
Introduction to
Assembler Language

Programming

Fibonacci
Compute first twelve Fibonacci numbers and put in array, then print
 .data
fibs: .word 0 : 12 # "array" of 12 words to contain fib values
size: .word 12 # size of "array"
 .text
 la $t0, fibs # load address of array
 la $t5, size # load address of size variable
 lw $t5, 0($t5) # load array size
 li $t2, 1 # 1 is first and second Fib. number

 sw $t2, 0($t0) # F[0] = 1
 sw $t2, 4($t0) # F[1] = F[0] = 1
 addi $t1, $t5, -2 # Counter for loop, will execute (size-2) times

Fibonacci
loop: lw $t3, 0($t0) # Get value from array F[n]
 lw $t4, 4($t0) # Get value from array F[n+1]
 add $t2, $t3, $t4 # $t2 = F[n] + F[n+1]
 sw $t2, 8($t0) # Store F[n+2] = F[n] + F[n+1] in array
 addi $t0, $t0, 4 # increment address of Fib. number source
 addi $t1, $t1, -1 # decrement loop counter
 bgtz $t1, loop # repeat if not finished yet.
 la $a0, fibs # first argument for print (array)
 add $a1, $zero, $t5 # second argument for print (size)
 jal print # call print routine.
 li $v0, 10 # system call for exit
 syscall # we are out of here.

Fibonacci
######### routine to print the numbers on one line.
 .data
space:.asciiz " " # space to insert between numbers
head: .asciiz "The Fibonacci numbers are:\n"
 .text
print:add $t0, $zero, $a0 # starting address of array
 add $t1, $zero, $a1 # initialize loop counter to array size
 la $a0, head # load address of print heading
 li $v0, 4 # specify Print String service
 syscall # print heading
out: lw $a0, 0($t0) # load fibonacci number for syscall
 li $v0, 1 # specify Print Integer service
 syscall # print fibonacci number
 la $a0, space # load address of spacer for syscall
 li $v0, 4 # specify Print String service
 syscall # output string
 addi $t0, $t0, 4 # increment address
 addi $t1, $t1, -1 # decrement loop counter
 bgtz $t1, out # repeat if not finished
 jr $ra # return

 5Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the major functional units and the
major connections between them. All instructions start by using the program counter to supply the instruction address
to the instruction memory. After the instruction is fetched, the register operands used by an instruction are specified
by fields of that instruction. Once the register operands have been fetched, they can be operated on to compute a
memory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical instruction),
or a compare (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be
written to a register. If the operation is a load or store, the ALU result is used as an address to either store a value
from the registers or load a value from memory into the registers. The result from the ALU or memory is written back
into the register file. Branches require the use of the ALU output to determine the next instruction address, which
comes either from the ALU (where the PC and branch offset are summed) or from an adder that increments the
current PC by 4. The thick lines interconnecting the functional units represent buses, which consist of multiple signals.
The arrows are used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly
show when crossing lines are connected by the presence of a dot where the lines cross.

 6Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines. The
top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the
multiplexor is controlled by the gate that “ANDs” together the Zero output of the ALU and a control signal that
indicates that the instruction is a branch. The middle multiplexor, whose output returns to the register file, is used to
steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data memory (in the
case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to determine whether the
second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the
instruction (for a load or store). The added control lines are straightforward and determine the operation performed
at the ALU, whether the data memory should read or write, and whether the registers should perform a write
operation. The control lines are shown in color to make them easier to see.

