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Parsing

• Is the source program syntactically correct? 
– Given a sequence of symbols and a grammar find a 

derivation that produces the sequence of symbols 
• Input: sequence of words or tokens 

recognized by the scanner 
• Output: parse tree or syntax tree or some 

other representation of the source program 
• In the main project for this course you will 

generate MIPS assembler language code 
during the parsing process



Parsing Terminology

• Context Free Grammar (CFG) 
• Push Down Automata (PDA) 
• Sentence 
• Derivation 
• Top down parsing 
• Bottom up parsing



Context Free Grammar (CFG)

• A CFG is a 4 tuple (T, NT, S, P) where 
– T is set of terminals 
– NT is a set of nonterminals 
– S is one of the nonterminals called the goal or 

start symbol 
– P is a set of productions (also called rewriting 

rules) of the form NT -> (T U NT)* 



Sentence and Derivation

• Sentence 
– A sequence of symbols that can be derived from the 

grammar 
• Derivation 

– A sequence of rewriting rules that starts with the start 
symbol and ends with a sentence in the language 

• Sentential form 
– A sequence of symbols that can occur in one step of a valid 

derivation 
• Rightmost derivation 

– A derivation where each step rewrites the rightmost 
nonterminal  

• Leftmost derivation 
– A derivation where each step rewrites the leftmost 

nonterminal



Example Grammar

• E -> ( E ) | E Op id | id 
• Op -> + | - | * | / 
• Rightmost derivation of (a+b) * c 
– E -> E Op id -> E * id -> ( E ) * id -> (E Op id) * 

id -> (E + id) * id -> (id + id) * id 

• Leftmost derivation of (a + b) * c 
– E -> E Op id -> ( E ) Op id -> ( E Op id) Op id   

->  (id Op id) Op id -> (id + id) Op id ->        
(id + id) * id       



Parse Tree

• Also known as a concrete syntax tree 
• Tree representation of the parsing process 
• In a complete parse tree of a syntactically 

correct source program the leaves are the 
terminals of the grammar representing 
the symbols and syntactic categories of 
the source program



Example Parse Tree of (a+b)*c
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Another Example Grammar (partial)

• Statement -> if Expr then Statement else 
Statement  

     | if Expr then Statement 
     | Assignment 
     | …other statements… 
• Ambiguous grammar 
– A grammar that has more that one rightmost 

(leftmost) derivation for the same sentence 
– A grammar that has more that one parse tree for the 

same sentence



Parse Tree for 
if Expr1 then if Expr2 then Assignment1 else Assignment2
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Top Down Parsing

• Build the parse tree from the root to the 
leaves 

• Recursive descent parsing 
• LL(1) grammar



Bottom up parsing

• Build the parse tree from the leaves to 
the root 

• LR(1) grammar 
– SLR(1) 
– LALR(1) 
• LALR(1) parser generator 

– YACC 
– Bison


