
CS 442/542

Parsing 1

Parsing

• Is the source program syntactically correct?
– Given a sequence of symbols and a grammar find a

derivation that produces the sequence of symbols
• Input: sequence of words or tokens

recognized by the scanner
• Output: parse tree or syntax tree or some

other representation of the source program
• In the main project for this course you will

generate MIPS assembler language code
during the parsing process

Parsing Terminology

• Context Free Grammar (CFG)
• Push Down Automata (PDA)
• Sentence
• Derivation
• Top down parsing
• Bottom up parsing

Context Free Grammar (CFG)

• A CFG is a 4 tuple (T, NT, S, P) where
– T is set of terminals
– NT is a set of nonterminals
– S is one of the nonterminals called the goal or

start symbol
– P is a set of productions (also called rewriting

rules) of the form NT -> (T U NT)*

Sentence and Derivation

• Sentence
– A sequence of symbols that can be derived from the

grammar
• Derivation

– A sequence of rewriting rules that starts with the start
symbol and ends with a sentence in the language

• Sentential form
– A sequence of symbols that can occur in one step of a valid

derivation
• Rightmost derivation

– A derivation where each step rewrites the rightmost
nonterminal

• Leftmost derivation
– A derivation where each step rewrites the leftmost

nonterminal

Example Grammar

• E -> (E) | E Op id | id
• Op -> + | - | * | /
• Rightmost derivation of (a+b) * c
– E -> E Op id -> E * id -> (E) * id -> (E Op id) *

id -> (E + id) * id -> (id + id) * id

• Leftmost derivation of (a + b) * c
– E -> E Op id -> (E) Op id -> (E Op id) Op id

-> (id Op id) Op id -> (id + id) Op id ->
(id + id) * id

Parse Tree

• Also known as a concrete syntax tree
• Tree representation of the parsing process
• In a complete parse tree of a syntactically

correct source program the leaves are the
terminals of the grammar representing
the symbols and syntactic categories of
the source program

Example Parse Tree of (a+b)*c
E

E

E

E

Op

Op

<id, c>

<id, b>

<id, a>

() *

+

Another Example Grammar (partial)

• Statement -> if Expr then Statement else
Statement

 | if Expr then Statement
 | Assignment
 | …other statements…
• Ambiguous grammar
– A grammar that has more that one rightmost

(leftmost) derivation for the same sentence
– A grammar that has more that one parse tree for the

same sentence

Parse Tree for 
if Expr1 then if Expr2 then Assignment1 else Assignment2

Statement

if Expr1 then Statement

if Expr2 then Statement Statementelse

Assignment1 Assignment2

 Another Parse Tree for 
if Expr1 then if Expr2 then Assignment1 else Assignment2

Statement

if Expr1 then Statement

if Expr2 then Statement

Statementelse

Assignement1

Assignment2

Top Down Parsing

• Build the parse tree from the root to the
leaves

• Recursive descent parsing
• LL(1) grammar

Bottom up parsing

• Build the parse tree from the leaves to
the root

• LR(1) grammar
– SLR(1)
– LALR(1)
• LALR(1) parser generator

– YACC
– Bison

