Indexes

Additional data structure used to reduce

the pages accesses necessary to find a
rOW O rows

Search Key

Search Key is not necessarily unique

Location Mechanism
— Algorithm+Data Structure

Extendable Hashing

* Type of hashing that eliminates chains of
pages caused by collisions

» Range of hash function has to be extended to
accommodate additional buckets

« Example: family of hash functions based on
h:
— h,(v) = h(v) mod 2k (use the last k bits of h(v))
— At any given time a unique hash, h, , is used

depending on the number of times buckets have
been split

Extendable Hashing - Example

mary, bill |8, |4 h(v)
dicectory ’Z / pete 11010
= mary 00000
-1 | john,vince | B, jane 11110
v n e Dill 00000
john 01001
\\ pete, jane | B, vince 10101
karen 10111
Location \aen 5
mechanism

Extendable hashing uses a directory (level of indirection) to
accommodate family of hash functions

Suppose next action is to insert sol, where h(sol) = 10001.

Problem: This causes overflow in B,

Example (cont’d)

Solution:
1. Switch to h;
erEsbill 8, 2. Cpncatenate copy pf old
/ directory to new directory
7 3. Split overflowed bucket, B,
= joha, sol 8, into Band B/, dividing
-] entries in B between the
- petedjae g, twousing h;
y 4. Pointer to B in directory
copy replaced by pointer
: i kaen 83 to B
<Cuﬁent_ha3h AR Bis

Note: Except for B' , pointers in directory copy refer to original
buckets.
current_hash identifies current hash function.

Example (cont’d)

/ macy, bill
~1
] john, sal
= cte, jane
7 P]
v
= kaen
3 g

C

current_hash

vince

£

Next action: Insert judy,
where h(judy) = 00110
B, overflows, but directory

need not be extended

Problem: When B; overflows, we need a mechanism for deciding

whether the directory has to be doubled
Solution: bucket_level[i] records the number of times B; has been

split. If current_hash > bucket_level[i], do not enlarge directory

L

Example (cont’d)

C

current_hash

T

~

VL

mary, bill

2.
john, sol

[z
pete

12
kaen

2]
vince

L2
judy, jane

<,i|_1

bucket _fevel{6}

Extendible Hashing Problem

What does an extendable hash table with a bucket size of 2 look like after the
following values are inserted? Assume the starting table has 2 buckets and used h,

Key Hash Value

10 100010
323 101001
90 111011
80 001101
37 110111
205 010100
100 000110

120 110110

