CS442/542

Lexical Analysis
Part 2

Example Regular Expressions over the alphabet $\{0,1\}$

Regular Expression

- 0
- 0| 1
- 0 (0 | 1)
- 1^{*}
- $(0 \mid 1)^{*}$

Language

- $\{0\}$
- $\{0,1\}$
- $\{00,01\}$
- $\{x \mid x$ is a string of 0 or more 1s\}
- $\{x \mid x$ is any string of $0 s$ and 1 s including the empty string\}

RE -> NFA

Regular Expression
ϵ

0

NFA

RE -> NFA

Regular Expression (Assume R
NFA
and S are regular expressions)

R S

The start state of the NFA for R is the start state of the new machine. The final state in the NFA for R connects
 via an epsilon transition to the start state of the NFA for S . The final state in the NFA for S is the final state for the new machine.

RE -> NFA

Regular Expression (Assume R and S are regular

NFA expressions)
$R \mid S$

SO connects to the start states of the NFA for R and the NFA for S by epsilon transitions and the final states
 of the NFA for R and NFA for S connect to S 1 by epsilon transitions

RE -> NFA

Regular Expression (Assume R is a regular expressions)

NFA

R*
 epsilon transitions.

Example Problems

- Construct NFAs for the following regular expressions.
- 0
- 00
-0|1
$-(0 \mid 1)^{*}$
$-0^{*}\left(10^{*} 10^{*}\right)^{*}$

