Indexes

- Additional data structure used to reduce the pages accesses necessary to find a row or rows
- Search Key
- Search Key is not necessarily unique
- Location Mechanism
 - Algorithm+Data Structure

Extendable Hashing

- Type of hashing that eliminates chains of pages caused by collisions
- Range of hash function has to be extended to accommodate additional buckets
- Example: family of hash functions based on h:
 - $-h_k(v) = h(v) \mod 2^k$ (use the last k bits of h(v))
 - At any given time a unique hash, h_k , is used depending on the number of times buckets have been split

Extendable Hashing - Example

Extendable hashing uses a directory (level of indirection) to accommodate family of hash functions

Suppose next action is to insert sol, where h(sol) = 10001.

Problem: This causes overflow in B_1

Example (cont'd)

Solution:

- 1. Switch to h_3
- 2. Concatenate copy of old directory to new directory
 - 3. Split overflowed bucket, *B*, into *B* and *B'*, dividing entries in *B* between the two using *h*₃
 - 4. Pointer to *B* in directory copy replaced by pointer to *B'*

Note: Except for B', pointers in directory copy refer to original buckets.

current_hash identifies current hash function.

Example (cont'd)

Next action: Insert judy, where h(judy) = 00110 B_2 overflows, but directory need not be extended

Problem: When B_i overflows, we need a mechanism for deciding whether the directory has to be doubled **Solution:** bucket_level[i] records the number of times B_i has been split. If current_hash > bucket_level[i], do not enlarge directory

Example (cont'd)

Extendible Hashing Problem

What does an extendable hash table with a bucket size of 2 look like after the following values are inserted? Assume the starting table has 2 buckets and used h_1

Key	Hash Value
10	100010
323	101001
90	111011
80	001101
37	110111
205	010100
100	000110
120	110110