
CS 442/542

Lexical Analysis
Scanning

Simplified Compiler Organization

• Scanning
• Parsing
• Code Generation

Lexical Analysis

• Languages
• Finite State Automata (FSA)
• Regular Expressions (RE)
• Algorithms

Languages

• Given an finite alphabet ∑ a language is a
set of strings where each string is a finite
sequence of 0 of more symbols for the
alphabet

• Example alphabets
– {0, 1}
– {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x

,y,z}

Languages

• Example languages over {0, 1}
– {00, 01, 10, 11}
– {0, 01, 011, 0111 …}
– {𝝐, 1, 11, 111, 1111 …}
• 𝝐 is the empty string

– { }
– {𝝐 }
• The empty set and a set containing the empty

string are different

Languages

• In this class we are interested in the languages
that are used to define programming languages

• There a two primary types of languages we will
look at
– Regular languages
– Context free languages

• For the two types of languages we will look at
notations to specify the language and at
abstract machines to recognize strings in the
languages

Definition of a Regular Expression (RE)

• R is a regular expression if R is one of the
following
– 1. a for some a in the alphabet Σ
– 2. 𝝐
– 3. ∅
– 4. if R and S are regular expressions then R | S is

a regular expression
– 5. if R and S are regular expressions then R S is a

regular expression
– 6. if R is a regular expression then R*

Example Regular Expressions over the
alphabet {0, 1}

 Regular Expression
• 0
• 0 | 1
• 0 (0 | 1)
• 1*

• (0 | 1) *

• 0*(10*10*)*

 Language
• { 0 }
• {0, 1}
• {00, 01}
• { x | x is a string of 0 or more

1s}
• { x | x is any string of 0s and 1s

including the empty string}
• { x | x is a string with an even

number of 1s}

Definition of a Non-deterministic finite
automata (NFA)

• A nondeterministic finite automaton is a 5
tuple (S, Σ, δ, s0, SA) where
– 1. S is a finite set of states
– 2. Σ is a finite set of symbols called an

alphabet
– 3. δ: S X Σ ∪ {𝝐} -> Ρ(S) is the transition

function
– 4. s0 ε S is the start state
– 5. SA⊆ S is the set of final or accept states

Example NFAs

Example NFAs

Example NFAs

Definition of a Deterministic finite
automata (DFA)

• A deterministic finite automaton is a 5
tuple (S, Σ, δ, s0, SA) where
– 1. S is a finite set of states
– 2. Σ is a finite set of symbols called an

alphabet
– 3. δ: S X Σ -> S is the transition function
– 4. s0 ε S is the start state
– 5. SA⊆ S is the set of final or accept states

Example DFA

DFA
(S, Σ, δ, s0, SA)

• S = {d0, d1, d2, d3}
• Σ = {a, b, c}
• δ = { (d0, a, d1), (d1, b, d2), (d1, c, d3),

(d2, b, d2), (d2, c, d3),
(d3, b, d2), (d3, c,d3)}

• S0 = d0
• SA = {d1, d2, d3}

Algorithms

• Build a NFA from a RE
• Build a DFA from an NFA
• Build a minimized DFA from a DFA
• Build an RE from a DFA

Algorithms

Scanner

• Input: Stream Characters
• Output: Stream of tokens or words

Scanner Generator

• Input: regular expressions specifying the
tokens of a language

• Output: either the minimized DFA or a
program that includes the minimized DFA
and code that uses the minimized DFA to
produce a stream of tokens given an
stream of characters as input

