Lexical Analysis
Part 2
Example Regular Expressions over the alphabet \{0, 1\}

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{ 0 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 (0</td>
<td>1)</td>
</tr>
<tr>
<td>1*</td>
<td>{ x</td>
</tr>
<tr>
<td>(0</td>
<td>1) *</td>
</tr>
</tbody>
</table>
RE -> NFA

Regular Expression

\[\epsilon \]

0

NFA

[Diagram of NFA with states S0 and S1 and transitions labeled 0 and \(\epsilon \)].
RE -> NFA

Regular Expression (Assume R and S are regular expressions)

\[R \ast S \]

The start state of the NFA for R is the start state of the new machine. The final state in the NFA for R connects via an epsilon transition to the start state of the NFA for S. The final state in the NFA for S is the final state for the new machine.
Regular Expression (Assume R and S are regular expressions)

$R \mid S$

S0 connects to the start states of the NFA for R and the NFA for S by epsilon transitions and the final states of the NFA for R and NFA for S connect to S1 by epsilon transitions
Regular Expression (Assume \(R \) is a regular expressions)

\[R^* \]

S0 connects to S1 and the start state of the NFA for \(R \) by epsilon transitions. The final state of the NFA for \(R \) connects to S1 and to the start state of the NFA for \(R \) by epsilon transitions.
Example Problems

• Construct NFAs for the following regular expressions.
 – 0
 – 00
 – 0 | 1
 – (0 | 1) *
 – 0*(10*10*)*