CS442/542

DFA Minimization

DFA Minimization

- Minimize the DFA (D, $\left.\boldsymbol{\Sigma}, \delta, d_{0}, D_{A}\right\}$
- The algorithm builds a new machine from subsets of states of the original machine
- The algorithm first builds two subsets: the set of final states and the set of non-final states
- A subset is split if the subset has a conflict on a symbol
- A subset has a conflict on a symbol, c, when the transitions on c of two (or more) states in the subset do not go to states in the same subset.
- The algorithm halts when no subsets have conflicts (i.e. no more splits need to be done)

Split (S is a set of states from the original DFA)

```
Split(S) {
    for each c }\in\boldsymbol{\Sigma}\mathrm{ do
        if c splits S into s}\mp@subsup{s}{1}{}\mathrm{ and }\mp@subsup{s}{2}{
                then return {\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}};
    end;
    return S;
}
```


DFA Minimization

$$
\begin{aligned}
& \mathrm{T}=\left\{\mathrm{D}_{\mathrm{A}},\left(\mathrm{D}-\mathrm{D}_{\mathrm{A}}\right)\right\} ; \\
& \mathrm{P}=\varnothing \\
& \text { while }(\mathrm{P} \neq \mathrm{T}) \text { do } \\
& \quad \mathrm{P} \leftarrow \mathrm{~T} ; \\
& \mathrm{T} \leftarrow \varnothing ; \\
& \text { for each } \mathrm{p} \in \mathrm{P} \text { do } \\
& \quad \mathrm{T}=\mathrm{T} \cup \text { Split(p); } \\
& \text { end; } \\
& \text { end; }
\end{aligned}
$$

DFA Minimization

- To build a minimized DFA from a DFA create a new DFA consisting of maximal consistent states which are subsets of states of the original DFA. These subsets form the set of states in the minimized DFA
- Consistent State
- Suppose S is a set of states $\mathrm{s} 1, \mathrm{~s} 2, \ldots . \mathrm{Sn}$
- Suppose δ is the transition function of the original DFA
- A set of states, S , is consistent if for each a in Σ and for each si in $\mathrm{S}, \delta(\mathrm{si}, \mathrm{a})=$ qi where all the qi belong to the same consistent state
- A maximal consistent state is a state that is consistent and to which a new state cannot be added and the state remains consistent

DFA Minimization

- To produce a set of maximal consistent states do the follow
- Create two subsets of states: final and non-final states
- For each a in Σ if for some S all the transitions on a do not lead to the same subset of states, create subsets of S that lead to the same subset of states.
- Continue the process until for each S in the new machine and for each a in Σ the transitions on a lead to the same subset

DFA for (0*10*10*)*

DFA Minimization

- Round 1

$$
\begin{array}{lll}
& \text { S0, S4, S5 } & \text { S1, S2, S3 } \\
0 & \text { S1, S5, S5 } & \text { S1, S3, S3 }
\end{array}
$$

- Round 2

S1, S2, S3
S2, S4, S4

- Round 3

$$
\begin{array}{lllll}
& \text { S0 } & \text { S4, S5 } & \text { S1 } & \text { S2, S3 } \\
0 & \text { S1 } & \text { S5, S5 } & \text { S1 } & \text { S3, S3 } \\
1 & \text { S2 } & \text { S2, S2 } & \text { S2 } & \text { S4, S4 }
\end{array}
$$

DFA Minimization

DFA for 0* $\left.{ }^{*} \mathbf{1 0}^{*} 10^{*}\right)^{*}$

DFA Minimization

- Round 1

$$
\begin{array}{ll}
& \text { S0, S1, S4, S5 } \\
0 & \text { S1, S1, S5, S5 } \\
1 & \text { S2, S2, S2, S2 }
\end{array}
$$

S2, S3

S3, S3
S4, S4

DFA Minimization

DFA Minimization

- Potential Problems
- The transition function is not total - Dead states

