CS442/542

Lexical Analysis
Part 2
Example Regular Expressions over the alphabet \{0, 1\}

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{ 0 }</td>
</tr>
<tr>
<td>0 (\mid 1)</td>
<td>{0, 1}</td>
</tr>
<tr>
<td>0 ((0 \mid 1))</td>
<td>{00, 01}</td>
</tr>
<tr>
<td>1*</td>
<td>{ x \mid x is a string of 0 or more 1s}</td>
</tr>
<tr>
<td>((0 \mid 1))*</td>
<td>{ x \mid x is any string of 0s and 1s including the empty string}</td>
</tr>
</tbody>
</table>
RE -> NFA

Regular Expression

\[\epsilon \]

\[0 \]

NFA

\[S_0 \xrightarrow{\epsilon} S_0 \]

\[S_0 \xrightarrow{0} S_1 \]
RE -> NFA

Regular Expression (Assume R and S are regular expressions)

$$R \cdot S$$

The start state of the NFA for R is the start state of the new machine. The final state in the NFA for R connects via an epsilon transition to the start state of the NFA for S. The final state in the NFA for S is the final state for the new machine.
Regular Expression (Assume R and S are regular expressions)

$R \mid S$

S_0 connects to the start states of the NFA for R and the NFA for S by epsilon transitions and the final states of the NFA for R and NFA for S connect to S_1 by epsilon transitions.
Regular Expression (Assume R is a regular expressions)

R^*

S0 connects to S1 and the start state of the NFA for R by epsilon transitions. The final state of the NFA for R connects to S1 and to the start state of the NFA for R by epsilon transitions.
Example Problems

• Construct NFAs for the following regular expressions.
 – 0
 – 00
 – 0 | 1
 – (0 | 1) *
 – 0*(10*10*)*