CS 442/542

NFA -> DFA Subset Construction

Building an DFA from an NFA

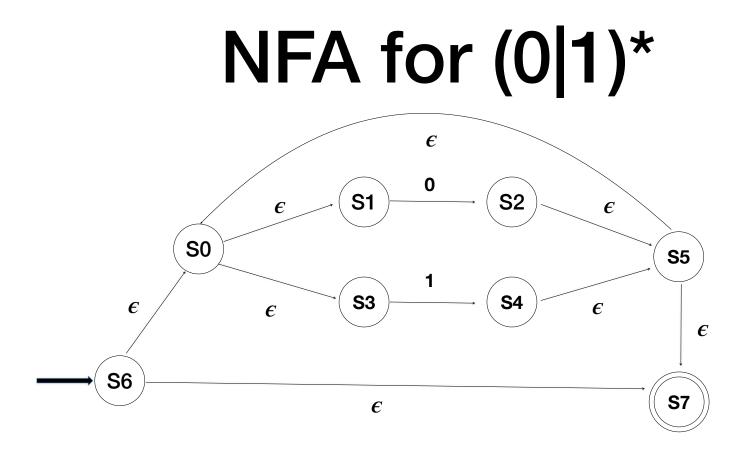
- Subset construction algorithm
 - Constructs a DFA from an NFA by building a DFA whose states represent sets of states of the NFA
 - NFA : (N, Σ , δ_N , n_0 , N_A)
 - DFA : (D, Σ , δ_D , d_0 , D_A)
 - Note the alphabets are the same

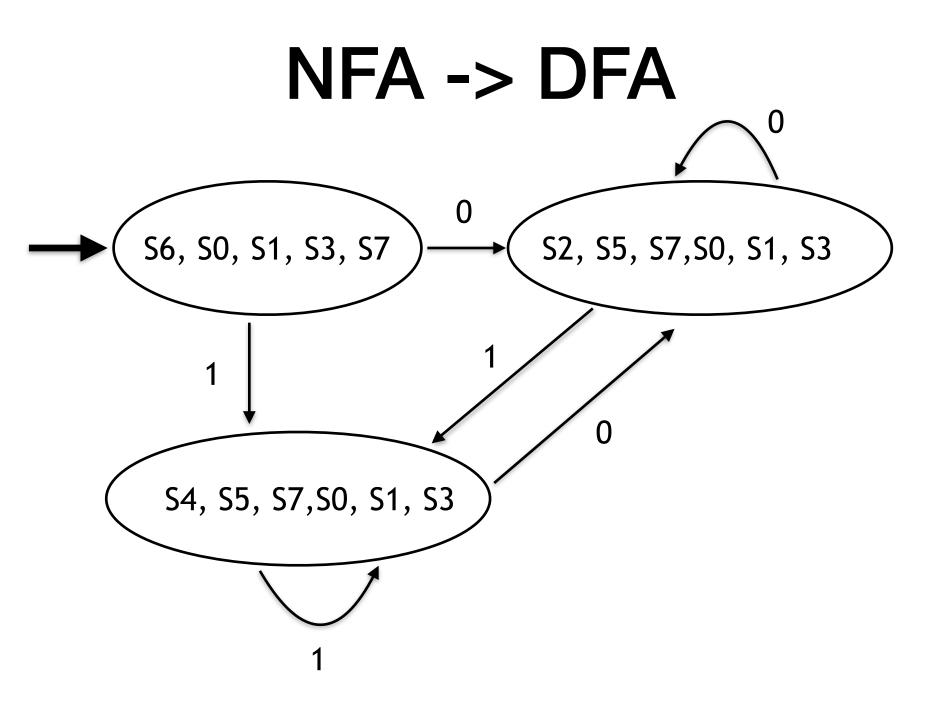
Subset Construction Algorithm Functions

- ε-closure(q) returns the set of states that can be reached from state q in the NFA on an epsilon transition. q is included in the result.
- Delta(q, c) where q is a set of NFA states and c is a symbol from Σ, returns the set of NFA states reachable from an NFA state in q on the symbol c

• $\cup_{s \in q} \delta_N(s,c)$

Subset Construction Algorithm Transitions


 T[q,c] where q is a set of NFA states and c is a symbol in Σ, is given the value of the ε-closure of the set of NFA states that states in q can reach on c


Subset Construction Algorithm

```
\begin{array}{l} q_0 < -- \epsilon \text{-closure}(n_0); \\ Q < -- q_{0;} \\ \text{Worklist} < -- \{q_0\}; \\ \text{while (Worklist} \neq \varnothing \ ) \ do \\ \quad \text{remove } q \ from \ \text{Worklist}; \\ \text{for each } c \ \in \Sigma \ do \\ \quad t < -- \epsilon \text{-closure}(\text{Delta}(q,c)); \\ \quad T[q,c] < -- t; \\ \quad \text{if } t \ \not\in Q \ then \\ \quad add \ t \ to \ Q \ and \ to \ \text{Worklist}; \\ \text{end}; \\ \text{end}; \end{array}
```

Subset Construction Algorithm

- How to create the DFA (D, $\Sigma,\, \delta_D, d_0, D_A)$ from Q and T
 - Each q_i in Q is named d_i (in particular q_0 is named d_0)
 - For each q_i in Q and each c in Σ where $T[q_i, c] == q_j$, $\delta_D(d_i, c) = d_i$
 - D is the set of all d_i
 - D_A is the set of all d_i where q_i contained an accept state from N_A

Practice Problem

- (a) Create an NFA from the RE (0 | 1) (0 | 1)
- (b) Create a DFA from the answer to part a