CS 442/542

Lexical Analysis
Scanning



Simplified Compiler Organization

e Scanning
* Parsing
* Code Generation



Lexical Analysis

Languages

Finite State Automata (FSA)
Regular Expressions (RE)
Algorithms



Languages

* Given an finite alphabet 2 a language is a
set of strings where each string is a finite
sequence of 0 of more symbols for the
alphabet

« Example alphabets
—-10, 15

— {a,b)c)d)e)f’g)h)i)j)k)l)m)n)o)p)q)r)S)t)u)V)W)X
,Y,Z}



Languages

Example languages over {0, 1}
— {00, 01, 10, 11}
- {0, 01, 011, 0111 ...}
—{e, 1, 11, 111, 1111 ...}
« ¢ is the empty string
-1
— 1€}

 The empty set and a set containing the empty
string are different



Languages

 |n this class we are interested in the languages
that are used to define programming languages

* There a two primary types of languages we will
look at
— Regular languages
— Context free languages

* For the two types of languages we will look at
notations to specify the language and at
abstract machines to recognize strings in the

languages



Definition of a Regular Expression (RE)

* Ris a regular expression if R is one of the

following
— 1. a for some a in the alphabet X

—2.¢€

- 3.

— 4. if R and S are regular expressions then R | S is
a regular expression

— 5. if Rand S are regular expressions then RS is a
regular expression

— 6. if R is a regular expression then R’



Example Regular Expressions over the
alphabet {0, 1}

Regular Expression
0

01
0(0] 1)
1*

0]1)*

0*(10*10%)*

Language

{0}

{0, 1}

{00, 01}

{x | xis a string of 0 or more
1s}

{x | xis any string of Os and 1s
including the empty string}

{x | xis a string with an even
number of 1s}



Definition of a Non-deterministic finite
automata (NFA)

A nondeterministic finite automaton is a b
tuple (5, 2, 0, sy, S,) Where
— 1. Sis a finite set of states

— 2. 2 is a finite set of symbols called an
alphabet

— 3.0:SX2u{e}->P(S) is the transition
function

— 4. s, €S is the start state

— 5.5,¢ Sis the set of final or accept states



Example NFAs
(0 ()

) NFA for a’ ) NFA fOf b’
) NFA for “ab” ) NFA for “a | b”

(e) NFA for “a*”



Example NFAs
MO NON O

(a) NFAs for “a”, “b”, and “c”

(b) NFA for “b | ¢”

(d) NFA for “a(b | c)™



Example NFAs

(a) NFA for “a(b | ¢)” (With States Renumbered)



Definition of a Deterministic finite
automata (DFA)

* A deterministic finite automaton is a 5
tuple (5, 2, 0, sy, S,) Where
— 1. S is a finite set of states
— 2. 2 is a finite set of symbols called an
alphabet

— 3.0: S X2 ->Sis the transition function
— 4. s, €S is the start state

— 5.5,¢ Sis the set of final or accept states



Example DFA

(a) Resulting DFA



DFA
(S) z) 6} So) SA)

« S = {do, di, dz, d3}
«2={a, b, c}

e 0 = { (dO, a, d1), (d1; b) dZ), (d1) C, d3))
(d2, b, d2), (d2, c, d3),
(ds, b, d2), (d3, c,ds3)}

e S0 = do
e Sp = {d1, d2, ds3}



Bui
Bui
Bui
Bui

Algorithms

d a NFA from a RE
'd a DFA from an NFA
d a minimized DFA from a DFA

d an RE from a DFA



Algorithms

Kleene’s Construction

Code for
a scanner
RE DFA Minimization DFA
Thompson’s Subset
Construction Construction

NFA



Scanner

e Input: Stream Characters
e Output: Stream of tokens or words



Scanner Generator

* Input: regular expressions specifying the
tokens of a language

* Qutput: either the minimized DFA or a
program that includes the minimized DFA
and code that uses the minimized DFA to
produce a stream of tokens given an
stream of characters as input



