CS 442/542

Scanning
Lexical Analysis
Simplified Compiler Organization

- Scanning
- Parsing
- Code Generation
Lexical Analysis

• Languages
• Finite State Automata (FSA)
• Regular Expressions (RE)
• Algorithms
Languages

- Given an finite alphabet Σ a language is a set of strings where each string is a finite sequence of 0 of more symbols for the alphabet
- Example alphabets
 - $\{0, 1\}$
 - $\{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\}$
Languages

- Example languages over \{0, 1\}
 - \{00, 01, 10, 11\}
 - \{0, 01, 011, 0111 ...\}
 - \{\epsilon, 1, 11, 111, 1111 ...\}
 - \(\epsilon\) is the empty string
 - \{ \}
 - \{ \epsilon \}
 - The empty set and a set containing the empty string are different
Languages

• In this class we are interested in the languages that are used to define programming languages.

• There are two primary types of languages we will look at:
 – Regular languages
 – Context free languages

• For the two types of languages we will look at notations to specify the language and at abstract machines to recognize strings in the languages.
Definition of a Deterministic finite automata (DFA)

- A deterministic finite automaton is a 5 tuple \((S, \Sigma, \delta, s_0, S_A)\) where
 - 1. \(S\) is a finite set of states
 - 2. \(\Sigma\) is a finite set of symbols called an alphabet
 - 3. \(\delta: S \times \Sigma \rightarrow S\) is the transition function
 - 4. \(s_0 \in S\) is the start state
 - 5. \(S_A \subseteq S\) is the set of final or accept states
DFA Examples

- Create a DFA that accepts strings of 0s and 1s that have an even number of 0s.
- Create a DFA that accepts strings of 0s and 1s that represent binary numbers divisible by four.
Definition of a Regular Expression (RE)

- R is a regular expression if R is one of the following:
 1. a for some a in the alphabet Σ
 2. ϵ
 3. \emptyset
 4. if R and S are regular expressions then $R | S$ is a regular expression
 5. if R and S are regular expressions then $R S$ is a regular expression
 6. if R is a regular expression then R^*
Example Regular Expressions over the alphabet \{0, 1\}

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{ 0 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 (0</td>
<td>1)</td>
</tr>
<tr>
<td>1*</td>
<td>{ x</td>
</tr>
<tr>
<td>(0</td>
<td>1) *</td>
</tr>
<tr>
<td>0*(1010)*</td>
<td>{ x</td>
</tr>
</tbody>
</table>
Definition of a Non-deterministic finite automata (NFA)

- A nondeterministic finite automaton is a 5 tuple \((S, \Sigma, \delta, s_0, S_A)\) where
 - 1. \(S\) is a finite set of states
 - 2. \(\Sigma\) is a finite set of symbols called an alphabet
 - 3. \(\delta: S \times \Sigma \cup \{\epsilon\} \rightarrow P(S)\) is the transition function
 - 4. \(s_0 \in S\) is the start state
 - 5. \(S_A \subseteq S\) is the set of final or accept states
Example NFAs

(a) NFA for “a”

(b) NFA for “b”

(c) NFA for “ab”

(d) NFA for “a | b”

(e) NFA for “a*”
Example NFAs

(a) NFAs for “a”, “b”, and “c”

(b) NFA for “b | c”

(c) NFA for “(b | c)”

(d) NFA for “a(b | c)”
Example NFAs

(a) NFA for “a(b | c)*” (With States Renumbered)
Algorithms

• Build a NFA from a RE
• Build a DFA from an NFA
• Build a minimized DFA from a DFA
• Build an RE from a DFA
Algorithms

Kleene’s Construction

DFA Minimization

DFA

Subset Construction

Thompson’s Construction

NFA

RE

Code for a scanner
Scanner

- Input: Stream Characters
- Output: Stream of tokens or words
Scanner Generator

• Input: regular expressions specifying the tokens of a language

• Output: either the minimized DFA or a program that includes the minimized DFA and code that uses the minimized DFA to produce a stream of tokens given an stream of characters as input