DFA Minimization

- Minimize the DFA \(\langle D, \Sigma, \delta, d_0, D_A \rangle \)
- The algorithm builds a new machine from subsets of states of the original machine
- The algorithm first builds two subsets: the set of final states and the set of non-final states
- A subset is split if the subset has a conflict on a symbol
- A subset has a conflict on a symbol, \(c \), when the transitions on \(c \) of two (or more) states in the subset do not go to states in the same subset.
- The algorithm halts when no subsets have conflicts (i.e. no more splits need to be done)
Split (S is a set of states from the original DFA)

Split(S) {
 for each \(c \in \Sigma \) do
 if \(c \) splits \(S \) into \(s_1 \) and \(s_2 \) then return \(\{s_1, s_2\} \);
 end;
 return \(S \);
}

DFA Minimization

\[T = \{ D_A, (D - D_A) \}; \]
\[P = \emptyset \]
while (\(P \neq T \)) do
\[P \leftarrow T; \]
\[T \leftarrow \emptyset; \]
\[\text{for each } p \in P \text{ do} \]
\[T = T \cup \text{Split}(p); \]
end;
end;
Practice Problem

- (a) Build the NFA that recognizes the language specified by the following regular expression: \((0 \mid 1) 11 (1)^*\)
- (b) Build the DFA from the NFA created in part a
- (c) Build the minimized DFA for the DFA created in part b