

PPrrooppoossaall ffoorr MMSSEE CCaappssttoonnee PPrroojjeecctt

PPrroojjeecctt TTiittllee::

SSttuuddeenntt NNaammee::

PPrroojjeecctt SSppoonnssoorr::

FFaaccuullttyy AAddvviissoorr::

DDaattee ooff ssuubbmmiissssiioonn::

A Metrics Tool for Evaluating Object-Oriented Programs

Objective

The aim of this project is to develop a metrics tool to evaluate object-oriented programs

written in one of the four languages – Java, C++, Smalltalk and Eiffel.

Background

Quality assurance plays a major role in software development. One way to evaluate the

quality of a program is to use a quantified approach using metrics. Using this approach,

the quality of a program can be evaluated by extracting primitive metric values from the

program such as the number of statements, number of control paths, number of shared

variables and so on, and then applying these values to some predefined metric formulas.

The result of evaluating the formulas will be compared against some benchmark values

for the chosen application. As an example, consider a metrics formula that determines the

coupling between two objects in an object-oriented program. This formula may be

defined as

 Coupling factor = f (number of outside methods called by this class) *

 g (number of methods within this class called by methods

 from other classes) *

 h (number of public attributes of this class)

The functions “f”, “g” and “h” must have been defined before. The theoretical evaluation

of this metrics formula may assert that the result of evaluating this formula for every

class in a program must be less than or equal to 0.5.

Experience reports indicate that metrics tools are very useful in evaluating and improving

object-oriented programs and also help in establishing organizational rules on developing

similar programs. Since this approach requires vast computing needs, the support of a

metrics tool is evident. Due to the constantly evolving nature of object-oriented program

qualities and advancements in object-oriented program metrics, the metrics tools are

expected to be easily modifiable and can be adapted to changes in both formulas and

language constraints.

Current Project

The current project focuses on developing a metrics tool to evaluate object-oriented

programs written in one of the four languages – Java, C++, Smalltalk and Eiffel. The tool

must have the following characteristics:

 The user must be able to select one of the four languages for evaluation.

 The user must be able to select a program for evaluation through a file browser.

 The user must be able to load a set of metrics formulas from a file.

 The user must be able to select a subset of formulas for evaluation at any one

time.

 The user must be able to evaluate one or more formulas at any one time.

 The tool must evaluate and preserve the results in a temporary file so that the user

can decide to view the results or save the results. In case the user decides to save

the results, the tool must be able to save the results in different formats (see the

next item) selected by the user.

 The user must be able to view the results in different formats such as textual, bar

charts, pie charts and curves.

 The user must be able to view each step of evaluation or only the final result.

 The tool must provide options to enter metrics formulas dynamically. It must also

provide options to save these formulas.

Challenges

The following are some of the challenges in this project:

 Object-oriented concepts are implemented differently in different languages. This

poses a great challenge in accommodating one set of metrics for object-oriented

concepts when the tool can be used for programs written in four different

languages.

 Loading and saving user-defined metrics equations poses some challenge

especially when it involves a lot of mathematical equations. The format of display

and the representation of these equations must be worked out.

 Testing this product poses another big challenge as with any other metrics tool

because of the variations in metrics formulas.

Project Schedule

The following schedule is proposed by the student, and is agreed by the project sponsor:

Phase From To Credits

Study the problem; literature survey Jan 01, 2002 Feb 28, 2002 1

Developing Requirements Document

And problem analysis

Mar 01, 2002 Apr 30, 2002 3

Developing Design Document

Includes User Interface Design

Jun 01, 2002 Aug 31, 2002 3

Implementation and Test Sep 01, 2002 Nov 30, 2002 3

Demonstration and Project Report Dec 01, 2002 Dec 31, 2002 2

 Total 12

The schedule does not include the time for the oral examination.

The student will be on vacation between May 01, 2002 and May 31, 2002.

Resources

The student will use the computing facilities in the university and also his/her personal

computer to complete the project. The project sponsor will provide data for testing.

