Quiz 2 Solution

1. Write a regular expression that specifies the language $\{x \mid x$ is a string of $0 s$ and $1 s$ that either contains an odd number of 1 s or an even number of 0 s$\}$. Some examples strings in the language are $1,00,010101,1010$, 11001. The empty string is in the language (i.e. treat the empty string as a string with an even number of 0 s).

Even number 0s $1^{*}\left(01^{*} 01^{*}\right)^{*}$
Odd number of $1 \mathrm{~s} 0 *\left(10^{*} 10^{*}\right)^{*} 10^{*}$
Even number of 0s or odd number of $1 \mathrm{~s}\left(1^{*}\left(01^{*} 01^{*}\right)^{*}\right) \mid\left(0^{*}\left(10^{*} 10^{*}\right)^{*} 10^{*}\right)$
2.. Use the RE to NFA algorithm to create an NFA that accepts the language specified by the regular expression (100)* $\mid(011)^{*}$. Follow the algorithm. Do not simplify the NFA.

2.. Use the RE to NFA algorithm to create an NFA that accepts the language specified by the regular expression (100)* $\mid(011)^{*}$. Follow the algorithm. Do not simplify the NFA.

2.. Use the RE to NFA algorithm to create an NFA that accepts the language specified by the regular expression (100)* $\mid(011)^{*}$. Follow the algorithm. Do not simplify the NFA.

2.. Use the RE to NFA algorithm to create an NFA that accepts the language specified by the regular expression (100)* $\mid \mathbf{(0 1 1) *}$. Follow the algorithm. Do not simplify the NFA.

2.. Use the RE to NFA algorithm to create an NFA that accepts the language specified by the regular expression (100)* | (011)*. Follow the algorithm. Do not simplify the NFA.

