

DataTracker: A Comprehensive Artifact

Management Tool for Embedded Chiller

Applications

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Graham T. Miller

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

April, 2025

DataTracker: A Comprehensive Artifact Management Tool for

Embedded Chiller Applications

By Graham T. Miller

We recommend acceptance of this manuscript in partial fulfillment of this

candidate’s requirements for the degree of Master of Software Engineering in

Computer Science. The candidate has completed the oral examination

requirement of the capstone project for the degree.

____________________________________ _______________________

Dr. Mao Zheng Date

Examination Committee Chairperson

____________________________________ _______________________

Dr. Jason Sauppe Date

Examination Committee Member

____________________________________ _______________________

Dr. Rig Das Date

Examination Committee Member

1

Abstract

Miller, Graham, T. “DataTracker: A Comprehensive Artifact Management Tool for

Embedded Chiller Applications”, Master of Software Engineering, April, 2025, Advisor:

Zheng, Mao.

The Unit Controls team at Trane Technologies currently utilizes a hybrid desktop

application that fetches data from a web server to manage all artifacts used to define user

settings, informational data points, display text, and Low-Level Intelligence Device

(LLID) I/O definitions. These artifacts are utilized by many embedded chiller control

applications.

This manuscript describes the development of a replacement for an existing data

management tool with many issues including high latency, lack of organizational

ownership, as well as an outdated user interface with limited input validation. The

replacement is designed to have improved latency, increased input validation, and better

maintainability through a software development process that consistently included

stakeholder feedback from the Unit Controls team at Trane Technologies. This

manuscript highlights the overall design process, the challenges encountered during

development, and the re-engineering approach taken to completely redesign and rebuild

the DataTracker system.

2

Acknowledgements

I would first like to acknowledge my fiancé Rachel, for being incredibly

supportive in my pursuit of higher education. Thank you for the countless sacrifices that

you have made allowing me to achieve my goal. I could not have done this without you,

thank you.

I would also like to thank my capstone advisor Dr. Mao Zheng for the many

meetings providing incredibly useful feedback and direction over the course of this

project, as well as her efforts as my professor for many of my courses in the MSE

program.

Additionally, I would like to thank all the UWL faculty that have invested their

time and effort in my success, as well as the Unit Controls team members at Trane

Technologies, whose input made this project successful. Austin, Micah and Jason, your

efforts were greatly appreciated. To my friends and family thank you for your incredible

support and understanding over the last 3 years.

Thank you all for the time and energy that you have invested not only into the

success of this project, but my development as a software engineer and a person.

3

Table of Contents

Abstract ... 1
Acknowledgements ... 2
Table of Contents .. 3
List of Figures ... 4
List of Tables .. 5
Glossary .. 6
1. Introduction ... 8

1.1 Background ... 8
1.2 Need for Re-engineering ... 9

2. Software Development Lifecycle Models .. 11
2.1 Models Considered ... 11
2.2 Model Used – Agile .. 11

3. Requirements and Assumptions .. 17
3.1 Functional Requirements .. 17
3.2 Non-Functional Requirements .. 21
3.3 Assumptions .. 21

4. Design ... 23
4.1 Architecture Overview .. 23
4.2 Technology Selection.. 24
4.3 MVC - Design Pattern .. 25
4.4 Datastore Design ... 27
4.5 UI Design .. 30
4.6 Reports .. 32
4.7 Security ... 33

5. Implementation ... 35
6. Testing... 38
7. Conclusion .. 44

7.1 Result of Re-engineering .. 44
7.2 Challenges ... 46
7.3 Future Work .. 48
7.5 Deployment ... 49
7.5.1 Deployment Strategy.. 49
7.5.2 Application Deployment Method... 50

8. Bibliography ... 52
Appendix: GUI Before and After ... 53

4

List of Figures

Figure 1: Agile SDLC – Sprint ... 12
Figure 2: DataTracker v2 Burndown Chart.. 15
Figure 3: Ideal vs Actual Burndown Chart ... 15
Figure 4: Use Case for Requirement #13 .. 20
Figure 5: Proposed Architecture Solutions ... 23
Figure 6: DataTracker - Pugh Decision Matrix – Technology Selection (Truncated) 25
Figure 7: Application Overview – MVC Design Pattern.. 26
Figure 8: DataTracker - Datastore Entity Relationship Diagram 29
Figure 9: Project Translations Page - Before and After– Translation Context and

Translation Is Translated... 32
Figure 10: Variable Report Before and After ... 33
Figure 11: Simple PyQT Example - Real Python ... 35
Figure 12: Qt Designer - Translated Texts Page ... 36
Figure 13: Loading ui elements from translatedText.ui ... 37
Figure 14: Original DataTracker Defect Backlog .. 41
Figure 15: Integration Testing Defect INT001 .. 43
Figure 16: DataTracker Variables Page Before and After ... 53
Figure 17: DataTracker Diagnostics Page Before and After.. 53
Figure 18: DataTracker Devices Page Before and After.. 54
Figure 19: DataTracker Translations Page Before and After ... 54
Figure 20: DataTracker Translated Text Selection Before and After 55
Figure 21: DataTracker Display Texts Page Before and After .. 55
Figure 22: DataTracker Shared Translations Page Before and After 56
Figure 23: DataTracker Enumerations Page Before and After .. 56
Figure 24: DataTracker Scalar Units Page Before and After ... 57
Figure 25: DataTracker Systems-Components Page Before and After............................ 57
Figure 26: DataTracker Abbreviations Page Before and After .. 58

5

List of Tables

Table 1: Sprint 6 Sprint Tasks .. 13
Table 2: Sprint 3 Test Overview ... 39
Table 3: Test Case 18.01 - Device Page - UI .. 39

6

Glossary

Grey Box Testing

A method of testing software in which the person testing the application has knowledge

of the internal implementation of the application, while testing it from the user

perspective.

Pugh Decision Matrix

An analysis tool used to compare potential design choices against a set of selected

criteria, allowing for a way to rank potential solutions based on their score, relative to

other design choices.

PyQt

A Python wrapper for the Qt desktop application development framework, enabling the

creation of cross-platform applications with user interfaces that closely resemble that of

the user’s operating system. PyQt6 provides a comprehensive set of Python bindings for

the latest version of the Qt toolkit.

Qt Framework

A desktop application development framework, written in C++, designed to create cross-

platform desktop applications and their associated user interfaces.

Qt Designer

A drag-and-drop UI design tool that allows developers to visually design user interfaces

for Qt applications. Qt Designer automatically generates .ui files, which can be

seamlessly integrated into PyQt or Qt desktop applications.

7

Sprint Task

Constructed by project stakeholders during the sprint planning phase of a sprint, sprint

tasks define the work that is required to implement and support a user story. Each sprint

will have a number of user stories, and each user story will have several sprint tasks that

define the actual work required to implement the functionality described by that user

story.

Story Point

A unit of measure used to estimate the effort (time and complexity) required to

implement a user story.

Use Case

A description of how users interact with a system, outlining the flow of user inputs and

the system’s response to those inputs.

User Story

A brief informal description of a functionality of a software product, from the user

perspective. This is used to capture user-based requirements in Agile software

development methodologies.

Velocity

A measure of the work that can be completed in a specific time frame. The rate at which

a development team using the Agile SDLC model completes user stories, using the

number of completed story points as a quantifier.

8

1. Introduction

1.1 Background

Trane Technologies is a corporation consisting of 45,000 employees at the time of

writing (2025). Trane Technologies provides climate solutions specializing in the

design and production of heating, ventilation, and air conditioning (HVAC) systems

utilized in transportation, residential and commercial buildings. They are known for

providing energy efficient HVAC solutions to customers such as data centers,

manufacturers, hospitals and college campuses. Chillers are products manufactured

and sold by Trane Technologies to provide the cold or hot water necessary in comfort

cooling, comfort heating, and manufacturing processes.

The Unit Controls team at Trane Technologies is responsible for designing,

developing, and maintaining embedded chiller applications used to optimally operate

these large pieces of equipment. Each of these embedded applications require artifacts

used to define user settings, informational data points, diagnostic information, Low-

Level Intelligence Device (LLID) I/O, and display text strings translated into 27

supported languages.

Today these software artifacts are generated using DataTracker, a hybrid desktop

application used to manage an Oracle database, served from Minneapolis, MN.

DataTracker’s primary users include the global Unit Controls development team,

consisting of 30+ software developers, project technical leaders, and software test

engineers.

Currently DataTracker manages many entities for each individual embedded

controls application. Those entities include Variables, Systems, Enumerations, Scalar

Units, Abbreviations, Diagnostics, Devices, and Translations. Variables include

Statuses and Settings. Statuses are purely informational data points, such as a

temperature reading. Settings are user settable options such as the temperature

selection on a thermostat. Systems are utilized by variables and diagnostics describing

where these entities are created within the embedded application. Scalar Units are

9

utilized as potential datatypes for a variable. Scalar Units can consist of things like

temperature or heating capacity. Enumerations are utilized as potential datatypes for a

variable, containing a list of all allowable discrete values. For example, an operating

mode enumeration may include things like Heating and Cooling modes. Abbreviations

are used to generate unique identifiers associated with variables and diagnostics.

Diagnostics, or alarms, are used to notify a user of a warning or critical issue

pertaining to the chiller’s operation. For example, a chiller’s display may present the

diagnostic “Comm Loss: Evaporator Water Temperature Sensor” to indicate that there

has been a communication loss with the Evaporator Water Temperature Sensor.

Devices pertain to the definition of inputs and outputs used by the Low-Level

Intelligence Devices (LLIDs) on a chiller. This information is used to effectively

facilitate communication between the chiller’s main controller and the chiller’s LLIDs.

Translations include the text shown on any of the main controller’s clients such as a

touch display. Translations consist of a collection of text strings translated into 27

different supported languages. Variables, Diagnostics, Devices, Systems, Scalar Units

and Enumerations all utilize one or several translations. These translations are

provided to the main controller’s clients to accurately display information in the

selected language and proper format.

DataTracker also supports the export of each of the listed entities’ information

into formatted XML and binary artifacts that are consumed by the embedded software

application. The information in many of these artifacts can also be exported into XLS

format, an older binary-based Microsoft Excel file format, so that the information is

easily readable and understandable by humans.

1.2 Need for Re-engineering

DataTracker was originally deployed in 2006. This application is a .Net web client

written in C#, with a WinForms user interface, composed of over 120,000 lines of code.

The original engineers that developed this application are no longer working for Trane

Technologies and did not produce any accompanying documentation. This has proven to

10

be an issue for maintenance and has left the Unit Controls team feeling uncertain about

DataTracker’s future. This lack of ownership has also made it difficult to facilitate

improvements such as addressing known latency issues, improving input validation, and

adding new desired functionality.

The author worked with DataTracker’s stakeholders to assess the difficulty of

refactoring the existing application to meet the needs of the application’s users. Through

much discussion it was decided that it would be more desirable to develop a new version

of DataTracker using more modern technologies, rather than simply refactor the existing

19-year-old application.

The overall goal of this project was to design and develop a new system that

addressed many of the issues faced by users of the original DataTracker. This included

improving latency, maintainability, input validation, and adding additional functionality

to increase the overall user experience.

11

2. Software Development Lifecycle Models

2.1 Models Considered

Several Software Development Life Cycle Models were evaluated during the

inception of this project: Waterfall, Iterative, and Agile. The Waterfall model was quickly

eliminated due to the expected churn or change in requirements from the effort of re-

engineering and potential improvements. A large amount of effort in this project would

be consumed in investigating the original implementation of DataTracker to fully capture

its functionality in requirements. This means that as the project progressed, requirements

could change according to these findings and as potential improvements were identified.

This made the Agile and Iterative models front runners in this evaluation. The Agile and

Iterative models are very similar, however differ in a few key areas. Agile incorporates

stakeholder feedback continuously throughout the development process whereas the

iterative approach gathers feedback at the end of each iteration. Agile also utilizes shorter

development cycles called sprints. This decreased cycle time between iterations, or

sprints, allows for Agile to be more collaborative and assists in the prioritization of

continuously evolving requirements. Due to these key differences, the author selected the

Agile approach for this project.

2.2 Model Used – Agile

The Agile Software Development Life Cycle Model is a cyclic model that breaks

down a software development project into cycles called “sprints”. Each sprint will consist

of the same main phases: sprint planning, requirement analysis, design, development or

implementation, testing, and sprint retrospective. The next sprint in the project will begin

immediately after the previous sprint has ended until all requirements have been satisfied,

and the product is accepted by the customer. Figure 1 illustrates the Agile Software

Development Life Cycle model.

12

Figure 1: Agile SDLC – Sprint

During Sprint planning the user stories selected from the backlog were discussed

and broken down into smaller implementable tasks, called sprint tasks. The author would

document each of these sprint tasks in a sprint planning document to ensure that small

actionable pieces of each user story were defined before starting development. This gave

more resolution and granularity to the stakeholders about how much work was involved

with each user story and helped to facilitate more accurate story point estimates. Table 1

shows an example of a sprint plan from sprint 6 of this project. Each sprint had an

accompanying sprint task document.

13

Several advantages to the Agile model include minimal upfront planning, rapid

development, and consistent collaboration with the application’s stakeholders. All three

of these advantages were observed over the course of this project. Due to the nature of

the existing DataTracker application, minimal upfront planning was all that was possible

Table 1: Sprint 6 Sprint Tasks

14

without any clear owner of the products implementation. The project’s timeline was also

aggressive given the overall scope of the project and the need to complete the project in

about 6 months of development time. By breaking down the project into small more

manageable sprints, the Agile model enabled the rapid development of the most

important functionality to the customer in the time that the project allowed. One of the

main goals of this project was to ensure that the new re-engineered DataTracker

application did not rely on a single developer’s ownership or understanding. The Agile

model lent itself well to this goal as each sprint facilitated consistent communication with

the main stakeholders of the application. This allowed members of the Unit Controls

team to be involved in the design of the overall product, leading to a more widespread

understanding of the application. This consistent collaboration with stakeholders through

sprint planning and requirement analysis also allowed for the project to adapt well to

changes in requirements by allowing the team to prioritize remaining or additional work

based on customer need.

 Another benefit to using the Agile model for this project was the use of story

points. Story points allowed for the team to quantify the effort required to implement a

user story. This ability to quantify the work remaining on the project, or the work

assigned in a sprint, allowed for a better understanding of the project’s overall progress.

The author illustrates the ability to track project velocity using story points and burndown

charts below in figures 2 and 3. This is a level of resolution that is not facilitated by other

SDLC models such as Waterfall, where the only measure of velocity is the number of

requirements implemented. This is important because requirements can differ greatly in

the effort needed to implement them.

15

Figure 2: DataTracker v2 Burndown Chart

Figure 3: Ideal vs Actual Burndown Chart

16

In figures 2 and 3, these burn down charts show the actual and ideal number of

remaining story points at the end of each sprint, and the starting total value of 113 before

sprint 1 was completed, 0 on the x-axis. What is not in these illustrations is the number of

user stories completed in each sprint.

This project had a total of 42 defined user stories, completed over 6 sprints. On

average, 7 user stories were implemented and tested within each sprint. The number of

user stories completed in each sprint could vary significantly based on the complexity

involved in implementing each user story.

For example, in sprint 6, 9 user stories were implemented and tested. Each user

story in sprint 6 had a relatively low story point value. Each user story within this sprint

was evaluated as a 1 or a 2 by the team, meaning that the amount of time and complexity

involved in implementing and testing these user stories was relatively low when

compared to those completed in other sprints.

In short, not all user stories will require the same amount of time and complexity to

implement and test. Evaluating the backlog of user stories and assigning story points

allows for the team to divide the backlog into sprints of similar size and execution time.

Over the course of this project, an average of 18.8333 story points were completed each

sprint.

17

3. Requirements and Assumptions

3.1 Functional Requirements

Almost all the functional requirements for this system were derived from the

original DataTracker application. The author worked with stakeholders to identify the

core functionality of the original application as well as potential improvements, to

mitigate any known shortcomings of the existing tool. Throughout the course of this

project requirements were added, modified, and removed based on sprint retrospective,

sprint planning and requirement analysis meetings with the project’s stakeholders. This

allowed for demonstration of the system under development’s capabilities, and for the

iterative refinement of requirements from the stakeholder perspective.

All functional requirements were defined as user stories with accompanying use

cases in the project’s requirements specification [3]. Listed below are all functional

requirements identified.

• A User can View Variables on each project.

• A User can View Diagnostics on each project.

• A User can View Devices on each project.

• A User can View Translations on each project.

• A User can View Scalar Units (Shared among projects).

• A User can View Enumerations on each project.

• A User can View Systems on each project.

• A User can View Abbreviations (Shared among projects).

• A User can Add Variables on each project.

• A User can Modify existing Variables on each project.

• A User can Delete existing Variables on each project.

18

• A User can Add Diagnostics on each project.

• A User can Modify Diagnostics on each project.

• A User can Delete Diagnostics on each project.

• A User can Add Devices on each project.

• A User can Modify Devices on each project.

• A User can Delete Devices on each project.

• A User can Add Translations on each project.

o Translation will be added to Global Translations file (Shared among

projects).

o Translation will be added to Message group (Project specific).

• A User can Modify Translations on each project.

o Translation will be Updated in Global Translations file (Shared among

projects).

• A User can Delete Translations on each project.

• A User can Add Enumerations on each project.

• A User can Modify Enumerations on each project.

• A User can Delete Enumerations on each project.

• A User can Add Systems on each project.

• A User can Modify Systems on each project.

• A User can Delete Systems on each project.

• A User can Add Abbreviations (Shared among projects).

• A User can Delete Abbreviations (Shared among projects).

• A User can view Display Texts (Shared among projects).

19

• A User can Add new Display Texts (Shared among projects).

• A User can modify Display Texts (Shared among projects).

• A User can generate a Scalar Units Report (Shared among projects).

• A User can generate an Enumeration Report for each project.

• A User can Generate a Variable Report for each project.

• A User can Generate a Diagnostic Report for each project.

• A User can Generate a Device Report for each project.

• A User can copy an existing Translation to a project.

• A User can view Shared Translations (Shared among projects).

• A User can search existing Variables.

• A User can search existing Diagnostics.

• A user can search existing Devices.

• A User can search Display Texts.

• A User can search existing Translations.

Figure 4 below captures one of the use cases from the project’s requirement

specification [3]. Note that the term Variable Information, in figure 4, is a reference to an

entry in the requirement specification’s glossary defining all attributes of a variable

entity, as well as important input validation.

20

Figure 4: Use Case for Requirement #13

 Like the use case shown in figure 4, each use case will reference the

requirement’s unique identifier, as well as a description of the requirement within its title.

Every requirement for this project, written as user stories, has an accompanying use case

similar to what is shown in figure 4. Each use case will highlight the main actors

involved in accomplishing what is specified in the associated requirement. The two-

column format shows the actor’s interaction with the DataTracker system. This format

allows for the high-level documentation of the flow of interactions between the users of

the system and the system itself to drive a user-focused style of defining requirements.

21

3.2 Non-Functional Requirements

The system additionally had a collection of non-functional requirements that needed to

be specified. The existing DataTracker application is very slow and depending on where

the application is accessed from geographically it can take multiple minutes to navigate

pages and complete actions. This latency was due to the central database of the existing

application being served from Minneapolis, MN, as well as several design decisions

made in the implementation of the original DataTracker application. The new system

would need to have improved latency regardless of where its users were accessing it

from. Additionally, the existing DataTracker application was poorly documented and

was managed by employees who are no longer with the company. The new system would

need to be more maintainable than the previous tool in its design, ensuring that it could

be managed by new and existing resources.

3.3 Assumptions

The project’s requirements specification [3] additionally included the following

assumptions:

• DataTracker will rely on Trane Technologies credentials for access. And it will

only be available for installation on the Trane Technologies network.

• DataTracker will rely on the Version Control System (VCS) for the following:

o VCS will provide change history for all artifacts.

o VCS will provide artifact revisions.

o VCS will provide correct level of artifact access (Read/Write) for each

user.

• DataTracker will NOT have a dedicated database upon the initial release.

Design decisions will be made to allow for the addition of a global resource for

translations, should the need become apparent in the future.

22

• All clients running DataTracker will utilize a Windows operating system.

23

4. Design

4.1 Architecture Overview

The author identified that the non-functional requirement of improved latency would

be most heavily impacted by the application’s architecture. To address this requirement,

the author led a series of meetings with stakeholders of the DataTracker application. The

goal of these meetings was to make a unified decision on what architecture would be

used in the design of this new application. To assist in the analysis and selection of an

architecture the author illustrated 3 high-level potential solutions. This illustration aided

the team in understanding the context of what was being discussed. The team discussed

the benefits and downsides to these 3 potential architectures, as well as others. After

several meetings the team came to a unanimous decision.

Figure 5: Proposed Architecture Solutions

24

The project would move forward as a desktop application that leverages the existing

version control system to store all embedded chiller application artifacts, option #3 in

figure 5. However, this decision was made with one caveat: the application would be

written in a way to support the potential separation of the translation entities into a

database. The translation entities comprise most of the shared elements between all

projects in DataTracker’s datastore. This separation is shown in figure 5, proposed

solution #2. This decision was based on the thought that if the number of users grew

substantially, editing translation entities within the existing version control system could

become a bottleneck for the users of the application. Although this was not a large

concern within the Unit Controls organization, as these entities are changed infrequently

enough to where this bottleneck should not take place, steps were taken in the design of

the re-engineered DataTracker to ensure that any future changes in this area would have

mitigated risk.

4.2 Technology Selection

To address the non-functional requirement of maintainability, the author set up several

meetings to select the technologies that would be used to implement the new application.

The author’s intention was to select a technology that would not only satisfy the needs of

the re-engineered application’s functional requirements but ensure that the Unit Controls

team felt comfortable maintaining and improving the application once it was

implemented. After meeting with the team to identify potential technologies, the author

created a Pugh Decision Matrix to rank the technologies based on the criteria discussed

with the team.

25

This style of design analysis allowed for the team to weigh different criteria of each

design choice separately based on each item’s weight, or “rating”. Through this exercise,

the team determined that the PyQT framework would be leveraged in the implementation

of this application. PyQt was chosen for many factors, but the most important being that

the team felt comfortable supporting an application written in Python. Additionally,

PyQT supports UI files generated by Qt Designer, a drag and drop UI design tool. This

significantly reduced the amount of time and effort needed to develop the front end of the

application.

4.3 MVC - Design Pattern

 The author selected the Model View Controller (MVC) design pattern for the re-

engineered DataTracker application. This was due to the fact that DataTracker would be

a desktop application that heavily leveraged file I/O on the user’s computer. This design

pattern separates the application into 3 main components. The Model component handles

all interactions between the application and the datastore. The Controller component will

include all the functions necessary to manipulate entities in the Model and View

components based on user interactions. The View component will contain all the entities

that make up the user interface of the application.

Criteria Rating (1 - 10) 1- WPF - C# 2 - Java FX 3 - PyQt 4 - tkinter 5 - Electron
Ease of Implementation -

Backend
10 0 0 1 1 0

Ease of Maitenance - Team
Familiarity - Online

Resources
10 1 0 1 1 -1

Ease of Implementation -
Frontend (UI)

10 1 0 1 0 0

Professional Feel of UI
Framework

8 1 1 1 1 1

Execution Speed - Resouce
Utilization

5 0 1 0 1 0

Cross platform compatability
(linux, windows, etc)

2 0 1 1 1 1

Ease of adding Database
management in Future

(Translations)
8 1 1 1 1 1

Option Totals 36 23 48 43 8

Design Options - Desktop Application Framework

Figure 6: DataTracker - Pugh Decision Matrix – Technology Selection (Truncated)

26

As a result of the feedback from stakeholders in the architecture selection process, the

author wanted to ensure that all data handling was encapsulated in one component of the

application. This design decision would allow for the structure of the datastore to change

in the future with minimized risk to the View and Controller components. This risk is

further mitigated, as only the Model component would require refactoring if the need to

incorporate a database for translation entities arises.

Figure 7 shows the DataTracker application and all three of its internal components, as

well as the primary use case of the application and its datastore. Notice the datastore only

interacts with the Model component of DataTracker and the Embedded Controls

Application Build Machine.

Figure 7: Application Overview – MVC Design Pattern

27

4.4 Datastore Design

As described in the section 4.1 Architecture Overview, the datastore for the re-

engineered DataTracker consists of files stored in a version control system. These files

are divided based on their usage: files shared between all embedded chiller products are

stored in one location, while product-specific files are stored alongside the source code

for those applications. This pattern was primarily driven by the ease of access for the

embedded chiller application build machine, as well as providing the ability to create

stable versions of released software products.

Storing these files in the version control system allows for datastore revisions, ensuring

that no additional or unwanted changes impact the artifacts generated for use in these

embedded chiller applications. This has been a pain point for the global Unit Controls

development team as multiple projects often run in parallel on the same embedded chiller

application. With multiple projects modifying the same revision-less database, it is not

uncommon for projects to inherit unwanted or non-applicable changes. These non-

applicable changes necessitate additional validation, and a rebuild of the application

before releasing the software, resulting in project delays and increased costs.

Almost all the files that are used to support the re-engineered DataTracker are stored

in CSV format. The CSV format was chosen for its speed in file I/O operations over

formats like XML. This format allows for all files utilized by this tool to be easily

readable and understandable by humans, as well as allowing for the direct import of these

files into a database should the need for a traditional database arise in the future.

The design of the datastore was significantly impacted by the existence of the original

DataTracker’s database, which contained almost 20 years’ worth of data. The new

datastore would need to support this existing data without impacting the generated

artifacts used by the embedded chiller applications. This meant that many existing

patterns within the original database had to be maintained in the new format. Changes

were based on identifying unused or poorly formatted entities within the existing

28

database, with the goal of simplifying the datastore to only contain the data needed to

generate the artifacts consumed by the embedded chiller applications.

One example of this redesign relates to the Diagnostic entity shown in figure 8. In the

original DataTracker database, this entity consisted of four separate tables and a

collection of 38 total attributes across those tables. By identifying the required attributes

for the re-engineered DataTracker application the author simplified this into one entity

with eight attributes. Most of the attributes from the existing DataTracker’s diagnostic

entities were redundant or no longer used.

Throughout the project the author ensured that any effort to simplify and re-design

these entities was evaluated by DataTracker’s stakeholders at the beginning and end of

each sprint. The outcome of this redesign is illustrated in figure 8, which is extracted

from the DataTracker software design specification [4]. The new datastore includes only

16 separate entities, a significant reduction from the original 77 tables. Much of this

simplification was a result of the original DataTracker having to support user access, user

roles, entity locking, and additional functionalities to support 3 generations of embedded

controller hardware. In the re-engineered DataTracker much of the user and project

identification functionality could be eliminated, as it is provided by the existing version

control system that stores this data. Additionally, only the current and future generations

of controller hardware would be supported by the re-engineered DataTracker, decreasing

the number of features that the application needs to support.

29

Figure 8: DataTracker - Datastore Entity Relationship Diagram

 Much consideration was given to the relationship between the entities shown in

figure 8. The four main entities illustrated: Variables, Diagnostics, Devices, and

Translations, are positioned at the top of the diagram. All supporting entities are shown

with their respective relationship to these main entities.

Most notably, the Translation entity is utilized by almost all entities in this

datastore. This relationship is necessary to provide embedded chiller control application

clients, such as a physical display and technician tool, with the proper text associated

30

with each entity. Variables, Diagnostics, and Devices are entirely chiller product specific.

Translations and their supporting entities, however, are shared between all chiller

applications.

By abstracting the selected translated texts to a Message ID for all entities to

reference, this design enables flexibility for future redesigns of this area of the datastore.

Should the shared Translation files in the version control system become a bottleneck for

DataTracker’s users, this data could be separated into another tool or datastore all

together. Depending on how this separation is designed and implemented, product-

specific entities could reference a Message ID in any global resource. This approach

limits the amount of risk and necessary changes required for any re-design surrounding

all other entities in the re-engineered datastore.

4.5 UI Design

The re-engineered application’s UI design was heavily influenced by the original

DataTracker application. This was desirable as it would allow the users of DataTracker

to leverage their familiarity with the existing application. This in theory would limit the

amount of re-training necessary for users to work with the re-engineered DataTracker

successfully.

This decision also enabled the rapid development of the frontend of the application.

The author was able to baseline almost all pages of the UI within the first sprint. This

allowed for the refinement of the design of the UI over the course of the project. This

refinement was driven by stakeholders’ feedback given in the sprint planning and sprint

retrospective meetings held at the beginning and end of each sprint.

An example of this refinement is the UI design of the Translations page. One of the

user pain points targeted in this re-design was the confusion generated by the format of

the “Message is” and “Message Included In” group boxes shown in figure 9, bordered in

blue.

31

The purpose of the “Message Included In” group box in the original DataTracker was

to show what entities were using a Translation across all projects. Due to how this was

formatted in the UI, the user would have to scroll through the entirety of the list to see all

the entity contexts where a translation was used. Additionally, due to this group box

resembling other group boxes in the application, users would often believe that they

could edit these fields when they were purely informational. Through continuous

feedback from DataTracker’s stakeholders over the course of this project, areas like this

could easily be discussed and improved upon. In the re-engineered application, this area

was re-designed as the “Used in Current Project (Status)” group box. In working with the

project’s stakeholders, the author found that it would be more useful to show this

information as project-specific, as that is the context that most users are working from.

The layout of this area was also improved to show all entity contexts, to make this

information more readable without user intervention (scrolling). The format of the text in

this area was also changed to show that it was informational only and not editable. This

was accomplished by greying and italicizing the text for each category and listing

“(Status)” in the name of the group box.

The purpose of the “Message Included In” group box was to select translations for

exporting to a translation service utilized by the Unit Controls team to provide translated

text strings in 27 languages. This area in the original DataTracker had 19 categories

leading to user confusion, and common misuse. The author and stakeholders agreed that

this could be significantly simplified to 2 categories: Translate and Do Not Translate.

32

Figure 9: Project Translations Page - Before and After– Translation Context and Translation Is Translated

Although this is only one example of improvement, almost every page of

DataTracker’s UI was re-designed to some degree. Several pages were added and

removed to avoid user confusion and misuse. This example is used to highlight the

process used for UI design refinement. These design discussions would typically take

place during the Sprint planning meeting before each sprint, including the author and

stakeholders analyzing the pages of the original tool and identifying common user pain

points. These changes would then be executed over the course of the associated sprint

and demonstrated in the Sprint Retrospective meeting to ensure stakeholder acceptance of

the UI design. The before and after for all of the application’s pages can be seen in the

appendix of this manuscript.

4.6 Reports

 The re-engineered DataTracker application supports report generation for many of

its entities into XLSX format, Microsoft Excel’s current XML based file format that is

easily readable by humans. Alike to the process followed in the UI re-design, reports

were evaluated in Sprint Planning and Sprint Retrospective meetings. Figure 10 shows

33

the before and after of the Variable Report from the same product. In this figure the

columns differ in order, name and content. The columns were re-organized and modified

to more closely reflect how these reports are utilized by DataTracker’s stakeholders.

Examples of this redesign include removing duplicate or unused columns, modifying

column names to more accurately describe the column’s content, and moving the most

utilized information to the left-most position in the report.

4.7 Security

The re-engineered DataTracker’s system security will be provided through the Trane

Technologies network and the existing version control system. DataTracker is a data-

centric application, and from the security perspective the datastore and application source

code is what needs protection from potential attackers.

To gain access to the datastore an employee at Trane Technologies must first request

access to the network location in which the version control system lives. That employee

must also request access to the specific repository in which this data is stored through a

controlled process with multiple levels of verification that requires manager approval.

The DataTracker application’s installer will also live on the version control system and

will require a similar degree of access to install and to view source code.

The version control system also supports various levels of access for groups of users.

This would allow employees that are not Unit Controls software engineers to view the

datastore and install the DataTracker application but not modify the data or the

Figure 10: Variable Report Before and After

34

application source code. Additionally, for artifacts that are shared among all applications,

the group of users that are allowed to modify these entities could be limited to only

specific individuals if necessary.

 This level of security is acceptable for this application and most small in-house

applications at Trane Technologies, as this application and its datastore will only be

distributed to Trane Technologies personnel.

35

5. Implementation

As mentioned in section 4.2 Technology Selection, the PyQT framework was selected

for the implementation of this application. PyQt is a Python wrapper for the widely used

Qt C++ framework. The Qt framework is known for creating applications that run on

multiple operating systems and is used across many different industries. Qt is most

notably used to build out Tableau’s user interface, as well as the UX for automotive

applications such as Spotify’s “car thing” [1].

A simple example of the style of programming associated with PyQt can be seen in

figure 11, captured in a tutorial from the Python documentation website, Real Python [2].

In this example we can see the Python code used to generate the simple example UI of

QFormLayout.

Figure 11: Simple PyQT Example - Real Python

PyQt also supports the use of a drag and drop UI design tool, called Qt Designer. The

Qt Designer tool was leveraged in the design and implementation of the re-engineered

DataTracker’s frontend. In figure 12, the main window for the “Translated Text” page of

DataTracker is shown. Within figure 12, the QPlainTextEdit messageID is selected. The

36

files generated by Qt designer are saved with the ui file extension and can be loaded

directly into a PyQt application.

Figure 12: Qt Designer - Translated Texts Page

Within the re-engineered DataTracker application the QPlainTextEdit, shown in

figure 12 can be directly referenced within the application by its name messageID. This

loading of the translatedText ui file can be seen in figure 13. After the file has been

loaded and associated with an instance of the TranslatedTextController class, the PyQt

application can then find any specific element in that ui file using the

QMainWindow::findChild() operation. In figure 13 this is shown by instantiating the

class variable messageID with the QPlainTextEdit child element of the translatedText ui

file, messageID.

37

Figure 13: Loading ui elements from translatedText.ui

Utilizing the PyQt framework with Qt Designer lent itself well to the Model View

Controller (MVC) design pattern as the UI files generated by Qt Designer encapsulated

the View component of the application. The controllers with in the re-engineered

DataTracker would load the associated UI files and store the necessary logic to populate

the UI elements with data, as well as handling user interactions with the View

component. The Controllers would then load and save modified data through the Model

component of the application, which handles all the application’s interactions with the

datastore.

38

6. Testing

As is typical to the Agile approach, testing took place as part of each individual sprint.

The author performed all testing throughout this project, though demonstrations of the

tool’s functionality to DataTracker’s stakeholders occurred at the beginning and end of

each sprint. The author utilized a grey box testing style, as the implementation was

known to the author, but most tests were created from the user perspective. Each user

story was tested individually as test cases were generated for each sprint.

The test cases generated in each sprint were all formatted into one document for each

sprint. Each sprint testing document included an overview as well as individual tabs for

each user story tested in that sprint.

Table 2 shows the sprint 3 test document’s overview tab. In every sprint testing

document, the overview tab was formatted to include the requirement and task number,

tab name, and description columns with a row for each user story associated with the

sprint. The requirement and task number column will reference the user story index, the

user story, and the sprint tasks associated with that user story from the sprint task

document created at the beginning of each sprint.

The first column of the first row in Table 2 shows user story 18, “A User can Add

Devices on each Project”, and the sprint tasks associated with that user story, tasks 1, 2, 3

and 4. The second column indicates where the test cases for each user story are located in

the test document, in this case that is the “18. Add Devices” tab. The third column

describes at a high level what was tested within that area of the document.

39

Table 2: Sprint 3 Test Overview

As mentioned above, each user story has its own specific test cases. Each test case is

referenced by its own unique identifier. Table 3 shows test case “18.01”, indicating that it

is test case 1 for user story 18. The test document page for user story 18 contains 23

separate test cases, however the same format shown in table 3 for test case “18.01” is

shared across all test cases developed during this project.

Table 3: Test Case 18.01 - Device Page - UI

Requirement and Task #s (see Sprint 3 sprint task document) "Sprint3_TestResults" Tab Name Description

18. A User can Add Devices on each Project

Tasks: [1-4]
18. Add Devices

Test UI, Test generate URI, Test Select Display Text, Test Input

Validation, Test datastore updates

19. A User can Modify Devices on each Project

Tasks: [5-6]
19. Modify Devices Test UI, Test Input Validation, Test datastore updates

20. A User can Delete Devices on each Project

Tasks: [7-9]
20. Delete Devices Test UI, Test datastore updates

24. A User can Add Enumerations on each Project

Tasks: [16 - 18]
24. Add Enumerations

Test UI, Test generate URI, Test Select Display Text, Test Input

Validation, Test datastore updates

25. A User can Modify Enumerations on each project

Tasks: [19-21]
25. Modify Enumerations Test UI, Test Input Validation, Test datastore updates

26. A User can Delete Enumerations on each Project.

Tasks: [22-24]
26. Delete Enumerations Test UI, Test datastore updates

30. A User can Add an Abbreviation (Shared amoung all projects)

Tasks: [10 - 12] 30. Add Abbreviations

Test UI, Test generate URI, Test Select Display Text, Test Input

Validation, Test datastore updates

32. A User can Delete Abbreviations (Shared amoung all projects)

Tasks: [13-15] 32. Delete Abbreviations
Test UI, Test datastore updates

Sprint 3 Test Overview

Test Case # Scenario Input Expected Output

18.01
Devices Page - UI - Default

State (Viewing Entites)

Navigate to Devices Page:
1. Launch the DataTracker

Application
2. Select the "Devices" Tab

from the main window

 - No Device Form fields should
be editable.

 - Buttons: Select Display Text,
Add Index, Delete Index,

Submit and Cancel should be
hidden.

 - Buttons: Add, Edit, Delete,
Device Report, Copy Device

From Product should be visible
and enabled.

40

Each test case is formatted with a unique identifier, a description of the scenario being

tested, the user input necessary to execute the functionality under test, the expected

output, the results which include a capture of what was being evaluated during the test,

and finally an optional notes column to assist any future test engineer in evaluating the

results of the test case. Though the results and notes columns are not shown in table 3,

they are present for every test case in the appropriate sprint testing document.

The total number of development test cases generated throughout this project was 319,

meaning that on average each user story had approximately 7.6 test cases created in

development alongside the functionality implemented in that sprint.

The number of development test cases generated for each user story heavily depended

on the complexity of the user story added. User story 20, “A User can delete Devices on

each Project” for example only had three test cases. One test case ensured that a user

could interact with DataTracker’s UI as expected, allowing for the options of device

deletion, or the cancellation of that deletion. The second test was used to ensure that the

cancelation of a deletion would not impact the datastore. And the third test involved

analyzing the artifacts impacted in the datastore to ensure that the deletion of the device

was properly executed. As mentioned above, user story 18, “A User can Add Devices on

each Project”, had 23 separate development test cases evaluating the UI, input validation,

and datastore modification.

The original DataTracker application had a significant backlog of defects in the

Unit Controls team’s defect tracking tool. These defects capture known bugs or issues in

the existing application as well as potential improvements. A subset of these defects can

be seen in figure 14. Each of these defects were evaluated during the design and

implementation of the re-engineered DataTracker. Some examples of this include Defect

243187 relating to the tool’s latency and Defect 340750 indicating that the input

validation in the existing tool does not prevent multiple variables to be created with the

same unique identifier. As mentioned in section 7.1 Results of Re-engineering, the

existing tools latency was addressed in the architecture design of the re-engineered

DataTracker, satisfying the needs of Defect 243187. Defect 340750 was addressed in

41

sprint 2 of this project via the requirements “A User can add Variables on each project”,

and “A user can Modify existing Variables on each project”. During the sprint planning

phase of sprint 2 the author and stakeholders discussed the requirements selected for that

sprint and designed the input validation required to satisfy Defect 340750 adding this

information to the requirements specification [3].

It is important to note that not all defects from the original DataTracker would be

applicable to the re-engineered DataTracker. For example, Defect 118664 captures a

request for exporting translations into a single file. This functionality is expected to be

implemented in phase 2 of the DataTracker re-engineering project. Another example,

Defect 140695 captures the difficulty that users encounter when attempting to find a

point’s associated variable. This defect is not applicable to the re-engineered

DataTracker as points will not be supported in the tool. Points are created using a

separate tool on the newest embedded application controller platform. These examples

are highlighted to show that not all defects from the original tool are applicable to the

new system.

Figure 14: Original DataTracker Defect Backlog

42

From the backlog of 44 defects against the existing DataTracker application, 11 were

related to functionality that will not be supported in the re-engineered DataTracker. Ten

defects are applicable to functionality that will be added in phase 2 of the re-engineering

project. The remaining 23 defects were applicable to the functionality implemented in

phase 1 of the re-engineering project defined in this manuscript. All 23 applicable defects

were tested against the re-engineered DataTracker as part of development to ensure that

every documented issue within the existing DataTracker was addressed.

After the initial development of the re-engineered DataTracker had been completed,

the author performed integration testing. Integration testing of the re-engineered

DataTracker included performing exploratory testing, and regression testing. Exploratory

testing involved following typical use cases that involve adding, modifying or deleting

many entities across the DataTracker application. An example of this is following the

necessary steps to add the Variables, Diagnostics, Devices, and Translations required for

an embedded chiller application to contain the information necessary to support a new

device. This required verifying that the UI was updated successfully from the datastore as

entities were updated, and that the tool behaved as expected when exercising many of its

functionalities in more typical use cases.

Regression testing included re-evaluating the 319 developer test cases generated

during development, as well as re-evaluating the backlog of defects written against the

existing DataTracker application. The goal of this testing was to ensure that there was no

unintended behavior caused by the addition of functionality in later sprints, ensuring that

the tool behaved the same way that it had during the stage in development when that

functionality was originally added.

Through integration testing, the author could be confident that the re-engineered

DataTracker system was functioning correctly after each feature of the application had

been developed and tested individually. Through this style of testing the author

discovered a handful of defects that were introduced in development. All defects

discovered in this effort were recorded in an integration testing document that captured a

43

unique identifier, area discovered, defect description, solution notes, severity, state, and

the status of verification for the defect’s solution.

Figure 15: Integration Testing Defect INT001

An example of one of these defects, Defect INT001, can be seen in figure 15. All

defects captured during integration testing utilized the prefix of INT, short for integration,

to avoid any confusion with the defect numbers utilized by the Unit Controls Team’s

defect tracking tool. Defect INT001 captures a defect in which a UI element when

dragged or manipulated by a user, unexpectedly expands the main window of the

application. Defect INT001 was found through the regression testing performed on the

developer test cases created during the development of sprint 1. The author was able to

correct this issue as well as many others that would likely have only been discovered

through this style of testing.

All test cases identified during development and integration testing were compiled into

a single test document. This document encapsulates the test suite for the re-engineered

DataTracker application, serving as a comprehensive resource for future testing [5].

44

7. Conclusion

This project has been a fantastic opportunity to apply the knowledge that the author

has gained through the Master of Software Engineering program at the University of

Wisconsin – La Crosse. The author was able to lead a software development project

utilizing the Agile approach from start to finish with a real software development team.

This project allowed the author to work through the challenges of understanding a

large existing system, and re-engineering that system based on the needs of a real-world

customer. The re-engineered DataTracker will be developed further in phase 2 of the

project before its eventual deployment and replacement of the existing DataTracker.

7.1 Result of Re-engineering

It can be said that this initial phase of the DataTracker re-engineering project was a

success. Almost all base functionalities of the original DataTracker application have been

captured, along with improvements to tool latency, maintainability, and usability.

Additionally, this effort enabled the team to address multiple user pain points observed

when using the original tool.

Through the redesign of the application’s architecture, the latency that was

experienced with the original DataTracker has been significantly improved. By

leveraging the existing version control system, and not an outdated, cluttered, Oracle

database served out of one location, the latency seen in the original tool will not be

experienced. In other words, it does not matter where the users of the application are

located geographically, the re-engineered DataTracker will operate as quickly as the

user’s computer allows. This is because the new application utilizes file I/O with locally

checked out files from the existing version control system. An example of this improved

latency can be seen when accessing the translation page of both DataTracker

applications. This page populates almost instantaneously in the re-engineered application,

whereas in the past, depending on the user’s geographic location, this could take upwards

of 5 minutes.

45

 This project also enabled an improvement to maintainability through a

collaborative design process, and the use of a well-known design pattern. Using the Agile

approach to manage this project enabled the ongoing collaboration between the author

and DataTracker’s stakeholders. This allowed multiple members of the Unit Controls

team to be directly involved in the design and development of the re-engineered

application, fostering a greater understanding of the entities managed by DataTracker

and their relationships.

 By utilizing the Model View Controller (MVC) design pattern, developers can

more accurately discern the location of specific functionality within the re-engineered

application. The use of this design pattern also enables application improvements or

modifications to specific components of the application, with mitigated risk to other

areas.

 Beyond just the implementation of the DataTracker application, the datastore

component of the overall DataTracker system was significantly simplified. As the

original system matured, a large amount of its functionalities were no longer needed by

its users. Most of these functionalities were implemented to support older controller

hardware generations in which the architecture of the embedded chiller application build

machine was significantly different. The existing DataTracker application also supported

user role and user access functionality, which in the re-engineered DataTracker is

provided by the existing version control system. Through this design decision a

significant amount of the existing datastore could be simplified or eliminated. As

mentioned in section 4.4 Datastore Design, this allowed the re-engineered datastore to

reduce the number of entities required from 77 to 16.

 Maintainability of the re-engineered DataTracker should also see an improvement

through the documentation created as part of this project. As mentioned in section 1.1

Background, the original DataTracker application had no documentation pertaining to

the design or implementation of the tool. From the requirement and testing documents, as

well as the many diagrams and illustrations the author has created, the author plans to

maintain a user manual for the re-engineered DataTracker.

46

 This re-engineering effort also targeted an improvement to the usability of

DataTracker. Many of these design choices can be seen in the Appendix of this

manuscript. An obvious example of this improvement is the addition of search

functionality to all main entities in the application.

With the team addressing the non-functional requirements, functional requirements,

and all applicable defects in the existing DataTracker application’s backlog, the re-

engineering project was an overall success. The new DataTracker included all necessary

base functionality of the existing tool while improving upon its latency, maintainability,

usability, and known issues or pain points documented over the original tools almost 20-

year lifespan.

7.2 Challenges

Many challenges were faced during the re-engineering of DataTracker. Several of

these challenges include the lack of documentation and ownership of the existing

DataTracker, the author’s lack of familiarity with the PyQt framework and Qt Designer,

and ensuring that the application produced satisfied the needs of DataTracker’s

stakeholders while keeping the project on schedule.

The lack of documentation and ownership of the existing DataTracker application

made it difficult to identify the details necessary to design the re-engineered solution

relating to each user story. The author addressed this lack of information by investigating

the existing implementation related to the targeted user stories of each sprint prior to the

requirement analysis phase. The author would identify the existing entities and their

relationships in the original DataTracker by evaluating the implementation of the tool

and its related Oracle database. The author would additionally identify how to output the

necessary test data from the original database to ensure that the functionality added in

that sprint could be adequately tested.

 This analysis allowed the author and stakeholders to discuss the current

implementation in terms of what needed to be supported and what improvements could

47

be made. As mentioned in section 2.2 Model Used – Agile, the Agile approach was

selected for this project to mitigate this lack of well-defined requirements early in the

project. This approach allowed for the author and stakeholders to refine the functional

requirements as more information was gathered in each sprint.

Another challenge faced during this project was the author’s lack of familiarity

with PyQt applications and the Qt Designer tool. In section 4.2 Technology Selection, the

author and stakeholders selected the PyQt framework, even though the author had no

prior experience implementing a desktop application with these technologies. The author

created several simple experimental applications in PyQt with Qt Designer to further

familiarize themselves with some of the nuances of the framework and assist in the

selection of the design pattern that would be utilized by the re-engineered DataTracker.

This challenge was also addressed through the author’s research of tutorials and the

framework’s documentation to better understand the abilities and shortcomings of writing

software using these tools. As the project progressed, the author gained a stronger

understanding of the framework and UI design tool. This led to several areas of the

application being re-written. The most notable example of this is the replacement of

many of the form field’s text entry elements being updated to use a more appropriate type

in Qt Designer, to prevent unintended UI behavior.

Part of the effort necessary to ensure that the application met the needs of

DataTracker’s stakeholders was documenting and addressing feedback given during the

demonstrations of the functionality added during each sprint. Deciding whether to take on

all feedback during the current sprint or to document the feedback for phase 2 of this

project was a challenge. The author worked with the stakeholders to prioritize and

evaluate the time and complexity needed to address the feedback given during these

demonstrations. Due to the aggressive timeline associated with this project, the author

ensured that the project schedule could handle these changes. Through this effort, much

of the feedback was addressed as part of this project, however lower priority changes

were captured in a backlog of potential improvements gathered for phase 2 of this

project. By evaluating what feedback was most important to DataTracker’s stakeholders,

48

and addressing that feedback during this project, the author ensured that the customer

would be satisfied with the end product.

A challenge was also seen early in the project when the author decided to include

approximately 15 software professionals from the Unit Controls team in the architecture

and technology selection process. Although it was important to have buy-in from the

extended Unit Controls team for these discussions, the author felt that having this many

stakeholders in each sprint planning and retrospective meeting would slow the progress

of the project. The author worked with the extended group of stakeholders to identify a

smaller team of representatives to take part in the sprint planning and retrospective

meetings associated with each sprint of the project. This allowed for these meetings to

operate in a more timely manner ensuring that the project remained on schedule.

7.3 Future Work

Due to the size of the original DataTracker application, the re-engineering effort

has been divided into multiple phases. Phase 1, the project described in this manuscript,

would capture as much of the functionality of the original application as possible,

targeting the most important functionality first. Phase 2 would capture added

improvements, and any remaining functionality not addressed in the first phase of the

overall re-engineering effort.

Some of the requirements to be addressed in phase 2 of the DataTracker re-

engineering effort include adding, modifying, and deleting LLID profiles, Scalar Unit

Types, and Operating modes. These areas were identified for phase 2 because they are

areas of low change in the datastore and are very infrequently updated within the current

DataTracker system.

Additional phase 2 requirements capture the functionality of exporting

translations into an Excel format to be utilized by a translation company, and the import

of those updated files back into the DataTracker application in batches. This was targeted

for phase 2 of this project as the author and stakeholders agreed that a larger discussion

49

related to the design of this feature would need to take place with the group of extended

stakeholders before this could be implemented. Due to the importance of this feature’s

design, it will be the primary focus of phase 2. The scope of this feature was significant

enough that the author and stakeholders felt that it was not possible to complete within

the timeline of phase 1 of this project.

In phase 2 of this re-engineering effort the author will work with a team of 2

software engineering interns to implement the functionality mentioned above over the

next calendar year. Phase 2 of this effort will operate in a similar method to phase 1,

again following the Agile approach. Additionally, the author will work with

DataTracker’s stakeholders to solidify a deployment strategy that minimizes disruption

from the user perspective.

7.5 Deployment

7.5.1 Deployment Strategy

The strategy for deployment of the re-engineered DataTracker will heavily

depend on the translation and display text entities implemented in DataTracker’s

datastore. As shown in figure 8 in section 4.4 Datastore Design, the translation entity has

a relationship with most entities in the datastore. The translation entity is also shared

across all embedded chiller products supported by the DataTracker system. This would

make an incremental deployment, where each embedded chiller project would slowly

begin using the new DataTracker system unlikely as the translation entity’s primary key,

message ID, would need to remain unique across both the existing Oracle database and

the new version controlled datastore.

There are ways to get around this issue, such as ensuring that translations created

in the re-engineered system start at an offset providing separation between the two

datastores and ensuring that the same message ID is not referencing multiple translation

entities once that data is imported into the re-engineered system. This of course would

50

add more complexity to this transition, including the potential for duplicated translated

text. A similar strategy would need to be applied to the display text entity as well.

It is for these reasons that a complete transition from the existing DataTracker

system to the re-engineered system during a scheduled deployment period is far more

likely. During the development of this project the author has documented the necessary

interactions with the existing DataTracker database to export and format all files needed

by the re-engineered DataTracker. These procedures would need to take place for each

project that the re-engineered solution would need to support. Luckily, the list of

approximately 20 embedded chiller applications can be prioritized based on which

projects are actually active, decreasing the number of times this procedure would need to

be followed for the initial deployment of this tool. The author and team could then

incrementally generate the necessary files for the inactive projects after the initial

deployment of the re-engineered system has taken place.

The original DataTracker will remain active for older controller hardware

generations only. As mentioned in section 4.4 Datastore Design, the original application

will support functionalities needed by the older unique build machines for these products.

The original DataTracker will remain active until the Unit Controls team decides to no

longer support service pack releases for these products. No active development or

improvement projects currently take place on these products; only necessary fixes to

correct issues reported from the field are made, meaning that the datastore will be

changed infrequently.

7.5.2 Application Deployment Method

The method of deploying the re-engineered DataTracker application could be

accomplished using PyInstaller and Inno Setup. PyInstaller is a tool used to convert

Python applications and their dependencies into one standalone executable. Utilizing

PyInstaller would allow for users of the application to avoid installing a specific Python

interpreter or the modules the re-engineered DataTracker application depends on. This

also ensures that all users are using the same Python interpreter and version of the

51

modules utilized by the application. Inno Setup is a script-driven installation system that

is used to create Windows installers. Inno Setup supports a customizable setup UI, an

application installer, and an application uninstaller if properly configured.

Using PyInstaller to create the DataTracker executable and Inno Setup to create

the installer would assist in the distribution of not only the executable, but also the

necessary configuration files used by DataTracker. These configuration files are

primarily used to store the selected theme for DataTracker’s UI as well as the paths to the

locally checked out files from the version controlled datastore.

Updating the application as new revisions are released could be managed in

several ways. The most likely way at the time of writing this manuscript would be to

potentially leverage an update mechanism within the DataTracker application that will

check for an updated installation file in a location on the Trane Technologies network. If

the installation file is newer than the currently installed version, then an automatic update

would be performed. Should the installation file location not be available then the

software would continue to operate as though no updated installation file existed.

52

8. Bibliography

[1] “Software Development Resources | Qt,” www.qt.io, 2017.

https://www.qt.io/resources/qt?content-type=Success+Story (accessed Mar. 02,

2025).

[2] R. Python, “Python and PyQt: Building a GUI Desktop Calculator – Real

Python,” realpython.com. https://realpython.com/python-pyqt-gui-calculator/

[3] Miller, Graham. “Software Requirements Document for DataTracker”, Version

1.1, April 2025.

[4] Miller, Graham. “Software Design Document for DataTracker”, Version 1.1,

April 2025.

[5] Miller, Graham. “Software Test Suite for DataTracker”, Version 1.1, April 2025.

https://realpython.com/python-pyqt-gui-calculator/

53

Appendix: GUI Before and After

Figure 16: DataTracker Variables Page Before and After

Figure 17: DataTracker Diagnostics Page Before and After

54

Figure 18: DataTracker Devices Page Before and After

Figure 19: DataTracker Translations Page Before and After

55

Figure 20: DataTracker Translated Text Selection Before and After

Figure 21: DataTracker Display Texts Page Before and After

56

Figure 22: DataTracker Shared Translations Page Before and After

Figure 23: DataTracker Enumerations Page Before and After

57

Figure 24: DataTracker Scalar Units Page Before and After

Figure 25: DataTracker Systems-Components Page Before and After

58

Figure 26: DataTracker Abbreviations Page Before and After

