DataTracker: A Comprehensive Artifact
Management Tool for Embedded Chiller
Applications

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of Wisconsin-La Crosse

La Crosse, Wisconsin

by
Graham T. Miller

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

April, 2025

DataTracker: A Comprehensive Artifact Management Tool for
Embedded Chiller Applications

By Graham T. Miller

We recommend acceptance of this manuscript in partial fulfillment of this
candidate’s requirements for the degree of Master of Software Engineering in
Computer Science. The candidate has completed the oral examination
requirement of the capstone project for the degree.

Dr. Mao Zheng Date
Examination Committee Chairperson

Dr. Jason Sauppe Date
Examination Committee Member

Dr. Rig Das Date
Examination Committee Member

Abstract

Miller, Graham, T. “DataTracker: A Comprehensive Artifact Management Tool for

Embedded Chiller Applications”, Master of Software Engineering, April, 2025, Advisor:

Zheng, Mao.

The Unit Controls team at Trane Technologies currently utilizes a hybrid desktop
application that fetches data from a web server to manage all artifacts used to define user
settings, informational data points, display text, and Low-Level Intelligence Device
(LLID) 1/O definitions. These artifacts are utilized by many embedded chiller control

applications.

This manuscript describes the development of a replacement for an existing data
management tool with many issues including high latency, lack of organizational
ownership, as well as an outdated user interface with limited input validation. The
replacement is designed to have improved latency, increased input validation, and better
maintainability through a software development process that consistently included
stakeholder feedback from the Unit Controls team at Trane Technologies. This
manuscript highlights the overall design process, the challenges encountered during
development, and the re-engineering approach taken to completely redesign and rebuild

the DataTracker system.

Acknowledgements

I would first like to acknowledge my fiancé Rachel, for being incredibly
supportive in my pursuit of higher education. Thank you for the countless sacrifices that
you have made allowing me to achieve my goal. | could not have done this without you,
thank you.

| would also like to thank my capstone advisor Dr. Mao Zheng for the many
meetings providing incredibly useful feedback and direction over the course of this
project, as well as her efforts as my professor for many of my courses in the MSE
program.

Additionally, | would like to thank all the UWL faculty that have invested their
time and effort in my success, as well as the Unit Controls team members at Trane
Technologies, whose input made this project successful. Austin, Micah and Jason, your
efforts were greatly appreciated. To my friends and family thank you for your incredible
support and understanding over the last 3 years.

Thank you all for the time and energy that you have invested not only into the

success of this project, but my development as a software engineer and a person.

Table of Contents

ADSTTACT ...ttt 1
ACKNOWIEAGEMENTS ... 2
TabIE OF CONENES ...ttt ens 3
LISE OF FIQUIES ...ttt ettt et be st e e re e be et enneennas 4
LISE OF TADIES ...t bbbt 5
(€] (01 TST: YT RUSPSTTRP PR 6
I 1o o [0 Tox o] TP RSP TUR PRSPPSO 8
1.1 BACKGIOUNG ...ttt bbbt 8
1.2 Need for Re-eNQINEEIINGcc.vciiiiecie ettt e sre e sra e 9
2. Software Development Lifecycle MOdElScccoeveiiiiniiiiiiiccee 11
2.1 MOAEIS CONSIABTEA ...ttt bbb 11
2.2 MOdel USEA — AGIIE ... 11
3. Requirements and ASSUMPLIONS........c.cciveieiiieiieie e e ese e sre et seesre e sre e 17
3.1 FUNCtional REQUITEMENTSocviiiiiiiieieciieeee et 17
3.2 Non-Functional REQUITEMENTSc.civeiieieiierie et 21
3.3 ASSUMPLIONS. ...ttt ettt bbbttt et e bbbt b beene s 21
N I 1= [OSSR P PSSSRUSN 23
4.1 ArCRItECTUIE OVEIVIBW......cvviiviecieeieeiie sttt e sttt aesneesreeaesneesneenee s 23
4.2 Technology SEIECLION.......cc.icieieeece et 24
4.3 MV C - DESIGN PALIEIN ..ottt 25
4.4 Datastore DESIGNcveiuieiiieiecie ettt te e re et e e nreenre e e areenra s 27
A5 UT DBSIGN .ttt b bbbttt b ettt b et enes 30
G (=T o [0 1 £ TP PRRPPRPI 32
A7 SBCUITEY vtttk b bbb bbbttt b ettt bbbt enes 33
5. IMPIEMENTALIONocvviiiiiece et nre e 35
B, TOSHING. ittt ettt nne s 38
A o 4101 1] o] o I USRS USSP SPRORPRORN 44
7.1 Result OF RE-BNGINEETINGoviiiiiiiiiieiesieeee et 44
7.2 CRAIENQES ...ttt ettt et e e be e sre e re e 46
T3 FULUIE WOTK ..ottt et neeneenaenneeneeenee e 48
ST B L= o] (070111 0 USSP 49
7.5.1 DeplOyMENT STFALEQY......covevieiriirieitisie ettt 49
7.5.2 Application Deployment Method............ccoviiiiiiiiciic e 50
8. BIDHOGIaPNY ... 52
Appendix: GUI Before and ATLEEc.oo i 53

List of Figures

Figure 1: Agile SDLC — SPIINT...cviiiiiicece et 12
Figure 2: DataTracker v2 Burndown Chart...........cccceieiiiiiiniiieeeeese s 15
Figure 3: Ideal vs Actual Burndown Chart...........cccccceiieii i 15
Figure 4: Use Case for ReqUIreMENt #13........ccooiiiiiieiese s 20
Figure 5: Proposed ArchiteCture SOIULIONScccviiieiieie s 23
Figure 6: DataTracker - Pugh Decision Matrix — Technology Selection (Truncated)..... 25
Figure 7: Application Overview — MVC Design Pattern............ccccoecevvevecieiiiesesre s 26
Figure 8: DataTracker - Datastore Entity Relationship Diagram...........ccccoceeeeveninnnnnne. 29
Figure 9: Project Translations Page - Before and After— Translation Context and

Translation IS TranSIALEA.ccveviiieiieiece ettt esre e 32
Figure 10: Variable Report Before and After ... 33
Figure 11: Simple PyQT Example - Real PYthon ... 35
Figure 12: Qt Designer - Translated TeXtS Page........ccccovevviieieeieiiie e 36
Figure 13: Loading ui elements from translatedTeXt.Ulccccovviriiiiniieisicceiees 37
Figure 14: Original DataTracker Defect Backlog.........cccccvvvveiieiiiii v 41
Figure 15: Integration Testing Defect INTOOL.........ccooieiiiiiinineieeee s 43
Figure 16: DataTracker Variables Page Before and After..........ccccocvvevvivciieciccecee, 53
Figure 17: DataTracker Diagnostics Page Before and After..........ccocoeveviviiiiciincnnnn. 53
Figure 18: DataTracker Devices Page Before and After..........ccccovovevvevvciciiccicce e 54
Figure 19: DataTracker Translations Page Before and After..........ccccoovvivinineninnnnnn. 54
Figure 20: DataTracker Translated Text Selection Before and After..........cccccvevenennn. 55
Figure 21: DataTracker Display Texts Page Before and After.........ccocovvveiinciinnnnne. 55
Figure 22: DataTracker Shared Translations Page Before and After..........ccccccoveveenenen. 56
Figure 23: DataTracker Enumerations Page Before and After ..o, 56
Figure 24: DataTracker Scalar Units Page Before and After..........cccooevveieiccnccecen, 57
Figure 25: DataTracker Systems-Components Page Before and After...........coccocvvvenenne. 57
Figure 26: DataTracker Abbreviations Page Before and After..........ccccooveveiieivccecen, 58

List of Tables

Table 1: SPrint 6 SPrint TASKSccceiiiiieiieir et
Table 2: SPrint 3 TEST OVEIVIEWcviiiiiiiiiieiieiee e
Table 3: Test Case 18.01 - DeVvice Page - Ul.......ccooveiriiieiiecece e

Glossary

Grey Box Testing
A method of testing software in which the person testing the application has knowledge
of the internal implementation of the application, while testing it from the user

perspective.

Pugh Decision Matrix
An analysis tool used to compare potential design choices against a set of selected
criteria, allowing for a way to rank potential solutions based on their score, relative to

other design choices.

PyQt

A Python wrapper for the Qt desktop application development framework, enabling the
creation of cross-platform applications with user interfaces that closely resemble that of
the user’s operating system. PyQt6 provides a comprehensive set of Python bindings for
the latest version of the Qt toolkit.

Qt Framework
A desktop application development framework, written in C++, designed to create cross-
platform desktop applications and their associated user interfaces.

Qt Designer
A drag-and-drop Ul design tool that allows developers to visually design user interfaces
for Qt applications. Qt Designer automatically generates .ui files, which can be

seamlessly integrated into PyQt or Qt desktop applications.

Sprint Task

Constructed by project stakeholders during the sprint planning phase of a sprint, sprint
tasks define the work that is required to implement and support a user story. Each sprint
will have a number of user stories, and each user story will have several sprint tasks that
define the actual work required to implement the functionality described by that user

story.

Story Point
A unit of measure used to estimate the effort (time and complexity) required to

implement a user story.

Use Case
A description of how users interact with a system, outlining the flow of user inputs and

the system’s response to those inputs.

User Story
A brief informal description of a functionality of a software product, from the user
perspective. This is used to capture user-based requirements in Agile software

development methodologies.

Velocity

A measure of the work that can be completed in a specific time frame. The rate at which
a development team using the Agile SDLC model completes user stories, using the
number of completed story points as a quantifier.

1. Introduction

1.1 Background

Trane Technologies is a corporation consisting of 45,000 employees at the time of
writing (2025). Trane Technologies provides climate solutions specializing in the
design and production of heating, ventilation, and air conditioning (HVAC) systems
utilized in transportation, residential and commercial buildings. They are known for
providing energy efficient HVAC solutions to customers such as data centers,
manufacturers, hospitals and college campuses. Chillers are products manufactured
and sold by Trane Technologies to provide the cold or hot water necessary in comfort
cooling, comfort heating, and manufacturing processes.

The Unit Controls team at Trane Technologies is responsible for designing,
developing, and maintaining embedded chiller applications used to optimally operate
these large pieces of equipment. Each of these embedded applications require artifacts
used to define user settings, informational data points, diagnostic information, Low-
Level Intelligence Device (LLID) I/O, and display text strings translated into 27
supported languages.

Today these software artifacts are generated using DataTracker, a hybrid desktop
application used to manage an Oracle database, served from Minneapolis, MN.
DataTracker’s primary users include the global Unit Controls development team,
consisting of 30+ software developers, project technical leaders, and software test
engineers.

Currently DataTracker manages many entities for each individual embedded
controls application. Those entities include Variables, Systems, Enumerations, Scalar
Units, Abbreviations, Diagnostics, Devices, and Translations. Variables include
Statuses and Settings. Statuses are purely informational data points, such as a
temperature reading. Settings are user settable options such as the temperature
selection on a thermostat. Systems are utilized by variables and diagnostics describing

where these entities are created within the embedded application. Scalar Units are

utilized as potential datatypes for a variable. Scalar Units can consist of things like
temperature or heating capacity. Enumerations are utilized as potential datatypes for a
variable, containing a list of all allowable discrete values. For example, an operating
mode enumeration may include things like Heating and Cooling modes. Abbreviations
are used to generate unique identifiers associated with variables and diagnostics.
Diagnostics, or alarms, are used to notify a user of a warning or critical issue
pertaining to the chiller’s operation. For example, a chiller’s display may present the
diagnostic “Comm Loss: Evaporator Water Temperature Sensor” to indicate that there
has been a communication loss with the Evaporator Water Temperature Sensor.
Devices pertain to the definition of inputs and outputs used by the Low-Level
Intelligence Devices (LLIDs) on a chiller. This information is used to effectively
facilitate communication between the chiller’s main controller and the chiller’s LLIDs.
Translations include the text shown on any of the main controller’s clients such as a
touch display. Translations consist of a collection of text strings translated into 27
different supported languages. Variables, Diagnostics, Devices, Systems, Scalar Units
and Enumerations all utilize one or several translations. These translations are
provided to the main controller’s clients to accurately display information in the
selected language and proper format.

DataTracker also supports the export of each of the listed entities’ information
into formatted XML and binary artifacts that are consumed by the embedded software
application. The information in many of these artifacts can also be exported into XLS
format, an older binary-based Microsoft Excel file format, so that the information is

easily readable and understandable by humans.

1.2 Need for Re-engineering

DataTracker was originally deployed in 2006. This application is a .Net web client
written in C#, with a WinForms user interface, composed of over 120,000 lines of code.
The original engineers that developed this application are no longer working for Trane

Technologies and did not produce any accompanying documentation. This has proven to

be an issue for maintenance and has left the Unit Controls team feeling uncertain about
DataTracker’s future. This lack of ownership has also made it difficult to facilitate
improvements such as addressing known latency issues, improving input validation, and

adding new desired functionality.

The author worked with DataTracker’s stakeholders to assess the difficulty of
refactoring the existing application to meet the needs of the application’s users. Through
much discussion it was decided that it would be more desirable to develop a new version
of DataTracker using more modern technologies, rather than simply refactor the existing

19-year-old application.

The overall goal of this project was to design and develop a new system that
addressed many of the issues faced by users of the original DataTracker. This included
improving latency, maintainability, input validation, and adding additional functionality

to increase the overall user experience.

10

2. Software Development Lifecycle Models

2.1 Models Considered

Several Software Development Life Cycle Models were evaluated during the
inception of this project: Waterfall, Iterative, and Agile. The Waterfall model was quickly
eliminated due to the expected churn or change in requirements from the effort of re-
engineering and potential improvements. A large amount of effort in this project would
be consumed in investigating the original implementation of DataTracker to fully capture
its functionality in requirements. This means that as the project progressed, requirements
could change according to these findings and as potential improvements were identified.
This made the Agile and Iterative models front runners in this evaluation. The Agile and
Iterative models are very similar, however differ in a few key areas. Agile incorporates
stakeholder feedback continuously throughout the development process whereas the
iterative approach gathers feedback at the end of each iteration. Agile also utilizes shorter
development cycles called sprints. This decreased cycle time between iterations, or
sprints, allows for Agile to be more collaborative and assists in the prioritization of
continuously evolving requirements. Due to these key differences, the author selected the

Agile approach for this project.

2.2 Model Used — Agile

The Agile Software Development Life Cycle Model is a cyclic model that breaks
down a software development project into cycles called “sprints”. Each sprint will consist
of the same main phases: sprint planning, requirement analysis, design, development or
implementation, testing, and sprint retrospective. The next sprint in the project will begin
immediately after the previous sprint has ended until all requirements have been satisfied,
and the product is accepted by the customer. Figure 1 illustrates the Agile Software

Development Life Cycle model.

11

Requirment Analysis

Retrospective / Planning

=

ﬁ Develoment

Figure 1: Agile SDLC — Sprint

During Sprint planning the user stories selected from the backlog were discussed
and broken down into smaller implementable tasks, called sprint tasks. The author would
document each of these sprint tasks in a sprint planning document to ensure that small
actionable pieces of each user story were defined before starting development. This gave
more resolution and granularity to the stakeholders about how much work was involved
with each user story and helped to facilitate more accurate story point estimates. Table 1
shows an example of a sprint plan from sprint 6 of this project. Each sprint had an

accompanying sprint task document.

12

Start Date: 1/20/25 End Date: 2/3/25
Task# User Story Index Sprint Task
(Sprint#. Task#)
6.01 9. A User can generate a report of existing Create backend logic to select a location
Variables on a project from the users file system to save the
generated XLSX file.
6.02 9, A User can generate a report of existing | Write backend logic to write Entity to XLSX
Variables on a project format.
6.03 10. AUser can generate a report of Create backend logic to select a location
existing Diagnostics on a project from the users file system to save the
generated XLSX file.
6.04 10. AUser can generate a report of Write backend logic to write Entity to XLSX
existing Diagnostics on a project format.
6.05 11. AUser can Generate Device Report Create backend logic to select a location
for each project. from the users file system to save the
generated XLSX file.
6.06 11. AUser can Generate Device Report Write backend logic to write Entity to XLSX
for each project. format.
6.07 41. AUser can generate a Units report Create backend logic to select a location
(scalar) from the users file system to save the
generated XLSX file.
6.08 41. AUser can generate a Units report Write backend logic to write Entity to XLSX
(scalar) format.
6.09 42. AUser can generate an Enumeration Create backend logic to select a location
Report on each project. from the users file system to save the
generated XLSX file.
6.10 42. A User can generate an Enumeration Write backend logic to write Entity to XLSX
Report on each project. format.
6.11 48. A User can search existing Variables Update Ul to include Search, Apply Filter,
on each project and Clear Filter buttons
6.12 48, A User can search existing Variables Write backend logic for search to hide
on each project nen-matching rows from the Entities
general table.
6.13 49, A User can search existing Update Ul to include Search, Apply Filter,
Diagnostics on each project and Clear Filter buttons
6.14 49. A User can search existing Write backend logic for search to hide
Diagnostics on each project non-matching rows from the Entities
general table.
6.15 50. AUser can search existing Devices on | Update Ul to include Search, Apply Filter,
each project and Clear Filter buttons
6.16 50. AUser can search existing Devices on | Write backend logic for search to hide
each project non-matching rows from the Entities
general table.
6.17 51. AUser can search existing Display Update Ul to include Search, Apply Filter,
Texts (shared) and Clear Filter buttons
6.18 51. AUser can search existing Display Write backend logic for search to hide
Texts (shared) non-matching rows from the Entities
general table.
6.18 52. AUser can Search existing Update Ul to include Search, Apply Filter,
Translations on each project and Clear Filter buttons
6.20 52. AUser can Search existing Write backend logic for search to hide
Translations on each project nen-matching rows from the Entities
general table.

Several advantages to the Agile model include minimal upfront planning, rapid
development, and consistent collaboration with the application’s stakeholders. All three
of these advantages were observed over the course of this project. Due to the nature of

the existing DataTracker application, minimal upfront planning was all that was possible

Table 1: Sprint 6 Sprint Tasks

13

without any clear owner of the products implementation. The project’s timeline was also
aggressive given the overall scope of the project and the need to complete the project in
about 6 months of development time. By breaking down the project into small more
manageable sprints, the Agile model enabled the rapid development of the most
important functionality to the customer in the time that the project allowed. One of the
main goals of this project was to ensure that the new re-engineered DataTracker
application did not rely on a single developer’s ownership or understanding. The Agile
model lent itself well to this goal as each sprint facilitated consistent communication with
the main stakeholders of the application. This allowed members of the Unit Controls
team to be involved in the design of the overall product, leading to a more widespread
understanding of the application. This consistent collaboration with stakeholders through
sprint planning and requirement analysis also allowed for the project to adapt well to
changes in requirements by allowing the team to prioritize remaining or additional work

based on customer need.

Another benefit to using the Agile model for this project was the use of story
points. Story points allowed for the team to quantify the effort required to implement a
user story. This ability to quantify the work remaining on the project, or the work
assigned in a sprint, allowed for a better understanding of the project’s overall progress.
The author illustrates the ability to track project velocity using story points and burndown
charts below in figures 2 and 3. This is a level of resolution that is not facilitated by other
SDLC models such as Waterfall, where the only measure of velocity is the number of
requirements implemented. This is important because requirements can differ greatly in

the effort needed to implement them.

14

DataTracker v2 Burndown

120

100

80

Effort

Sprint

Figure 2: DataTracker v2 Burndown Chart

DataTracker v2 Burndown: Ideal vs Actual

120

e /ctual Bum Down

100

80

Effort

40

20

Sprint

Figure 3: Ideal vs Actual Burndown Chart

15

88
70
60 51
40
27

) ' b

0

0 1 2 3 4

e [deal Bum Down

w
[=2]

In figures 2 and 3, these burn down charts show the actual and ideal number of
remaining story points at the end of each sprint, and the starting total value of 113 before
sprint 1 was completed, 0 on the x-axis. What is not in these illustrations is the number of

user stories completed in each sprint.

This project had a total of 42 defined user stories, completed over 6 sprints. On
average, 7 user stories were implemented and tested within each sprint. The number of
user stories completed in each sprint could vary significantly based on the complexity

involved in implementing each user story.

For example, in sprint 6, 9 user stories were implemented and tested. Each user
story in sprint 6 had a relatively low story point value. Each user story within this sprint
was evaluated as a 1 or a 2 by the team, meaning that the amount of time and complexity
involved in implementing and testing these user stories was relatively low when

compared to those completed in other sprints.

In short, not all user stories will require the same amount of time and complexity to
implement and test. Evaluating the backlog of user stories and assigning story points
allows for the team to divide the backlog into sprints of similar size and execution time.
Over the course of this project, an average of 18.8333 story points were completed each

sprint.

16

3. Requirements and Assumptions

3.1 Functional Requirements

Almost all the functional requirements for this system were derived from the
original DataTracker application. The author worked with stakeholders to identify the
core functionality of the original application as well as potential improvements, to
mitigate any known shortcomings of the existing tool. Throughout the course of this
project requirements were added, modified, and removed based on sprint retrospective,
sprint planning and requirement analysis meetings with the project’s stakeholders. This
allowed for demonstration of the system under development’s capabilities, and for the

iterative refinement of requirements from the stakeholder perspective.

All functional requirements were defined as user stories with accompanying use
cases in the project’s requirements specification [3]. Listed below are all functional

requirements identified.

e A User can View Variables on each project.

e A User can View Diagnostics on each project.

e A User can View Devices on each project.

e A User can View Translations on each project.

e A User can View Scalar Units (Shared among projects).
e A User can View Enumerations on each project.

e A User can View Systems on each project.

e A User can View Abbreviations (Shared among projects).
e A User can Add Variables on each project.

e A User can Modify existing Variables on each project.
e A User can Delete existing Variables on each project.

17

A User can Add Diagnostics on each project.

A User can Modify Diagnostics on each project.
A User can Delete Diagnostics on each project.
A User can Add Devices on each project.

A User can Modify Devices on each project.

A User can Delete Devices on each project.

A User can Add Translations on each project.

o Translation will be added to Global Translations file (Shared among

projects).
o Translation will be added to Message group (Project specific).
A User can Modify Translations on each project.

o Translation will be Updated in Global Translations file (Shared among

projects).
A User can Delete Translations on each project.
A User can Add Enumerations on each project.
A User can Modify Enumerations on each project.
A User can Delete Enumerations on each project.
A User can Add Systems on each project.
A User can Modify Systems on each project.
A User can Delete Systems on each project.
A User can Add Abbreviations (Shared among projects).
A User can Delete Abbreviations (Shared among projects).

A User can view Display Texts (Shared among projects).

18

e A User can Add new Display Texts (Shared among projects).

e A User can modify Display Texts (Shared among projects).

e A User can generate a Scalar Units Report (Shared among projects).
e A User can generate an Enumeration Report for each project.

e A User can Generate a Variable Report for each project.

e A User can Generate a Diagnostic Report for each project.

e A User can Generate a Device Report for each project.

e A User can copy an existing Translation to a project.

e A User can view Shared Translations (Shared among projects).
e A User can search existing Variables.

e A User can search existing Diagnostics.

e A user can search existing Devices.

e A User can search Display Texts.

e A User can search existing Translations.

Figure 4 below captures one of the use cases from the project’s requirement
specification [3]. Note that the term Variable Information, in figure 4, is a reference to an
entry in the requirement specification’s glossary defining all attributes of a variable

entity, as well as important input validation.

19

Req. 13 A User can Modify existing Variables on each project.

Actor: User System: DataTracker

0. System displays the DataTracker Main Window.
1. User selects desired chiller project from the project
selection drop down. 2. System displays all existing variables for the selected
project in the DataTracker Main Window.

3. User selects an existing Variable from the displayed list.
4, System displays Variable information form, populated
5. User selects “Edit” for the selected variable. with the current Variable Information.

6. System enables the Variable information form allowing
7. User enters Variable Information fields to be updated by the user.

8. if user unchecks the “is Released” checkbox:

System displays a warning message indicating that
9. User selects “Submit”. the variable’s URI may be referenced by the
controller applications clients, and to proceed with
caution.

10a. If all applicable input validation passes:
System updates the Datostore and displays the
message “Successfully Modified "<Variable
Name>".

10b. If any input validation fails:
System displays an informational message
pertaining to which field was invalid and why.

Figure 4: Use Case for Requirement #13

Like the use case shown in figure 4, each use case will reference the
requirement’s unique identifier, as well as a description of the requirement within its title.
Every requirement for this project, written as user stories, has an accompanying use case
similar to what is shown in figure 4. Each use case will highlight the main actors
involved in accomplishing what is specified in the associated requirement. The two-
column format shows the actor’s interaction with the DataTracker system. This format
allows for the high-level documentation of the flow of interactions between the users of
the system and the system itself to drive a user-focused style of defining requirements.

20

3.2 Non-Functional Requirements

The system additionally had a collection of non-functional requirements that needed to
be specified. The existing DataTracker application is very slow and depending on where
the application is accessed from geographically it can take multiple minutes to navigate
pages and complete actions. This latency was due to the central database of the existing
application being served from Minneapolis, MN, as well as several design decisions
made in the implementation of the original DataTracker application. The new system
would need to have improved latency regardless of where its users were accessing it
from. Additionally, the existing DataTracker application was poorly documented and
was managed by employees who are no longer with the company. The new system would
need to be more maintainable than the previous tool in its design, ensuring that it could

be managed by new and existing resources.

3.3 Assumptions

The project’s requirements specification [3] additionally included the following

assumptions:

o DataTracker will rely on Trane Technologies credentials for access. And it will

only be available for installation on the Trane Technologies network.
e DataTracker will rely on the Version Control System (VCS) for the following:
o VCS will provide change history for all artifacts.
o VCS will provide artifact revisions.

o VCS will provide correct level of artifact access (Read/Write) for each

user.

e DataTracker will NOT have a dedicated database upon the initial release.
Design decisions will be made to allow for the addition of a global resource for

translations, should the need become apparent in the future.

21

e All clients running DataTracker will utilize a Windows operating system.

22

4. Design

4.1 Architecture Overview

The author identified that the non-functional requirement of improved latency would
be most heavily impacted by the application’s architecture. To address this requirement,
the author led a series of meetings with stakeholders of the DataTracker application. The
goal of these meetings was to make a unified decision on what architecture would be
used in the design of this new application. To assist in the analysis and selection of an
architecture the author illustrated 3 high-level potential solutions. This illustration aided
the team in understanding the context of what was being discussed. The team discussed
the benefits and downsides to these 3 potential architectures, as well as others. After

several meetings the team came to a unanimous decision.

#1 - Web Application

DataTracker - Web Application

Client's Web Browser

DataTracker Database

#2 - Desktop Application (Web Client)

DataTracker Database
(*** Translations Only)

Client's Desktiop Application

DataTracker artifacts:
CSV, XML, and Binary files.

#3 - Desktop Application

Client's Desktiop Application DataTracker artifacts:
CSV, XML, and Binary files.

Figure 5: Proposed Architecture Solutions

23

The project would move forward as a desktop application that leverages the existing
version control system to store all embedded chiller application artifacts, option #3 in
figure 5. However, this decision was made with one caveat: the application would be
written in a way to support the potential separation of the translation entities into a
database. The translation entities comprise most of the shared elements between all
projects in DataTracker’s datastore. This separation is shown in figure 5, proposed
solution #2. This decision was based on the thought that if the number of users grew
substantially, editing translation entities within the existing version control system could
become a bottleneck for the users of the application. Although this was not a large
concern within the Unit Controls organization, as these entities are changed infrequently
enough to where this bottleneck should not take place, steps were taken in the design of
the re-engineered DataTracker to ensure that any future changes in this area would have

mitigated risk.

4.2 Technology Selection

To address the non-functional requirement of maintainability, the author set up several
meetings to select the technologies that would be used to implement the new application.
The author’s intention was to select a technology that would not only satisfy the needs of
the re-engineered application’s functional requirements but ensure that the Unit Controls
team felt comfortable maintaining and improving the application once it was
implemented. After meeting with the team to identify potential technologies, the author
created a Pugh Decision Matrix to rank the technologies based on the criteria discussed

with the team.

24

Design Options - Desktop Application Framework

Criteria Rating (1-10) 1-WPF-C# 2-JavaFX 3-PyQt 4-tkinter 5-Electron
Ease of Implementation - 0
Backend
Ease of Maitenance - Team
Familiarity - Online 10 1 0 1 1 -1
Resources

Ease of Implementation -
Frontend (Ul)
Professional Feel of Ul
Framework
Execution Speed - Resouce

Utilization

Cross platform compatability
(linux, windows, etc)

Ease of adding Database

management in Future
(Translations)

L] s | s

Figure 6: DataTracker - Pugh Decision Matrix — Technology Selection (Truncated)

This style of design analysis allowed for the team to weigh different criteria of each
design choice separately based on each item’s weight, or “rating”. Through this exercise,
the team determined that the PyQT framework would be leveraged in the implementation
of this application. PyQt was chosen for many factors, but the most important being that
the team felt comfortable supporting an application written in Python. Additionally,
PyQT supports Ul files generated by Qt Designer, a drag and drop Ul design tool. This
significantly reduced the amount of time and effort needed to develop the front end of the

application.

4.3 MVC - Design Pattern

The author selected the Model View Controller (MVC) design pattern for the re-
engineered DataTracker application. This was due to the fact that DataTracker would be
a desktop application that heavily leveraged file I/O on the user’s computer. This design
pattern separates the application into 3 main components. The Model component handles
all interactions between the application and the datastore. The Controller component will
include all the functions necessary to manipulate entities in the Model and View
components based on user interactions. The View component will contain all the entities

that make up the user interface of the application.

25

As a result of the feedback from stakeholders in the architecture selection process, the
author wanted to ensure that all data handling was encapsulated in one component of the
application. This design decision would allow for the structure of the datastore to change
in the future with minimized risk to the View and Controller components. This risk is
further mitigated, as only the Model component would require refactoring if the need to

incorporate a database for translation entities arises.

DataTracker Application DataStore
— T
View Controller Model "
Project specific files stored
in the Version Control System.
~—
S TOCIET inler::n"‘lndrllzsw?& the
interactions with the @
Ul files defining all application. ?:at:il;'::naig)
elements of the user - 9
interface. Passes information _ Shared files (Across all projects) stored
between the View and S Sl in the Version Control System
e application memory

from DataStore. ~— N~

S ——
XML and Compressed Binary Amq

Embedded Controls Application
Build Machine

Packages Arlifacts generated by DataTracker in

Embedded Controls Application Build file

Figure 7: Application Overview — MVC Design Pattern

Figure 7 shows the DataTracker application and all three of its internal components, as
well as the primary use case of the application and its datastore. Notice the datastore only
interacts with the Model component of DataTracker and the Embedded Controls
Application Build Machine.

26

4.4 Datastore Design

As described in the section 4.1 Architecture Overview, the datastore for the re-
engineered DataTracker consists of files stored in a version control system. These files
are divided based on their usage: files shared between all embedded chiller products are
stored in one location, while product-specific files are stored alongside the source code
for those applications. This pattern was primarily driven by the ease of access for the
embedded chiller application build machine, as well as providing the ability to create
stable versions of released software products.

Storing these files in the version control system allows for datastore revisions, ensuring
that no additional or unwanted changes impact the artifacts generated for use in these
embedded chiller applications. This has been a pain point for the global Unit Controls
development team as multiple projects often run in parallel on the same embedded chiller
application. With multiple projects modifying the same revision-less database, it is not
uncommon for projects to inherit unwanted or non-applicable changes. These non-
applicable changes necessitate additional validation, and a rebuild of the application

before releasing the software, resulting in project delays and increased costs.

Almost all the files that are used to support the re-engineered DataTracker are stored
in CSV format. The CSV format was chosen for its speed in file I/O operations over
formats like XML. This format allows for all files utilized by this tool to be easily
readable and understandable by humans, as well as allowing for the direct import of these
files into a database should the need for a traditional database arise in the future.

The design of the datastore was significantly impacted by the existence of the original
DataTracker’s database, which contained almost 20 years’ worth of data. The new
datastore would need to support this existing data without impacting the generated
artifacts used by the embedded chiller applications. This meant that many existing
patterns within the original database had to be maintained in the new format. Changes

were based on identifying unused or poorly formatted entities within the existing

27

database, with the goal of simplifying the datastore to only contain the data needed to

generate the artifacts consumed by the embedded chiller applications.

One example of this redesign relates to the Diagnostic entity shown in figure 8. In the
original DataTracker database, this entity consisted of four separate tables and a
collection of 38 total attributes across those tables. By identifying the required attributes
for the re-engineered DataTracker application the author simplified this into one entity
with eight attributes. Most of the attributes from the existing DataTracker’s diagnostic

entities were redundant or no longer used.

Throughout the project the author ensured that any effort to simplify and re-design
these entities was evaluated by DataTracker’s stakeholders at the beginning and end of
each sprint. The outcome of this redesign is illustrated in figure 8, which is extracted
from the DataTracker software design specification [4]. The new datastore includes only
16 separate entities, a significant reduction from the original 77 tables. Much of this
simplification was a result of the original DataTracker having to support user access, user
roles, entity locking, and additional functionalities to support 3 generations of embedded
controller hardware. In the re-engineered DataTracker much of the user and project
identification functionality could be eliminated, as it is provided by the existing version
control system that stores this data. Additionally, only the current and future generations
of controller hardware would be supported by the re-engineered DataTracker, decreasing
the number of features that the application needs to support.

28

s e ——

URI URI —hh DeviceConfiglD ——t MessagelD

PO
-
VariableName DiagnosticName DeviceName FormatlD
SystemName e SystemName BO— LLIDID BO— DisplayTextlD
Sequence Sequence MessagelD
AttributelD DiaglD DeviceReferenceNumber
Description Description MinSWRevison
FormatName
MessagelD MessagelD MinHWRevision
.) MaxTextLength
—0] DataTypeName B isReviewed
ReadlLevel =
[oepores |
DisplayText
\Write Level L DeviceConfiglD
DisplayTextiD
P [em
SystemName bt LanguagelD
(Pointkeyname) DefaultBindingValue
ComponentiD DisplayText
{PointType)

Devicelndex
5 AbbreviatedText
(PointUpdatelnterval)

o —=
(isPointMultistate) umaisequences
MessagelD LLIDType -AngLagel:

(PointPriority)
LLIDID e LanguageMame
PointArrayStrin:
{ 4 o LLIDName
isDataRecorder fati
Vessad bo—|
Word -
MessageGroup
Abbreviation

MessagelD
ScalarUnit_BaseType IsTranslated
| E— DataTypeName

Description —oH DataTypeName H e DataTypeName
BACnetiD Description Enumindesx
MessagelD
EnumindexName
DataTypeName Description
Unit
System
D o
BACnetlD
isBaseUnit

Figure 8: DataTracker - Datastore Entity Relationship Diagram

Much consideration was given to the relationship between the entities shown in
figure 8. The four main entities illustrated: Variables, Diagnostics, Devices, and
Translations, are positioned at the top of the diagram. All supporting entities are shown
with their respective relationship to these main entities.

Most notably, the Translation entity is utilized by almost all entities in this
datastore. This relationship is necessary to provide embedded chiller control application

clients, such as a physical display and technician tool, with the proper text associated

29

with each entity. Variables, Diagnostics, and Devices are entirely chiller product specific.
Translations and their supporting entities, however, are shared between all chiller

applications.

By abstracting the selected translated texts to a Message ID for all entities to
reference, this design enables flexibility for future redesigns of this area of the datastore.
Should the shared Translation files in the version control system become a bottleneck for
DataTracker’s users, this data could be separated into another tool or datastore all
together. Depending on how this separation is designed and implemented, product-
specific entities could reference a Message ID in any global resource. This approach
limits the amount of risk and necessary changes required for any re-design surrounding

all other entities in the re-engineered datastore.

4.5 Ul Design

The re-engineered application’s Ul design was heavily influenced by the original
DataTracker application. This was desirable as it would allow the users of DataTracker
to leverage their familiarity with the existing application. This in theory would limit the
amount of re-training necessary for users to work with the re-engineered DataTracker
successfully.

This decision also enabled the rapid development of the frontend of the application.
The author was able to baseline almost all pages of the Ul within the first sprint. This
allowed for the refinement of the design of the Ul over the course of the project. This
refinement was driven by stakeholders’ feedback given in the sprint planning and sprint

retrospective meetings held at the beginning and end of each sprint.

An example of this refinement is the Ul design of the Translations page. One of the
user pain points targeted in this re-design was the confusion generated by the format of
the “Message is” and “Message Included In” group boxes shown in figure 9, bordered in

blue.

30

The purpose of the “Message Included In” group box in the original DataTracker was
to show what entities were using a Translation across all projects. Due to how this was
formatted in the Ul, the user would have to scroll through the entirety of the list to see all
the entity contexts where a translation was used. Additionally, due to this group box
resembling other group boxes in the application, users would often believe that they
could edit these fields when they were purely informational. Through continuous
feedback from DataTracker’s stakeholders over the course of this project, areas like this
could easily be discussed and improved upon. In the re-engineered application, this area
was re-designed as the “Used in Current Project (Status)” group box. In working with the
project’s stakeholders, the author found that it would be more useful to show this
information as project-specific, as that is the context that most users are working from.
The layout of this area was also improved to show all entity contexts, to make this
information more readable without user intervention (scrolling). The format of the text in
this area was also changed to show that it was informational only and not editable. This
was accomplished by greying and italicizing the text for each category and listing

“(Status)” in the name of the group box.

The purpose of the “Message Included In” group box was to select translations for
exporting to a translation service utilized by the Unit Controls team to provide translated
text strings in 27 languages. This area in the original DataTracker had 19 categories
leading to user confusion, and common misuse. The author and stakeholders agreed that

this could be significantly simplified to 2 categories: Translate and Do Not Translate.

31

L
i

JGHHEEE

st

i
i
HEHL

]
i
AHHHHEH
I IFSEAEESL 4T

4
]
!
|
|
!
i
8
?
i

Figure 9: Project Translations Page - Before and After— Translation Context and Translation Is Translated

Although this is only one example of improvement, almost every page of
DataTracker’s Ul was re-designed to some degree. Several pages were added and
removed to avoid user confusion and misuse. This example is used to highlight the
process used for Ul design refinement. These design discussions would typically take
place during the Sprint planning meeting before each sprint, including the author and
stakeholders analyzing the pages of the original tool and identifying common user pain
points. These changes would then be executed over the course of the associated sprint
and demonstrated in the Sprint Retrospective meeting to ensure stakeholder acceptance of
the Ul design. The before and after for all of the application’s pages can be seen in the

appendix of this manuscript.

4.6 Reports

The re-engineered DataTracker application supports report generation for many of
its entities into XLSX format, Microsoft Excel’s current XML based file format that is
easily readable by humans. Alike to the process followed in the Ul re-design, reports

were evaluated in Sprint Planning and Sprint Retrospective meetings. Figure 10 shows

32

the before and after of the Variable Report from the same product. In this figure the
columns differ in order, name and content. The columns were re-organized and modified
to more closely reflect how these reports are utilized by DataTracker’s stakeholders.
Examples of this redesign include removing duplicate or unused columns, modifying

column names to more accurately describe the column’s content, and moving the most

utilized information to the left-most position in the report.

Product Name - Symbiofi0_HTWR-ETO
ER 6.t Part number - 62000845

UNICODE_TEXT SEQUENCE_NAME VARIABLE_NAME URI ATTRIBUTE DESCRIPTION
Front Panel Hot Water Command Front Panel Hot Water Command CpetyCirIFmiPriHotWirCmd Front Panel Hot Water Command

0
ce CpetyCiri1StagSeq/ 1 ed, Gircut
Coolng Design Deta Temperature(Waterside) CpetyCiri1CoolingDsgnDetaTmpwwin 2 ing Design re(Waterside)
3 aterside)

1
Staging Sequence 1
1
1 Heating Design Deta Temp(Waterside) CpetyCiriiHeatingDsgnDeRaTmpWwir,

Cooling Design Detta Temp (Waterside)
Heating Design Delta Temp (Waterside)

English Display Text Varisble Name

Circuits
Number of Compressors Circuit 1 Number Of Compressors Circuit

Figure 10: Variable Report Before and After

4.7 Security

The re-engineered DataTracker’s system security will be provided through the Trane
Technologies network and the existing version control system. DataTracker is a data-
centric application, and from the security perspective the datastore and application source

code is what needs protection from potential attackers.

To gain access to the datastore an employee at Trane Technologies must first request
access to the network location in which the version control system lives. That employee
must also request access to the specific repository in which this data is stored through a
controlled process with multiple levels of verification that requires manager approval.
The DataTracker application’s installer will also live on the version control system and

will require a similar degree of access to install and to view source code.

The version control system also supports various levels of access for groups of users.
This would allow employees that are not Unit Controls software engineers to view the

datastore and install the DataTracker application but not modify the data or the

33

application source code. Additionally, for artifacts that are shared among all applications,
the group of users that are allowed to modify these entities could be limited to only

specific individuals if necessary.

This level of security is acceptable for this application and most small in-house
applications at Trane Technologies, as this application and its datastore will only be

distributed to Trane Technologies personnel.

34

5. Implementation

As mentioned in section 4.2 Technology Selection, the PyQT framework was selected
for the implementation of this application. PyQt is a Python wrapper for the widely used
Qt C++ framework. The Qt framework is known for creating applications that run on
multiple operating systems and is used across many different industries. Qt is most
notably used to build out Tableau’s user interface, as well as the UX for automotive

applications such as Spotify’s “car thing” [1].

A simple example of the style of programming associated with PyQt can be seen in
figure 11, captured in a tutorial from the Python documentation website, Real Python [2].
In this example we can see the Python code used to generate the simple example Ul of

QFormLayout.

Python

f_layout.py

"""Form layout example.""" Q F orm Layout

import sys

from PyQt6.QtwWidgets import (
QApplication,
QFormLayout,

Name: “

QLineEdit,
Quidget,

) Age:

app = QApplication([])

window = QWidget()

window. setWindowTitle("QFormLayout”) Job.
.

layout = QFormLayout()
layout.addRow("Name: ", QLineEdit())
layout.addRow("Age:", QLineEdit()) .
layout.addRow("Job: ", QLineEdit()) HObbleS:
layout.addRow("Hobbies: ", QLineEdit())
window.setLayout(layout)

window. show()
sys.exit(app.exec())

Figure 11: Simple PyQT Example - Real Python

PyQt also supports the use of a drag and drop Ul design tool, called Qt Designer. The
Qt Designer tool was leveraged in the design and implementation of the re-engineered
DataTracker’s frontend. In figure 12, the main window for the “Translated Text” page of
DataTracker is shown. Within figure 12, the QPlainTextEdit messagelD is selected. The

35

files generated by Qt designer are saved with the ui file extension and can be loaded

directly into a PyQt application.

=
3 3 3 GEE @S2 [
DeB 0 EERE W E T =
Widget Bax g8 % EnMainWindow—translahedTexl.ui | = || = | Property Editor g x
|:.te|_ | te Here |:'te| H} . /n-,
i Layouts ~ - - -
sage messagelD : QPlainTextEdit
% Vertical Layout _MBS e E - E .
1 P
Uu] Horizontal Layout [Translated Text Format ~| roperty
I | | w
g;j Grid Layout Mranslated Text Language v -}’f-f-f-f-fﬂ-fd abjectName
a3 [i 1
43 Form Layout Display Text | | ~
b Spacers L enabled
Horizontal Spacer Search A Filter | | Clear Filter aeometrv he
P ppl
< >
g Vertical Spacer
w Buttons Object Inspector g ®
9] Push Button Filter
@ Tool Button Object Class ™
@ Radio Button label Qlabel
i Check Box label_2 Qlabel
label_3 Glabel
© comman. Button label 4 Olabel
Dialog Button Box languageSelection QComb
» [temn View...el-Based) messagelD QPlainT
List View Submit Cancel | | ~ [l horizontalLayout 6 [J}] QH
& . I ! cancelTranslatedText QPushB
B Tree View horizontalSpacer 2 Spacer v
% Table View v = (I ST ')"

Figure 12: Qt Designer - Translated Texts Page

Within the re-engineered DataTracker application the QPlainTextEdit, shown in
figure 12 can be directly referenced within the application by its name messagelD. This
loading of the translatedText ui file can be seen in figure 13. After the file has been
loaded and associated with an instance of the TranslatedTextController class, the PyQt
application can then find any specific element in that ui file using the
QMainWindow::findChild() operation. In figure 13 this is shown by instantiating the
class variable messagelD with the QPlainTextEdit child element of the translatedText ui

file, messagelD.

36

messagelD: QPlainText

f __dinit_ (self, dataTrackerController, translationController):
super().__init_ ()

uic.loadUi('views/translatedText.ui’

self.setWindowTitle('Modify

self.messagelD: QPlainTextEdi

Figure 13: Loading ui elements from translated Text.ui

Utilizing the PyQt framework with Qt Designer lent itself well to the Model View
Controller (MVC) design pattern as the Ul files generated by Qt Designer encapsulated
the View component of the application. The controllers with in the re-engineered
DataTracker would load the associated Ul files and store the necessary logic to populate
the Ul elements with data, as well as handling user interactions with the View
component. The Controllers would then load and save modified data through the Model
component of the application, which handles all the application’s interactions with the

datastore.

37

6. Testing

As is typical to the Agile approach, testing took place as part of each individual sprint.
The author performed all testing throughout this project, though demonstrations of the
tool’s functionality to DataTracker’s stakeholders occurred at the beginning and end of
each sprint. The author utilized a grey box testing style, as the implementation was
known to the author, but most tests were created from the user perspective. Each user

story was tested individually as test cases were generated for each sprint.

The test cases generated in each sprint were all formatted into one document for each
sprint. Each sprint testing document included an overview as well as individual tabs for

each user story tested in that sprint.

Table 2 shows the sprint 3 test document’s overview tab. In every sprint testing
document, the overview tab was formatted to include the requirement and task number,
tab name, and description columns with a row for each user story associated with the
sprint. The requirement and task number column will reference the user story index, the
user story, and the sprint tasks associated with that user story from the sprint task

document created at the beginning of each sprint.

The first column of the first row in Table 2 shows user story 18, “A User can Add
Devices on each Project”, and the sprint tasks associated with that user story, tasks 1, 2, 3
and 4. The second column indicates where the test cases for each user story are located in
the test document, in this case that is the “18. Add Devices” tab. The third column

describes at a high level what was tested within that area of the document.

38

q print 3 sprint task document
18. A User can Add Devices on each Project
Tasks: [1-4]
19. A User can Modify Devices on each Project
Tasks: [5-6]
20. A User can Delete Devices on each Project
Tasks: [7-9]

24. A User can Add Enumerations on each Project
Tasks: [16 - 18]

25. A User can Modify Enumerations on each project
Tasks: [19-21]

26. A User can Delete Enumerations on each Project.
Tasks: [22-24]

30. A User can Add an Abbreviation (Shared amoung all projects)
Tasks: [10 - 12]

32. A User can Delete Abbreviations (Shared amoung all projects)
Tasks: [13-15]

Sprint 3 Test Overview

Description
Test Ul, Test generate URI, Test Select Display Text, Test Input
Validation, Test datastore updates

"Sprint3_TestResults" Tab Name

18. Add Devices

19. Modify Devices Test Ul, Test Input Validation, Test datastore updates

20. Delete Devices Test Ul, Test datastore updates

Test Ul, Test generate URI, Test Select Display Text, Test Input

24. Add Enumerations
Validation, Test datastore updates

25. Modify Enumerations Test Ul, Test Input Validation, Test datastore updates

26. Delete Enumerations Test Ul, Test datastore updates

Test U, Test generate URI, Test Select Display Text, Test Input

30. Add Abbreviations Validation, Test datastore updates

Test Ul, Test datastore updates
32. Delete Abbreviations a

Table 2: Sprint 3 Test Overview

As mentioned above, each user story has its own specific test cases. Each test case is

referenced by its own unique identifier. Table 3 shows test case “18.01”, indicating that it

is test case 1 for user story 18. The test document page for user story 18 contains 23

separate test cases, however the same format shown in table 3 for test case “18.01” is

shared across all test cases developed during this project.

festCase# m“ ExpeCted OUtpUt
"

18.01

Devices Page - Ul - Default
State (Viewing Entites)

- No Device Form fields should
be editable.

- Buttons: Select Display Text,
Add Index, Delete Index,
Submitand Cancel should be
hidden.

Navigate to Devices Page:
1. Launch the DataTracker
Application
2. Selectthe "Devices" Tab

from the main window - Buttons: Add, Edit, Delete,

Device Report, Copy Device
From Product should be visible
and enabled.

Table 3: Test Case 18.01 - Device Page - Ul

39

Each test case is formatted with a unique identifier, a description of the scenario being
tested, the user input necessary to execute the functionality under test, the expected
output, the results which include a capture of what was being evaluated during the test,
and finally an optional notes column to assist any future test engineer in evaluating the
results of the test case. Though the results and notes columns are not shown in table 3,

they are present for every test case in the appropriate sprint testing document.

The total number of development test cases generated throughout this project was 319,
meaning that on average each user story had approximately 7.6 test cases created in

development alongside the functionality implemented in that sprint.

The number of development test cases generated for each user story heavily depended
on the complexity of the user story added. User story 20, “A User can delete Devices on
each Project” for example only had three test cases. One test case ensured that a user
could interact with DataTracker’s Ul as expected, allowing for the options of device
deletion, or the cancellation of that deletion. The second test was used to ensure that the
cancelation of a deletion would not impact the datastore. And the third test involved
analyzing the artifacts impacted in the datastore to ensure that the deletion of the device
was properly executed. As mentioned above, user story 18, “A User can Add Devices on
each Project”, had 23 separate development test cases evaluating the Ul, input validation,

and datastore modification.

The original DataTracker application had a significant backlog of defects in the
Unit Controls team’s defect tracking tool. These defects capture known bugs or issues in
the existing application as well as potential improvements. A subset of these defects can
be seen in figure 14. Each of these defects were evaluated during the design and
implementation of the re-engineered DataTracker. Some examples of this include Defect
243187 relating to the tool’s latency and Defect 340750 indicating that the input
validation in the existing tool does not prevent multiple variables to be created with the
same unique identifier. As mentioned in section 7.1 Results of Re-engineering, the
existing tools latency was addressed in the architecture design of the re-engineered
DataTracker, satisfying the needs of Defect 243187. Defect 340750 was addressed in

40

sprint 2 of this project via the requirements “A User can add Variables on each project”,
and “A user can Modify existing Variables on each project”. During the sprint planning
phase of sprint 2 the author and stakeholders discussed the requirements selected for that
sprint and designed the input validation required to satisfy Defect 340750 adding this

information to the requirements specification [3].

(00f35) Query 03] 7 DataTracker All Defects =
Show items containing: where = State is not one of "Verified" +

10 Synopsis State Responsibility Functional Group Defect Type
340751 Create a way automate generation of the files required to go out for translations, so anyone can do it. In Review Defect Administrator In-House Suggestion
340750 DataTracker allows duplicate variables with the same System/Sequence/Attribute to be created and differsnt URTS, but In Review Defect Administrator Error (In Phase)

only one of them will actually show up on Evox.
340749 Improve the 'Database History' feature of DataTracker, see details. In Review Defect Administrator In-House Suggestion
340748 If the english text is missing/deleted for a Message, the Variables tab referring ta it looks blank and no longer shows even In Review Defect Administrator Error (In Phase)

the Message ID (though it is still there in the VariablesObix.xml file)
327175 Do not allow the long dash character =" to be entered. Autocorrect to ™~ instead. In Review Defect Administrator In-House Suggestion
319451 Save reports in xlsx format instead of .xis In Review Defect Administrator In-House Suggestion

1450 Remove UNICODE_TEXT1 column from Variable Report In Review Defect Administrator In-House Suggestion

301545 Add a “button” in DataTracker to generate only English Translation files In Review Defect Administrator In-House Suggestion
260745 Error on Symbio800_CMAF, tab Variables, Generate Variable Report In Review Defect Administrator Defect (Development)
243187 Tool reaction time very very long In Review Defect Administrator Field Reported Defect
228010 DataTracker unhandled exception adding MS1 point in BACNet tab, but entry take in account In Review Defect Administrator Defect (Development)
181075 Allow user to adjust major and minor release when creating a build In Review Defect Administrator In-House Suggestion
163124 Recommend renaming the "Copy/Move Messages” button on the Translations tab, to make it clearer these are shared. & Open 4, Kilburg, Austin (irgfdn) In-House Suggestion
162882 Indicator in DataTrcker to indicate variables/diagnostics/transiations shared with other applications In Review Defect Administrator Field Suggestion
1626871 Add a featurs to DataTracker to know which products use a given Message ID. In Review Defect Administrator In-House Suggestion
144260 Adding refObjectSpec value for diagnostic reports In Review Defect Administrator In-House Suggestion
140695 It's difficult to find a variable or diagnostic from “Paint” list. In Review Defect Administrator In-House Suggestion
132104 When generating language files, order them by the Message ID within the file. In Review Defect Administrator In-House Suggestion
123095 In cases, the EVOX name and BACnet name should be different. When attempting to change the BACnet name, the EVOX In Review Defect Administrator In-House Suggestion

name will be udpated and vice versa. Would like the ability to change the BACnet to a different text string but keep the

EVOX name the same
118667 Cleanup the logic for exporting translations to make sure the same string isn't included in multiple files and/or simplify the | In Review Defect Administrator In-House Suggestion

rocess
118664 f&dd support for exporting translations on multiple products into a single export. In Review 4 Defect Administrator In-House Suggestion
110269 '.xhen duw;ghan Export for language translations, single space " " characters are exported into the UNICODE_TEXT cells of | In Review Defect Administrator Defect (Development)
110267 FJ:!:%::R; :e;lqhes when manually adding text in languages with complex characters. In Review Defect Administrator Defect (Development)

Figure 14: Original DataTracker Defect Backlog

It is important to note that not all defects from the original DataTracker would be

applicable to the re-engineered DataTracker. For example, Defect 118664 captures a
request for exporting translations into a single file. This functionality is expected to be
implemented in phase 2 of the DataTracker re-engineering project. Another example,
Defect 140695 captures the difficulty that users encounter when attempting to find a
point’s associated variable. This defect is not applicable to the re-engineered
DataTracker as points will not be supported in the tool. Points are created using a
separate tool on the newest embedded application controller platform. These examples
are highlighted to show that not all defects from the original tool are applicable to the

new system.

41

From the backlog of 44 defects against the existing DataTracker application, 11 were
related to functionality that will not be supported in the re-engineered DataTracker. Ten
defects are applicable to functionality that will be added in phase 2 of the re-engineering
project. The remaining 23 defects were applicable to the functionality implemented in
phase 1 of the re-engineering project defined in this manuscript. All 23 applicable defects
were tested against the re-engineered DataTracker as part of development to ensure that

every documented issue within the existing DataTracker was addressed.

After the initial development of the re-engineered DataTracker had been completed,
the author performed integration testing. Integration testing of the re-engineered
DataTracker included performing exploratory testing, and regression testing. Exploratory
testing involved following typical use cases that involve adding, modifying or deleting
many entities across the DataTracker application. An example of this is following the
necessary steps to add the Variables, Diagnostics, Devices, and Translations required for
an embedded chiller application to contain the information necessary to support a new
device. This required verifying that the Ul was updated successfully from the datastore as
entities were updated, and that the tool behaved as expected when exercising many of its

functionalities in more typical use cases.

Regression testing included re-evaluating the 319 developer test cases generated
during development, as well as re-evaluating the backlog of defects written against the
existing DataTracker application. The goal of this testing was to ensure that there was no
unintended behavior caused by the addition of functionality in later sprints, ensuring that
the tool behaved the same way that it had during the stage in development when that

functionality was originally added.

Through integration testing, the author could be confident that the re-engineered
DataTracker system was functioning correctly after each feature of the application had
been developed and tested individually. Through this style of testing the author
discovered a handful of defects that were introduced in development. All defects
discovered in this effort were recorded in an integration testing document that captured a

42

unique identifier, area discovered, defect description, solution notes, severity, state, and

the status of verification for the defect’s solution.

Defect Area
Discovered

Defect Description Solution Notes

State

Verified

When sliding the splitter on the
devices page, you can getinto a
INTOO1 Devices / Ul state where the app grows
beyond the screen size by
dragging it to the left.

Changed the size policy of the
"DevicelndividualWidget" to Preferred
matching all other tab implementations
(Variables / Diagnostics / Translations)

Medium Fixed

Verified

Figure 15: Integration Testing Defect INT001

An example of one of these defects, Defect INTOO1, can be seen in figure 15. All

defects captured during integration testing utilized the prefix of INT, short for integration,

to avoid any confusion with the defect numbers utilized by the Unit Controls Team’s

defect tracking tool. Defect INTOO1 captures a defect in which a Ul element when

dragged or manipulated by a user, unexpectedly expands the main window of the

application. Defect INTO01 was found through the regression testing performed on the

developer test cases created during the development of sprint 1. The author was able to

correct this issue as well as many others that would likely have only been discovered

through this style of testing.

All test cases identified during development and integration testing were compiled into

a single test document. This document encapsulates the test suite for the re-engineered

DataTracker application, serving as a comprehensive resource for future testing [5].

43

7. Conclusion

This project has been a fantastic opportunity to apply the knowledge that the author
has gained through the Master of Software Engineering program at the University of
Wisconsin — La Crosse. The author was able to lead a software development project

utilizing the Agile approach from start to finish with a real software development team.

This project allowed the author to work through the challenges of understanding a
large existing system, and re-engineering that system based on the needs of a real-world
customer. The re-engineered DataTracker will be developed further in phase 2 of the

project before its eventual deployment and replacement of the existing DataTracker.

7.1 Result of Re-engineering

It can be said that this initial phase of the DataTracker re-engineering project was a
success. Almost all base functionalities of the original DataTracker application have been
captured, along with improvements to tool latency, maintainability, and usability.
Additionally, this effort enabled the team to address multiple user pain points observed

when using the original tool.

Through the redesign of the application’s architecture, the latency that was
experienced with the original DataTracker has been significantly improved. By
leveraging the existing version control system, and not an outdated, cluttered, Oracle
database served out of one location, the latency seen in the original tool will not be
experienced. In other words, it does not matter where the users of the application are
located geographically, the re-engineered DataTracker will operate as quickly as the
user’s computer allows. This is because the new application utilizes file 1/0 with locally
checked out files from the existing version control system. An example of this improved
latency can be seen when accessing the translation page of both DataTracker
applications. This page populates almost instantaneously in the re-engineered application,
whereas in the past, depending on the user’s geographic location, this could take upwards

of 5 minutes.

44

This project also enabled an improvement to maintainability through a
collaborative design process, and the use of a well-known design pattern. Using the Agile
approach to manage this project enabled the ongoing collaboration between the author
and DataTracker’s stakeholders. This allowed multiple members of the Unit Controls
team to be directly involved in the design and development of the re-engineered
application, fostering a greater understanding of the entities managed by DataTracker

and their relationships.

By utilizing the Model View Controller (MVC) design pattern, developers can
more accurately discern the location of specific functionality within the re-engineered
application. The use of this design pattern also enables application improvements or
modifications to specific components of the application, with mitigated risk to other

areas.

Beyond just the implementation of the DataTracker application, the datastore
component of the overall DataTracker system was significantly simplified. As the
original system matured, a large amount of its functionalities were no longer needed by
its users. Most of these functionalities were implemented to support older controller
hardware generations in which the architecture of the embedded chiller application build
machine was significantly different. The existing DataTracker application also supported
user role and user access functionality, which in the re-engineered DataTracker is
provided by the existing version control system. Through this design decision a
significant amount of the existing datastore could be simplified or eliminated. As
mentioned in section 4.4 Datastore Design, this allowed the re-engineered datastore to

reduce the number of entities required from 77 to 16.

Maintainability of the re-engineered DataTracker should also see an improvement
through the documentation created as part of this project. As mentioned in section 1.1
Background, the original DataTracker application had no documentation pertaining to
the design or implementation of the tool. From the requirement and testing documents, as
well as the many diagrams and illustrations the author has created, the author plans to

maintain a user manual for the re-engineered DataTracker.

45

This re-engineering effort also targeted an improvement to the usability of
DataTracker. Many of these design choices can be seen in the Appendix of this
manuscript. An obvious example of this improvement is the addition of search

functionality to all main entities in the application.

With the team addressing the non-functional requirements, functional requirements,
and all applicable defects in the existing DataTracker application’s backlog, the re-
engineering project was an overall success. The new DataTracker included all necessary
base functionality of the existing tool while improving upon its latency, maintainability,
usability, and known issues or pain points documented over the original tools almost 20-

year lifespan.

7.2 Challenges

Many challenges were faced during the re-engineering of DataTracker. Several of
these challenges include the lack of documentation and ownership of the existing
DataTracker, the author’s lack of familiarity with the PyQt framework and Qt Designer,
and ensuring that the application produced satisfied the needs of DataTracker’s

stakeholders while keeping the project on schedule.

The lack of documentation and ownership of the existing DataTracker application
made it difficult to identify the details necessary to design the re-engineered solution
relating to each user story. The author addressed this lack of information by investigating
the existing implementation related to the targeted user stories of each sprint prior to the
requirement analysis phase. The author would identify the existing entities and their
relationships in the original DataTracker by evaluating the implementation of the tool
and its related Oracle database. The author would additionally identify how to output the
necessary test data from the original database to ensure that the functionality added in

that sprint could be adequately tested.

This analysis allowed the author and stakeholders to discuss the current

implementation in terms of what needed to be supported and what improvements could

46

be made. As mentioned in section 2.2 Model Used — Agile, the Agile approach was
selected for this project to mitigate this lack of well-defined requirements early in the
project. This approach allowed for the author and stakeholders to refine the functional

requirements as more information was gathered in each sprint.

Another challenge faced during this project was the author’s lack of familiarity
with PyQt applications and the Qt Designer tool. In section 4.2 Technology Selection, the
author and stakeholders selected the PyQt framework, even though the author had no
prior experience implementing a desktop application with these technologies. The author
created several simple experimental applications in PyQt with Qt Designer to further
familiarize themselves with some of the nuances of the framework and assist in the
selection of the design pattern that would be utilized by the re-engineered DataTracker.
This challenge was also addressed through the author’s research of tutorials and the
framework’s documentation to better understand the abilities and shortcomings of writing
software using these tools. As the project progressed, the author gained a stronger
understanding of the framework and Ul design tool. This led to several areas of the
application being re-written. The most notable example of this is the replacement of
many of the form field’s text entry elements being updated to use a more appropriate type

in Qt Designer, to prevent unintended Ul behavior.

Part of the effort necessary to ensure that the application met the needs of
DataTracker’s stakeholders was documenting and addressing feedback given during the
demonstrations of the functionality added during each sprint. Deciding whether to take on
all feedback during the current sprint or to document the feedback for phase 2 of this
project was a challenge. The author worked with the stakeholders to prioritize and
evaluate the time and complexity needed to address the feedback given during these
demonstrations. Due to the aggressive timeline associated with this project, the author
ensured that the project schedule could handle these changes. Through this effort, much
of the feedback was addressed as part of this project, however lower priority changes
were captured in a backlog of potential improvements gathered for phase 2 of this

project. By evaluating what feedback was most important to DataTracker’s stakeholders,

47

and addressing that feedback during this project, the author ensured that the customer

would be satisfied with the end product.

A challenge was also seen early in the project when the author decided to include
approximately 15 software professionals from the Unit Controls team in the architecture
and technology selection process. Although it was important to have buy-in from the
extended Unit Controls team for these discussions, the author felt that having this many
stakeholders in each sprint planning and retrospective meeting would slow the progress
of the project. The author worked with the extended group of stakeholders to identify a
smaller team of representatives to take part in the sprint planning and retrospective
meetings associated with each sprint of the project. This allowed for these meetings to

operate in a more timely manner ensuring that the project remained on schedule.

7.3 Future Work

Due to the size of the original DataTracker application, the re-engineering effort
has been divided into multiple phases. Phase 1, the project described in this manuscript,
would capture as much of the functionality of the original application as possible,
targeting the most important functionality first. Phase 2 would capture added
improvements, and any remaining functionality not addressed in the first phase of the

overall re-engineering effort.

Some of the requirements to be addressed in phase 2 of the DataTracker re-
engineering effort include adding, modifying, and deleting LLID profiles, Scalar Unit
Types, and Operating modes. These areas were identified for phase 2 because they are
areas of low change in the datastore and are very infrequently updated within the current

DataTracker system.

Additional phase 2 requirements capture the functionality of exporting
translations into an Excel format to be utilized by a translation company, and the import
of those updated files back into the DataTracker application in batches. This was targeted

for phase 2 of this project as the author and stakeholders agreed that a larger discussion

48

related to the design of this feature would need to take place with the group of extended
stakeholders before this could be implemented. Due to the importance of this feature’s
design, it will be the primary focus of phase 2. The scope of this feature was significant
enough that the author and stakeholders felt that it was not possible to complete within

the timeline of phase 1 of this project.

In phase 2 of this re-engineering effort the author will work with a team of 2
software engineering interns to implement the functionality mentioned above over the
next calendar year. Phase 2 of this effort will operate in a similar method to phase 1,
again following the Agile approach. Additionally, the author will work with
DataTracker’s stakeholders to solidify a deployment strategy that minimizes disruption

from the user perspective.

7.5 Deployment

7.5.1 Deployment Strategy

The strategy for deployment of the re-engineered DataTracker will heavily
depend on the translation and display text entities implemented in DataTracker’s
datastore. As shown in figure 8 in section 4.4 Datastore Design, the translation entity has
a relationship with most entities in the datastore. The translation entity is also shared
across all embedded chiller products supported by the DataTracker system. This would
make an incremental deployment, where each embedded chiller project would slowly
begin using the new DataTracker system unlikely as the translation entity’s primary key,
message 1D, would need to remain unique across both the existing Oracle database and

the new version controlled datastore.

There are ways to get around this issue, such as ensuring that translations created
in the re-engineered system start at an offset providing separation between the two
datastores and ensuring that the same message ID is not referencing multiple translation

entities once that data is imported into the re-engineered system. This of course would

49

add more complexity to this transition, including the potential for duplicated translated

text. A similar strategy would need to be applied to the display text entity as well.

It is for these reasons that a complete transition from the existing DataTracker
system to the re-engineered system during a scheduled deployment period is far more
likely. During the development of this project the author has documented the necessary
interactions with the existing DataTracker database to export and format all files needed
by the re-engineered DataTracker. These procedures would need to take place for each
project that the re-engineered solution would need to support. Luckily, the list of
approximately 20 embedded chiller applications can be prioritized based on which
projects are actually active, decreasing the number of times this procedure would need to
be followed for the initial deployment of this tool. The author and team could then
incrementally generate the necessary files for the inactive projects after the initial

deployment of the re-engineered system has taken place.

The original DataTracker will remain active for older controller hardware
generations only. As mentioned in section 4.4 Datastore Design, the original application
will support functionalities needed by the older unique build machines for these products.
The original DataTracker will remain active until the Unit Controls team decides to no
longer support service pack releases for these products. No active development or
improvement projects currently take place on these products; only necessary fixes to
correct issues reported from the field are made, meaning that the datastore will be

changed infrequently.

7.5.2 Application Deployment Method

The method of deploying the re-engineered DataTracker application could be
accomplished using Pyinstaller and Inno Setup. Pylnstaller is a tool used to convert
Python applications and their dependencies into one standalone executable. Utilizing
Pyinstaller would allow for users of the application to avoid installing a specific Python
interpreter or the modules the re-engineered DataTracker application depends on. This

also ensures that all users are using the same Python interpreter and version of the

50

modules utilized by the application. Inno Setup is a script-driven installation system that
is used to create Windows installers. Inno Setup supports a customizable setup Ul, an

application installer, and an application uninstaller if properly configured.

Using Pylnstaller to create the DataTracker executable and Inno Setup to create
the installer would assist in the distribution of not only the executable, but also the
necessary configuration files used by DataTracker. These configuration files are
primarily used to store the selected theme for DataTracker’s Ul as well as the paths to the

locally checked out files from the version controlled datastore.

Updating the application as new revisions are released could be managed in
several ways. The most likely way at the time of writing this manuscript would be to
potentially leverage an update mechanism within the DataTracker application that will
check for an updated installation file in a location on the Trane Technologies network. If
the installation file is newer than the currently installed version, then an automatic update
would be performed. Should the installation file location not be available then the

software would continue to operate as though no updated installation file existed.

51

8. Bibliography

[1] “Software Development Resources | Qt,” www.qt.io, 2017.
https://www.qt.io/resources/qt?content-type=Success+Story (accessed Mar. 02,
2025).

[2] R. Python, “Python and PyQt: Building a GUI Desktop Calculator — Real
Python,” realpython.com. https://realpython.com/python-pyqt-gui-calculator/

[3] Miller, Graham. “Software Requirements Document for DataTracker”, Version
1.1, April 2025.

[4] Miller, Graham. “Software Design Document for DataTracker”, Version 1.1,
April 2025.

[5] Miller, Graham. “Software Test Suite for DataTracker”, Version 1.1, April 2025.

52

https://realpython.com/python-pyqt-gui-calculator/

Appendix: GUI Before and After

Fle Tock Hep

User - advpay

Frochuct Hame. Syriioll) HTWRETD ~ B Part Mamber (2000734 i Tracker Adh
D v story

S Fast Number 6200078 Dutsbase Remson v| Lan B G

Frocuc S IN_DEVELOPMENT Revion Descretion

Erabie Froduct pdaten [Cmate Buld B

Vanstles Diagrosics Devoes Tardaiors Ports

v v setuie o [0010

84S Commuricaton Safis
BAS1BASConm tatus/

[EAS Cammrcaton S

Oispiay Text

1 Lost 845 Gommunicaton sshs enu.. | o

1 0003 | Hewng Desgn Deka Tempersesiin Display Test
1 0004 Dffeersits Sa

1 005 Dferrtaito Sop
1 D05 | St To St Defey Teme Fomat Lerge 00 40 ASCI Graracier S0
1 0007 | Varible Evaporator Waber Fow Carge... Mty Dusie
' 000 | Marusl Modkdsion Gen
3 [T — | Peaddcoess 0. lser v Wasdccens 2-Technomn2 v
- Dees Fort
ok omes) Port Tige. Procty
iskles URY Keyrame
Friorty Ay Sang Updste bherval v
Subme Cancel

Fie Tools Help

s2000845
Prodact Name Syt HTWAETD | B Pan rber (200085

Sokuore ot Homber (2000845 L EErTv—

PodeSss [BLDEVELOPHENT Bevacn Descrpian

L Comgte Buld Vi Bkl

it S e[| D0 p—

e |1 Oudow A Terp Sermr Diagrome Name. [Comm Loos: Outdons A Terpermre
orter 3 Sckwcre Erer 1001:Cal Trane Servee Diagnestic Descrpton [Co Loaw Outocr A Termperee
e T s Scbwars Erer 1002.Cal Trane Senicn

s Schwirs Ercr 1003 Cal Trane Servicw VR R ICaoORton e Cre -

[Come Loas: Enesgy et 1 Prodcs Sengs

7 Come Lons: Energy Mot 2 Femmence Laich v . s —

0 Come Loss: Sater Pasl High Temgeratie oo Code (608 e el £
Ot B St Parel Hch Teme i Dopioy Tos B
Crter A Wote Commard Fokre Every Meter 1 et [
e ! i Wie Command Fllre Ernengr Mk 2 Enghsh Test [Comm Loss: Outdoor A Temprratire
o ‘ Enaray Meter Wile Vi Fire Fomat [Lange 00 40 ASCil Characs g
e [1 [0 Man Foner Loms -
i Lons Mars Votage Detecscn _— =
cecn amen Lows:Condeoas Filt Pesas

2 Come Loss Sucson Pressure Tramducer e Ve

) Come Lons: Sbeonted L Temg

. Pumpdonn Tarmeatd By e

s [———_—

Aot D

[me——

St =

Figure 17: DataTracker Diagnostics Page Before and After

53

Fle Took Hep

2000845
Prcuc e SPboBHTWAETO +| Bukd P bmber (62000045

Saftware Pan Hurber | 62000045 Database Revson 0 Lt Bkt Created. 0.00

PodciSws [_DEvELOPHENT Revaon Descistn

Sectle Peocck Upeetos L] Covate Bl View Build

CfgID | Rets LUB Type Display Text

" .

. Config 10 |s584
Vatables Diagrosics Devces Toaatorn Pots

A8 | ool LD T Devos Narm |
Name LA Ount. e Viterard Cumerd Lt ok
RLAOupus. Grld Wate e
Dusl Brry it AFD Feuk Feeshack s, Comgee e Dt e) = cire *%RLA Output, Chilled Water and Demand Limit Input
Dus Reloy Oumnt. AFD Fun S, Comgeessers 1 . —_
Dud Araiog [0 AFD Speed Commard and Fecdbac
Tempersure Sensor | KOC it Of Temgersure Sermcr.
Tempersu Sensor | AOC ket O Temperstrs Sermer L5
Dudl Araiog [Al Cares Loap bput Merter Gk Tt [LRACulpe. Ol Vst e Commee] Lk bynt 2 Defautt Binding Valus e
Dus Anaog [el Carrt Laop gt Mo Foma [Lage 0D 0 ASCI Craracts Shing (int32, uint32. or 0x) =
s s ot — e e]
Dud Araiog [Al Cares Loap gt Merter f—
Dudl Reloy Ovont. Arteese Heser ey T a—
Dud Brary it Ay Seport Enatie e M. =
Dus Arog [0 Crer Bypass lve ar Syt OF T 6902 D Bl O W Font
Dud Arakog [Condenser Corirel and Campromc s |~ 36903 D Exterl Do Lnd Pt
Fresaae Sersor Da . Cordemser Eraetng Water Frosmre - 7904 Dter SALA Ouapat
Tempersure Seracr Canderer Eremg ater Tompers n_v 36508, 1D4or LS Sugpy Votage Ongut
Guod Relay Ot Corsnmer Fan Enable. Fad Spee v 37204 Dter SRLA G Sai
Guod Relay Ot Condnser Fan Eruble. Facd Spee n v 36905 D1r DL Supely ekage Sk
Chind ey Cudput o Fa Erlie, Fad Spee W~ 0]t Typa Cortiprmon
G Rely Outpt - %
. Delee

Figure 18: DataTracker Devices Page Before and After

Fle Tooks Help

Uner - adurmy
st Hame Syt HTWRETD Bk Pt b (82000845 o Trockes Acs

Software Part Number | 62000845 Detzbose Revwon 0 . Last Buid Created: 000 L

frodetSss | m_oeveLOPMENT Revson Descgaon Z : [Dispiay Text | MODBUS Base Loading Enaibie
Enate Pkt Updates (] CosoBid Ve Big » Uied in Carrent roject (Status)

Display Text

Vatables Duagnosics Devices Tronsitons Ports
e v—

-G] -
Memaie G [Do Hot Transiate B Transiate
Display Larusage: Bl Unked Siten = - Display Text
Search Fler Pooy Fter | | s Fler
Search the colums below L] Large OO Diagrostcs Format
v |Oumoos v
v FomsFas M v
8 Foma
Display Teut Fevenet

| MODBUS Bose LosargE
- | MODBLS Base Londrg E .~

7| EvaoomorLawd Waw Tempwmis | Evicorsor Letve Wat
0 e Used on e Dymatden .
5 o [P—

51 Oudow e Tenpennrs Cuasoo e Tomparmure
B e on ober
e o O

Figure 19: DataTracker Translations Page Before and After

54

@ UC Data Tracker

Fle Tooks Help

Product ame: Symbo800 HTWRETO 52000845

Sctmars Pt Musber[§2000845

Bukd Pt Maber
Detabase Revacn |0
Flewaion Descepeon
[

Las Buld Cmated: (000
Product Satis _peveLoPHENT

Enstle Prodct Updatss [Miow Bl

Vassbles Dugnosics Devces Tronsistors Ports
Message G | Message Cortest

WODELS Base Loadg Erable
Message bs
Diavlay Lot | Englah Unked Siaten

62000845

o Display Text | MODBUS Base Loading Enable

Used in Current Project [Status)

Display Text

Transiate Message

Do Hot Transiate B Transiate

Display Text

Search e

[STRRET————— p——

Figure 20: DataTracker Translated Text Selection Before and After
o
language |Engish-Unted States Language English b
Filter by | Aoply Fiter Clear Fiter Search | Apply Filter Clear Filter
Enter text filter and press apply button. E‘
Unicode Text A L]

AFD 2A Invir Htsnk Over Temp

AFD 1A Rectifier Heatsink Over Temp

Evaporator Rfgt Pool Temperature Ckt1
Evaporator Rfgt Pool Temperature Ckt2
Evaporator Rfgt Pool Temp Sensor Ckt 2
Evaporator Rfgt Pool Temp Sensar Ckt 1
AFD 1A Compressor Start Failure

AFD 2A Compressor Start Failure

AFD 1A IGBT Seff Test Failure

AFD 2A IGBT Seff Test Failure

AFD 1A IGBT Seff Test Fail

AFD 2A IGBT Seff Test Fail

AFD 1A Inverter Heatsink Over Temp
AFD 2A Inverter Heatsink Over Temp
AFD 1A Invtr Htsnk Over Temp

AFD 2A Rectifier Heatsink Over Temp

rossnac i1 o~ T

LA and Condenser

Asi | [oukee |

Close

rigerant Pre
LA and Condenser
LA and Condenser

LA Input Maximum

Figure 21: DataTracker Display Texts Page Before and After

55

sure Outputs
ure Qutput:
ure Qutputs C

Ckt 1

Current Project-

‘Seach Fher Aok Fler | Coar Pl

Product name Symbiod00 HTWR Wt Mamoer 62000045
- et conret - b b o B8, e
MEsS/ DiSPLAY_TEXT MessAGE_CONTEX o v Pl Cor 53 95 92 B 1u vt 16 6D 08 o 2 B0
e oo Sk G 0 G2
v e e W
CondarrFar ek Locked 1A (n)=){=]i=]{=]{=][=](=}=]=]=](=]=]=] ==l
T 5 Bane Luieg e WODBLS Bav Ladng Ensle D00 00R0B0000o/0ooooon Engiisn Text
B oot O EliEl=EEE EEEEEEEE
5 | A Ced WotrSeport e e Wit Secmeremened |0 0|0 0. 0/0|0|0/00,0.0/0/0|0 0,00 &0 Aveady In rojct
§ | Ao ek Lt Separs v Gt it Sesommemsenands. [0 0|0 0. 0/0|0|0/00,0.0/|0/0|0 00080 Aveady I Frojec
7| e D s Dt s Otr D00o/0o/o0oooooo/ooooooD
. EEEEEEEEEEEEEEEEEEEE bl
10| o Avodance D 0000o/ojooc/oooo/ooooooD
" =l EEEEEEEE) E
i =l=l=l=lEEE EE)
n ==l EEEEE
0 =l=l=l=lE== = = E)
s ElElEEEEEEEEEEEE =]
1 =l=l=l=l=]=]E=] === =)
v ElElEEEEEEEEEEEEEEEEEE
e [=l=l=l=l=]=]E=]= =)= =)
. ElEEEEEEEEEEEEEEEEEEE
=)=l === E)
EEIEEEEEEEEEEEEEEEIEEE
EliElElElEEEEEEEEEE)
EEIEEEEEEEEEEEEEEEIEEE
sumicsed-m TGO W0 0|0 0,0/0/0|0/0/0/0/0/0/0|0/0/0/0/0/0
[y p—— EEIEEEEEEEEEEEEEEEEEE
5 o e, e ElEIEEEEEEEEEEEEEEEEEE
z vt BV Commanied Posen s 2|0 0|1 0000|0000, 0(0/0|0 0/ 0|0/0)0
vt Reemrt Lt i . |0 00 0 0|0/ 0|0/0/0| 0 0/0/0[0 00000
v Savrand v Tewwmr. |0 0|01 0000|000 0|0,0(0/0|0/0/0/0/0]0
O EEIEEEEEEEEEEEEEEEEEE
B Tervn Ot EEIEEEEEEEEEEEEEEEEEE
Do roureely it s wa? O EEIEEEEEFEEEEEEEEEEEE
B e Ot EEIEEEEEEEEEEEEEEEEEE Arsaay nProct
3 |rom O FEIEEEEEFEEEEEEEEEEEE S
% |rasowa 02 Trom At EEIEEEEEEEEEEEEEEEEEE
T e S FEIEEEEEFEEEEEEEEEEEE W e
Farch Ot EEIEEEEEEEEEEEEEEEEEE W e
ENC e EEIEEEEEEEEEEEEEEEEEE
0 [oae O [5][S][E] (5] E) S E] L =0
ERC = e D00,0/@/00/0|0/0)00/0/0/0j00/0/0&|0 e
@ meguom e D00.0/0/0/0/0/0[0]00/0/0[0j0/0/0/0/0/0 [
5 ocurmon Tow = e D0/0,0/0/0/0/0|0[0]0/0/0/0[0[0/0/0/|0/0)0
4 rgage Ot D 0/0/00/0/0[0[0® 0000000080 I inche?
ERT = e Do oooooooooooooooodo.
o] comn
Figure 22: DataTracker Shared Translations Page Before and After
& .
Enumeration Descrption
E!m A Name Auto / Marnual
P ot Descrotion | Auto Marual Descrption Enumesston ndex Version
AmoPress
EnumerstionDetais
o/ On Auto Manual Description
Ao Marssld Enumesaton | Index Value Descagtion
:; ?ﬁmﬂm Ao used on the DynaView for its “Auto.
Ado/OFf 1 Maral Used for mamual contral in the [yn
Auto/On_Ovenide
Autolocked
Auto/stopped
BAS Corm Ssn | Description
BAS Type. L. L] : .

Mode
Criller Operating Mode:
Craller Power Souce e
Crller Fun Mode Message ld [2255
Criller Water Reset Type
Compressar Operating Hode Engish Text [Auto

Cooling EXV Cid Mode: Format Large OD 8 ASCII Character Sting
Caoling Type =

Moy Display Text

Figure 23: DataTracker Enumerations Page Before and After

56

Description Dress
ApparentEnergy Name AbsP BACNetld |6 y
ApparentPower srress tEnergy BACnet ID
?E'EZF’D:“ Description [absolute pressure
Chillr Water Reset Type Units
Concertration
Cooling EXV Ci Mode Unt Description Default BAC ID er Water Reset Type
ou " :
DeltaEnthalpy psia English Units 56 n(emr?t ’nl
Derivative Gain kPa Sl Units 54 oling EXV Ctrl Mode
gm::g i Description Default BACnet ID
Distance
EBlectCument Add Delete 51 Units
HectEnergy
BectEneny2 — English Units
BlectFroquency Name Unit #1 Unit #2 Conversion #1 Conversion #2
HectPot
HectPower
Hevation
Enthalpy
GasFiow
GasFlow2
HeatingCapacty
FighResTime fod Dacts
Hours
LiquidFlow Display Text
LiuidLevel Message Id [7397
LowPress
Minutes Engish Text [psia
lone
Percent Fomat Large Based
Percent/mm
PolyCoefficent v
Mody Di
Generate Scalr Tipe Report —
W 1 Systems - Components - o
Mame |BAS Component Abbreviation |BAS ComplD | 16
ponent
Display Text
Message Id 4752
Engish Teat [BAS Interface
Fommat Large OD 20 ASCIl Character Sting
Evap Liqud Level Cortrol Format
Evap Protection
Evaporator Sequences
arson
Ext HW Interface Name
Fan Deck
Free Cooling
Genenc Montorrg 2
Head Pressure Control i~
4
Add
Close

Figure 25: DataTracker Systems-Components Page Before and After

57

Word Aobreviation Abbreviation D
0 Off

1
#2 2
=€} 3

Pent

PentRLA

(Pent)

TBD

Pent Pcnt
il 1 PcntRLA
(Airside) AirSd
(Cooling) cool TBD
(Defrost) Dfrst Pent
(Heating) Heat
(Liquid) Liq (Pent)’
(MP) MP (]
(Ve h (Airside) Airsd
(cold/hot /ice) CldHtlc
(cument cmt (cold/hot/ice) CldHtlc
(decimal) (de (Cooling) cool
(electro-mechanical elcmech
(enable/disable) stg (current cmt
ffor fr imal) (dc
(heartbeat) hrbt
(setting stg (Defrost) Dfrst

Cloae (electro-mechanical elc-mech

Generate Abbreviations Report Add Delete

Figure 26: DataTracker Abbreviations Page Before and After

58

