NFA -> DFA
Subset Construction
Building an DFA from an NFA

• Subset construction algorithm
 – Constructs a DFA from an NFA by building a DFA whose states represent sets of states of the NFA
 – NFA : \((N, \Sigma, \delta_N, n_0, N_A)\)
 – DFA : \((D, \Sigma, \delta_D, d_0, D_A)\)
 • Note the alphabets are the same
Subset Construction Algorithm

Functions

• \(\varepsilon \)-closure(q) returns the set of states that can be reached from state q in the NFA on an epsilon transition. q is included in the result.

• Delta(q, c) where q is a set of NFA states and c is a symbol from \(\Sigma \), returns the set of NFA states reachable from an NFA state in q on the symbol c
 • \(\cup_{s \in q} \delta_N(s,c) \)
Subset Construction Algorithm

Transitions

• $T[q,c]$ where q is a set of NFA states and c is a symbol in Σ, is given the value of the ε-closure of the set of NFA states that states in q can reach on c
Subset Construction Algorithm

\[q_0 \leftarrow \varepsilon\text{-\text{closure}}(n_0); \]
\[Q \leftarrow q_0; \]
\[\text{Worklist} \leftarrow \{q_0\}; \]
\[\text{while } (\text{Worklist} \neq \emptyset) \text{ do} \]
 \[\text{remove } q \text{ from Worklist;} \]
 \[\text{for each } c \in \Sigma \text{ do} \]
 \[t \leftarrow \varepsilon\text{-\text{closure}}(\Delta(q,c)); \]
 \[T[q,c] \leftarrow t; \]
 \[\text{if } t \notin Q \text{ then} \]
 \[\text{add } t \text{ to } Q \text{ and to Worklist;} \]
 \[\text{end;} \]
\[\text{end;} \]
Subset Construction Algorithm

• How to create the DFA \((D, \Sigma, \delta_D, d_0, D_A)\) from \(Q\) and \(T\)
 - Each \(q_i\) in \(Q\) is named \(d_i\) (in particular \(q_0\) is named \(d_0\))
 - For each \(q_i\) in \(Q\) and each \(c\) in \(\Sigma\) where \(T[q_i, c] = q_j\), \(\delta_D(d_i, c) = d_j\)
 - \(D\) is the set of all \(d_i\)
 - \(D_A\) is the set of all \(d_i\) where \(q_i\) contained an accept state from \(N_A\)
NFA for \((0|1)^*\)
Practice Problem

• (a) Create an NFA from the RE \((0 \mid 1) (0 \mid 1)\)
• (b) Create a DFA from the answer to part a