## Algorithm

- Algorithm: a procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an operation; broadly : a step-by-step procedure for solving a problem, or accomplishing some end, especially by a computer. [Merriam-Webster Dictionary]
- Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output." [Introduction to Algorithms, 2nd Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest \& Clifford Stein]


## Algorithm

- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that when executed produces a result and halts in a finite amount of time. [Schneider \& Gersting. An Invitation to Computer Science, 1995]


## Algorithms: Characteristics

- Well-Order, Step-by-step
- Unambiguous operations
- Effectively computable operations
- Input transformed into output
- Finite number of steps, Halts in a finite amount of time


## Algorithm

- Recipes are examples of algorithms although they frequently lack the precision we require of algorithms (recipes include ambiguities)


## Algorithms

1 cup steel-cut oats
3 cups water
Bring water to a boil in a saucepan, and stir in your oats.
Reduce heat to a simmer and cook oats until soft, 20 to 30 minutes, stirring occasionally. If all the liquid has reduced before your oats are tender, stir in a bit more water or milk and continue to cook.

## Algorithms

oats = 1 cup
water $=3$ cups
Pour water into saucepan
Place saucepan on burner
heat $=$ high
temp = CheckTemp()
while temp is not Boiling temp = CheckTemp()
Pour oats into saucepan
heat $=$ heat -1
temp = CheckTemp()
while temp is not Simmer
heat $=$ heat -1
temp = CheckTemp()
while areNotSoft(oats)
Stir
if waterLevelTooLow()
water $=1 \mathrm{oz}$
pour water into
saucepan

## Algorithms

- This "recipe" uses the basic building blocks of algorithms:
- Variables
- Sequencing
- Selection
- Iteration


## Variables

- Oats
- Water
- Heat
- temp


## Sequencing

- The order of the instructions matter
- The following order does something different Pour oats into saucepan
Place saucepan on burner
heat $=$ high
temp $=$ CheckTemp()
while temp is not Boiling
temp = CheckTemp()
Pour water into saucepan


## Selection

- Choose to execute an instruction based in a condition if waterLevelTooLow()
water = 1 oz
pour water into saucepan


## Iteration

- Repeat instructions based on a condition while temp is not Simmer

$$
\begin{aligned}
& \text { heat }=\text { heat }-1 \\
& \text { temp }=\text { CheckTemp() }
\end{aligned}
$$

## Methods and Functions

- Functions are not required but their use can simplify the development of algorithms
- Think of a function as a way to name a group of instructions. The function can be given initial values (parameters) and return a value
- CheckTemp()
- returns a number
- areNotSoft(oats)
- returns a boolean value


## Algorithm Building Blocks

- Variables and expressions
- Instruction sequences
- Selection instructions
- Iterative instructions
- Functions


## Variable

- Stores or hold a singles value
- The meaning of single value depends on the data type of the variable
- Int, float, string, list, ...
- Instructions can use the current value of a variable or change the value of a variable


## Example use of numeric variables

- $x=2$
- $x=2^{*}(3+7)$
- $x=x / y+2^{*} z$
- $x=x+1$
- This statement might be confusing given your algebra background
- There is a difference between assignment and equality


## Sequencing

The following sequences result in two different program states Order Matters!

$$
\begin{array}{ll}
x=2 & x=2 \\
y=10 & y=10 \\
\text { temp }=x & \text { temp }=x \\
x=y & y=\text { temp } \\
y=\text { temp } & x=y
\end{array}
$$

## Selection

if it is sunny then
I will go for a walk
if it is raining then
I will bring an umbrella else

I will wear sunscreen

## Selection (if statements)

If $x>10$ then
$y=x$
if $x>y$ then

$$
z=x
$$

else

$$
z=y
$$

## Iteration (loops)

- sum = 0;
- $i=1$;
- while i <= 10

$$
\begin{aligned}
& \text { sum }=\operatorname{sum}+I ; \\
& i=i+1 ;
\end{aligned}
$$

## Sorting Example

- What characteristic must be defined for a data set so that it can be sorted?


## Sorting

- Selection Sort


## Selection Sort Ascending Order

| Initial | Pass 1 | Pass 2 | Pass 3 | Pass 4 | Pass 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 1 | 1 | 1 | 1 | 1 |
| 7 | 7 | 3 | 3 | 3 | 3 |
| 14 | 14 | 14 | 7 | 7 | 7 |
| 3 | 3 | 7 | 14 | 10 | 10 |
| 1 | 20 | 20 | 20 | 20 | 14 |
| 10 | 10 | 10 | 10 | 14 | 20 |

## Selection Sort

Suppose $x$ is a list or array of $n$ integers that can be indexed by position. Positions begin at 0 so there are elements in $x$ at positions 0 through $\mathrm{n}-1$
$\mathrm{p}=0$
Repeat the follow process $\mathrm{n}-1$ times
find the location of the smallest value in positions $p$ through $\mathrm{n}-1$
call the position of the smallest value $s$ swap the values at position $p$ and $s$
$p=p+1$

## Selection Sort

Let x be a list or array of n integers and let $\mathrm{x}[\mathrm{k}]$ references the k -th integer in the array. Legal values for k are 0 through $\mathrm{n}-1$.

$$
\begin{aligned}
& \text { for ( } p=0 ; p<n-1 ; p++ \text { ) \{ } \\
& \mathrm{s}=\mathrm{p} \text {; } \\
& \text { for ( } \mathrm{j}=\mathrm{p}+1 \text {; } \mathrm{j}<\mathrm{n} ; \mathrm{j}++ \text { ) }\{ \\
& \text { if ( } \mathrm{x}[\mathrm{j}]<\mathrm{x}[\mathrm{~s}] \text { ) } \\
& \mathrm{s}=\mathrm{j} ; \\
& \text { \} } \\
& \text { temp }=x[p] ; \\
& \mathrm{x}[\mathrm{p}]=\mathrm{x}[\mathrm{~s}] \text {; } \\
& \mathrm{x}[\mathrm{~s}]=\text { temp; }
\end{aligned}
$$

