Indexes

• Additional data structure used to reduce the pages accesses necessary to find a row or rows
• Search Key
• Search Key is not necessarily unique
• Location Mechanism
 – Algorithm+Data Structure
Extendable Hashing

• Type of hashing that eliminates chains of pages caused by collisions
• Range of hash function has to be extended to accommodate additional buckets
• **Example:** family of hash functions based on h:
 - $h_k(v) = h(v) \mod 2^k$ (use the last k bits of $h(v)$)
 - At any given time a unique hash, h_k, is used depending on the number of times buckets have been split
Extendable hashing uses a directory (level of indirection) to accommodate family of hash functions.

Suppose next action is to insert sol, where $h(sol) = 10001$.

Problem: This causes overflow in B_1.
Solution:
1. Switch to h_3
2. Concatenate copy of old directory to new directory
3. Split overflowed bucket, B, into B and B', dividing entries in B between the two using h_3
4. Pointer to B in directory copy replaced by pointer to B'

Note: Except for B', pointers in directory copy refer to original buckets.
$current_hash$ identifies current hash function.
Example (cont’d)

Problem: When B_i overflows, we need a mechanism for deciding whether the directory has to be doubled
Solution: $bucket_level[i]$ records the number of times B_i has been split. If current_hash > $bucket_level[i]$, do not enlarge directory

Next action: Insert judy, where $h(judy) = 00110$
B_2 overflows, but directory need not be extended
Example (cont’d)
Extendible Hashing Problem

What does an extendable hash table with a bucket size of 2 look like after the following values are inserted? Assume the starting table has 2 buckets and used h_1.

<table>
<thead>
<tr>
<th>Key</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100010</td>
</tr>
<tr>
<td>323</td>
<td>101001</td>
</tr>
<tr>
<td>90</td>
<td>111011</td>
</tr>
<tr>
<td>80</td>
<td>001101</td>
</tr>
<tr>
<td>37</td>
<td>110111</td>
</tr>
<tr>
<td>205</td>
<td>010100</td>
</tr>
<tr>
<td>100</td>
<td>000110</td>
</tr>
<tr>
<td>120</td>
<td>110110</td>
</tr>
</tbody>
</table>