Normalization and Functional Dependencies

- 1NF
- Redundancy and Anomalies
- Functional Dependencies
- Attribute Closure
- Keys and Super keys
- 2NF
- 3NF
- BCNF
- Minimal Cover Algorithm
- 3NF Synthesis Algorithm
- Decomposition of Tables
1NF

• Attribute values are atomic
 – This part is assumed for any relational database
 – No repeating groups
 – Object-relational extensions to the relational model might violate 1NF depending on your definition of atomic

• Sometimes 1NF includes the requirement that a table has a primary key
Redundancy and Anomalies

- Consider combining all Library tables into one table
 - What attribute(s) could be the primary key for the table?
- Redundancy
 - The name of an author will appear in many places (once for each loan of a copy written by the author)
- Update Anomaly
 - If the customers name changes it must be changed in many places
- Delete Anomaly
 - If all loans for a copies of books written by an author are deleted all information about the author is lost. Why?
- Insert Anomaly
 - A new author cannot be added to the database until at least one loan for a copy of a book written by the author is added.
- 3NF and BCNF reduces redundancy and eliminates the anomalies described above.
Functional Dependencies

• In the following let letters late in the alphabet represent sets of attributes and letters early in the alphabet represent individual attributes

• Functional Dependencies (X -> A or X -> Y) are constraints on the data that can be entered into the database

• If the FD, X -> A, holds for a database then if t1 and t2 are tuples that contain the attributes X and attribute A (and possibly other attributes) and if the tuples have the same values for attributes X they must have the same value for attribute A
Functional Dependencies (FDs)

- FDs can entail or imply other FDs (Armstrong’s Axioms)
 - Reflexivity: if Y is a subset of X then X -> Y
 - Augmentation: if X -> Y then XZ -> YZ
 - Transitivity: if X -> Y and Y -> Z then X -> Z
 - Union: if X -> A and X -> B then X -> AB
 - Decomposition: if X -> AB then X -> A and X -> B

- The closure of a set of FDs, F, is designated by F^+
- Two FD sets, F and G, are equivalent iff $F^+ = G^+$
- Equivalency of two FD sets can be shown by showing that the FDs in F are implied by the FDs in G and the FDs in G are implied by the FDs in F
Attribute Closure

- Find all attributes dependent on a particular set of attributes.
- The closure of a set of attributes, X, is designated by X^+
Attribute Closure Algorithm Under FD Set F

- $closure := X$; \hspace{1cm} // since $X \subseteq X^+$

repeat

\hspace{1cm} old := closure;

\hspace{1cm} if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq closure$

\hspace{1cm} then $closure := closure \cup V$

until $old = closure$

- If $T \subseteq closure$ then $X \rightarrow T$ is implied by F
Problem

• Let \(R = \{A, B, C, D, E, F\} \)

• Let the FD set be
 – \(ABF \rightarrow C \)
 – \(CF \rightarrow B \)
 – \(CD \rightarrow A \)
 – \(BD \rightarrow AE \)
 – \(C \rightarrow F \)
 – \(B \rightarrow F \)

• Find the closure of \(ABC \)
Keys and Super Keys

- A set of attributes, X, in a super key for a table T if $X \subseteq T$ and $X \rightarrow T$
- Another way of saying this is that $T \subseteq X^+$
- A set of attributes, X, is a key for a table T if it has the super key property and no proper subset of X has the super key property
Problem

- Let $R = \{A, B, C, D, E, F\}$
- Let the FD set be
 - $ABF \rightarrow C$
 - $CF \rightarrow B$
 - $CD \rightarrow A$
 - $BD \rightarrow AE$
 - $C \rightarrow F$
 - $B \rightarrow F$
- Is ABF a super key for R?
- Is ABD a super key for R?
- What attribute must be part of any key for R?
2NF

• A table T is in 2NF
 – If there are no non-trivial dependencies, $X \rightarrow A$, that lie in T, where X is a proper subset of a key and A is not a prime attribute

• No non-prime attribute is functionally dependent on a proper subset of a key

• A prime attribute is an attribute that is part of some key

• A trivial dependency is a dependency where the right side is a subset of the left hand side

• Sometimes this is phrased as no partial key dependencies exists in the table
3NF

- A table T is in 3NF
 - if for all non-trivial dependencies, X -> A, that lie in T, X is a super key or A is a prime attribute
- An FD is a 3NF violator for table T
 - if it is a non-trivial dependency, X -> A, that lies in the T where X is not a super key and A is not a prime attribute.
BCNF

• A table T is in BCNF
 – if for all non-trivial dependencies, X -> A, that lie in T, X is a super key

• An FD is a BCNF violator for table T
 – if it is a non-trivial dependency, X -> A, that lies in T where X is not a super key.
Create 3NF Tables

• Identify all attributes, R, and FDs, F
 – A table containing all attributes in R is called the universal table
 – The designers must work with the customers to identify R and F
 – The FDs in F represent “real world” constraints of the data that can be entered into the database

• Create a minimal cover FD set, G, from F

• Apply the 3NF synthesis algorithm using the FD set G and the set of attributes R
Minimal Cover Set

- A minimal cover set, G, of an FD set F is an FD set such that
 - G is equivalent to F
 - No FD can be removed from G to create a “smaller” FD set equivalent to F
 - No FD in G can have an attribute removed from the FD to create a “smaller” FD set equivalent to F

- Minimal cover sets are not unique