, attributes Y and attribute A
 – Let X -> A be violator that lies in T
 – Decompose T into T1 and T2 where T1 contains attributes X and attribute A and T2 contains attributes X and attributes Y
 – The decomposition is lossless because $X = T1 \cap T2$ and X is a super key for T1
Problem

- Let $R = ABCDEFGH$
- Let the FD set be
 - $A \rightarrow E$
 - $BE \rightarrow D$
 - $AD \rightarrow BE$
 - $BDH \rightarrow E$
 - $AC \rightarrow E$
 - $F \rightarrow A$
 - $E \rightarrow B$
 - $D \rightarrow H$
 - $BG \rightarrow F$
 - $CD \rightarrow A$
Problem

• Find keys for the universal table
• Create a minimal cover FD set
• Create a set of 3NF tables
• If any of the tables are not in BCNF decompose them into BCNF tables
Problem

- Universal table \{A,B,C,D,E,G,H,K,L,M\}
- FDs
 - ABE -> CK
 - AB -> D
 - C -> BE
 - EG -> DHK
 - D -> L
 - DL -> EK
 - KL -> DM
Problem

- Find keys for the universal table
- Create a minimal cover FD set
- Create a set of 3NF tables
- If any of the tables are not in BCNF decompose them into BCNF tables