
FieldMind

An Agricultural Management Tool

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin–La Crosse

La Crosse, Wisconsin

by

Jacob McAllister

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

April, 2025

FieldMind

By Jacob McAllister

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s re-
quirements for the degree of Master of Software Engineering in Computer Science. The
candidate has completed the oral examination requirement of the capstone project for the
degree.

Prof. Jason Sauppe Date
Examination Committee Chairperson

Prof. Kenny Hunt Date
Examination Committee Member

Prof. Dipankar Mitra Date
Examination Committee Member

Abstract

McAllister, Jacob, T., “FieldMind,” Master of Software Engineering, April 2025, (Jason
Sauppe, Ph.D.).

FieldMind is a web application designed as an agricultural management tool tailored to the
needs of crop farmers in the Midwestern United States. It enables farmers to track a variety
of critical metrics across their operations, including fields, crop planting and harvesting, jobs,
inventory, and equipment usage. From this data, FieldMind generates a robust suite of data
visualizations, providing farmers with meaningful insights into the state of their farm for a
given year, as well as trends observed across a range of years.

i

Acknowledgements

I would like to express my sincere appreciation to my project advisor Dr. Jason Sauppe for
his invaluable guidance and untiring support. I would also like to express my thanks to the
Department of Computer Science at the University of Wisconsin–La Crosse for providing
the education for me to build the skills needed to embark on a project such as this. The
education and experience that I have gained at the University of Wisconsin–La Crosse has
been truly unique.

My gratitude extends as well to Glenn Christ, my uncle and a crop farmer in Iowa, who
generously served as a consultant for this project. Without his insights and thoughtful feed-
back, FieldMind would not be what it is. His support and the time that he dedicated to this
work were invaluable.

ii

Table of Contents

Abstract . i
Acknowledgments . ii
List of Tables . v
List of Figures . vi
Glossary . viii
1. Introduction . 1

1.1. Overview . 1
1.2. Background . 4

2. Software Development Process . 6
2.1. Comparison with Alternative Software Development Models 6
2.2. Why Agile and Scrum Were the Best Fit 7
2.3. Task Organization and Execution . 8

3. Requirements . 9
4. Design . 12

4.1. Site Tour . 20
4.2. Fields . 21
4.3. Field Details . 24
4.4. Crops . 31
4.5. Jobs . 34
4.6. Job Details . 36
4.7. Inventory . 39
4.8. Equipment . 43
4.9. Dashboard . 44
4.10. Insights . 46

4.10.1. Fields . 46
4.10.2. Crops . 48
4.10.3. Jobs . 49

5. Implementation . 50
5.1. Features and Components . 52

6. Testing and Verification . 54
6.1. Manual Testing Strategy . 54
6.2. Automated Testing Considerations 56

7. Validation . 57
8. Security . 59

8.1. Authentication . 59
8.2. Authorization . 59
8.3. Error Handling . 61
8.4. Database Interaction . 64
8.5. Concurrency . 65

9. Deployment . 67
9.1. Preparing FieldMind for Deployment 67
9.2. Setting Up Azure Resources . 68

iii

9.3. Deploying FieldMind to Azure . 68
10. Challenges . 70
11. Conclusions and Future Work . 74
12. References . 77
13. Appendices . 78

13.1. Thoughts on Efficiency . 78
13.2. More Can Be Less . 83
13.3. Thoughts on Use of Internet and AI for Research 87

iv

List of Tables

1 Manual Test Cases . 55

v

List of Figures

1 Partial View Of ERD Focusing On LandDivision 14
2 Partial View Of ERD Focusing On Job Related Tables 16
3 FieldMind navigation menu. 17
4 Insights Option . 18
5 Navigation Jobs Menu . 19
6 Fields Landing Top . 21
7 Farm Area Usage Tree Map . 22
8 Farm Area Usage Tree Map Zoomed In . 22
9 Farm Area Usage Tree Map Zoomed In . 23
10 Yield Per Acre Bar Chart . 23
11 Soil Nutrient Level Bar Chart . 24
12 Top of Land Division Detials Page . 24
13 Harvest Load Dropdown . 25
14 Crop And Harvest Complete . 26
15 Harvest Load Summary . 26
16 North Field Tree Map . 27
17 Yield Charts For North Field I . 28
18 Yield Charts For North Field II . 28
19 Yield Charts For North Field III . 29
20 Job Charts For North Field I . 29
21 Job Charts For North Field II . 30
22 North Field Job Inventory Usage Zoom I . 31
23 Top Of Crops Landing Page . 31
24 Crops Area Covered Tree Map . 32
25 Soybeans Area Covered Tree Map . 32
26 Crops Bar Charts . 33
27 Top Of Jobs Landing Page . 34
28 Jobs Bar And Radial Charts . 35
29 Job Category Inventory Usage Sunburst Chart 35
30 Top Of Job Details . 36
31 Job Details Inventory And Equipment . 37
32 Bulk Tracked Inventory Unused . 38
33 Bulk Tracked Inventory Used . 38
34 Bulk Tracked Inventory Used . 39
35 Inventory Table . 40
36 Bulk Inventory Details . 40
37 Job Details With Inventory Deleted . 41
38 Restore Inventory Item . 42
39 Equipment Table . 43
40 Dashboard I . 44
41 Dashboard II . 44
42 Dashboard III . 45

vi

43 Dashboard IV . 45
44 Navigation Bar Insights Open . 46
45 LandDivision Insights . 47
46 Candle Stick Tooltip . 47
47 Crop Insights . 48
48 Job Insights . 49

vii

Glossary

DTO

Data Transfer Object. An object used to encapsulate data and send it from one subsystem
of an application to another, often used to transfer data between the backend and frontend.

Entity Framework (EF) Core

An open-source object-relational mapper (ORM) for .NET applications. It allows developers
to work with a database using .NET objects.

LINQ

Language Integrated Query. A feature in .NET that allows developers to write queries
directly within C# or other .NET languages to retrieve and manipulate data from collections,
databases, XML, and other data sources using a consistent, readable syntax.

Bushel

A unit of volume used for measuring agricultural commodities. In the context of corn, one
bushel equals 56 pounds of dry corn.

Scale Ticket

A document generated when a load of grain is delivered to a facility such as a grain elevator
or ethanol plant. It typically includes details such as gross weight, tare weight, net weight,
test weight, and moisture content.

Crop Rotation

The practice of growing different types of crops in the same area across different planting
seasons to improve soil health, reduce pest and weed pressure, and enhance crop yield.

Yield

The amount of crop produced per unit area, commonly measured in bushels per acre in the
Midwest.

Tare Weight

The weight of an empty vehicle or container, used in combination with gross weight to
calculate the net weight of the crop delivered.

Gross Weight

The total weight of the vehicle or container when it is full, including the weight of the crop.

viii

Net Weight

The weight of the crop itself, calculated by subtracting the tare weight from the gross weight.

Test Weight

A measurement indicating the density or quality of grain. It represents how many pounds a
bushel of grain weighs under standardized conditions.

Harvest

The process of gathering mature crops from the fields. This is a key operation in the farming
cycle and is tracked in FieldMind to assess performance and yield over time.

Harvest Summary

A year-specific overview of the harvest performance for a given crop type within a particular
field. It typically includes the total net yield (in bushels) gathered from all harvest load trips
associated with that crop in the field. Farmers use this information to calculate yield per
acre by dividing the total harvested bushels by the number of acres that the crop occupied
in that field. Harvest summaries help evaluate crop performance, inform planning for future
seasons, and track year-over-year trends.

ix

1. Introduction

1.1. Overview

When considering a farm, one might initially envision a vast cultivated space akin to an
expansive garden - an area managed by an individual or a small group tending to crops.
However, modern agricultural operations are far more complex, involving extensive land
divisions, specialized equipment, and data-driven decision-making to optimize productivity
and resource allocation. Running a farm means running a mass production business. A
typical farm in the United States has about 463 acres of land (1). In Iowa typically will yield
around 200 bushels per acre of corn (2).

In Iowa specifically, the average number of crop acres per farm in 2023 was reported to
be 587 acres (3). In 2024, Iowa farms operated 30 million acres, with 12.9 million of those
acres dedicated to corn cultivation (4). The typical yield was 211 bushels per acre, with
total corn production reaching 2.63 billion bushels (4). While a more detailed explanation of
the term “bushel” will be provided later, it is sufficient for now to understand that, for corn,
one bushel is equivalent to 56 pounds. Based on that, approximately 147.1 billion pounds
of corn were harvested in Iowa alone (4).

Farms must provide resources for a nation, while also generating the financial income to
support their own operations, the family of the farmer, and all of those who tend to the
farm. The operational costs associated with sustaining these efforts are equally substantial.
In 2023, Iowa’s agricultural sector spent over $3.28 billion on fertilizers and related inputs,
$1.95 billion on agricultural chemicals, over $1.37 billion on farm supplies and repairs, and
more than $2.38 billion on seeds and plants (5).

Managing such operations requires the tracking of large amounts of data, at a very granular
level, over spans of years for a farm which is going to vary what crops are planted in which
fields, while also requiring the need to contrast various statistics among crops and fields.
This is where this project, FieldMind, positions itself.

FieldMind aims to use software to put information into the hands of farmers. It is a web
application that allows farmers to track their fields, jobs on their fields, crops, and their
harvests. A farmer is able to track this data per planting year, and can toggle between years
to see the state of their farm for whichever year that they would like to view.

Not only can data be entered and managed through FieldMind, but FieldMind also cre-
ates visualizations of the data so that the farmer can garner insights on various metrics of
their farm. These insights come in a variety of scopes for three main categories: fields, crops,
and jobs.

For each of these categories, such as fields, the farmer can view data and visualizations
from the point of view of the entire farm, comparing all of the fields on the farm with each
other. A single field can be viewed and data and visualizations specific to that field can be

1

viewed. For each perspective, whether looking at the farm as a whole or a specific field, the
user can toggle between which year they would like to see data for.

Not only can this data for the entire farm be viewed for a single year, but data can also be
viewed for each perspective over a range of years. This perspective - whether comparing
fields across the entire farm or analyzing data for a single field - allows trends to emerge over
a selected range of years, providing valuable insights.

These same insights from the data can be extracted with the other entities of the crops
and jobs as well. By using all of these various perspectives to view data and operations
across the farm, FieldMind is able to provide rich insights about these metrics for any given
year, and how they have changed over time.

The target user for this application is a Midwestern crop farmer - specifically one farming
grain crops such as corn, soybeans, and wheat. Corn and soybeans are the most prevalent
crop types farmed in the Midwest. Though this alone would be a perfectly good reason to
target this user group for FieldMind, the major reason that this demographic was chosen
was because I have personal experience in this kind of farming through my family. My uncle,
Glenn Christ, is a crop farmer in Iowa, farming corn and soybeans. Glenn agreed to be a
consultant on this project, being both a great source of information and giving valuable
feedback during demos of the project.

Consulting with Glenn has been an integral part of creating an application which has utility
for farmers. Glenn was able to convey the various ways that farms operate and the metrics
which are of concern to farmers that help them assess the performance of their farm and the
fields which comprise it. The consultations with Glenn were pivotal not just in determining
the functional capabilities of FieldMind, but also in ensuring that the application has labels
which are meaningful to farmers. Based on how Glenn described to me the process in which
farmers will plant, harvest, and track their crops, I’ve built a user interface which should
coalesce nicely with the farmer’s workflow.

As technology has progressed, it has made its way to the agricultural industry as well. This
penetration has been of assistance to farmers in some ways, and there are some products
out there which are similar to FieldMind, such as farmbrite, AgWorld, Granular Insights,
and more. However, from the research that I have done, many of these products are quite
expensive. There are some additional issues as well that have come with this growing inte-
gration of technology into agriculture.

In the past, this has required significant amounts of paperwork - and for many farmers
this is still the case. Though technology has made its way into agriculture through a variety
of avenues, there are still some significant obstacles. I would characterize two of the biggest
obstacles as trust and cost.

When looking at a typical farm in Iowa many of these farms are family owned and have
been passed down generationally. The average age for a farmer in Iowa is 57, and more than

2

half of all farmers are 45 years of age or older (2). People in this age demographic did not
grow up using software solutions as liberally as those in a younger age demographic. In-
stead, farmers in this age demographic have grown accustomed to alternative methodologies
for tracking and managing their farm, and have inherited the data and methodologies from
those who came before them.

It is easy to understand a hesitation to migrate to a new way of operation when the stakes are
so high. Additionally, even when a given farmer is keen on using a software solution, there
is the issue of what to do with data which was not managed in a software system previously.
For example, if one is wanting to get a comprehensive view of a farm over a twenty year
timespan, at first adoption, this data is not going to all be there in the system. So there is
the ever-present issue of integrating previous data into a new system. This typically takes a
commitment of time and resources, and not always viewed as a priority.

The aforementioned issue is one aspect of trust - trusting that something is worth the risk -
but there is another major issue as well. Right now in agriculture as in many other indus-
tries, there is a growing trend to use software not to put power into the hands of the users,
but instead into the hands of the company issuing the software. This is one of the barriers
to entry that FieldMind has when thinking about it as something that would be used by
farmers. Products which are similar to FieldMind present data ownership issues as they will
often claim ownership over the data which has been generated by a farm. These companies
can in turn, analyze, aggregate, and potentially sell this data to third parties. The idea of a
farmer’s data being made available like this, or having the risk that a given company could
bar access to the data is also an unpleasant idea.

For FieldMind to overcome this, I think that always allowing the farmer to have access
to their data and, in future iterations of FieldMind, to export their data out of the applica-
tion is important. These actions should always be treated as the user’s right to do. At the
end of the day, their data is theirs, and nothing should stand in the way of that. FieldMind’s
current state allows users to export the charts that have been created from the data, but
some additional work will need to be done to export all of the data in a format that is
organized and will make sense for the farmer.

FieldMind combats hesitation for the use of a software solution by giving great empha-
sis on visual representation of data and actions which can be performed. Great effort has
gone into making the application’s user interface (UI) as intuitive as possible and using rec-
ognizable symbols over wordy layouts. The flow of how the application works has also been
carefully considered so as to signal to the user how to maneuver about the application.

The key aspect is ease of use and having as low of a learning curve as possible. The last thing
that a farmer, or anyone running such a large scale business, wants to concern themselves
with when in the midst of operations is how to navigate a new software tool. Software should
be there to serve the user and should feel like a collaboration rather than an obstruction.

3

1.2. Background

There are some key terms which are used in crop farming, and are thus used throughout this
paper, which are important to know when looking at FieldMind.

When a Midwestern grain crop farmer plants crops in a field and later harvests those crops,
a general process is followed: The harvested crop is placed into a wagon or semi, and then,
generally, either taken to a drying bin on the farm, or taken to a grain elevator or ethanol
plant. A grain elevator is a facility which stores, handles, and can also process the crop.
These facilities will determine how much crop has been yielded from a particular load that
was brought in, and will purchase this crop from the farmer. The ethanol plant will do the
same thing. One of these trips is called a harvest load trip or a load trip.

Whether the crop is taken to a grain elevator or to an ethanol plant, something called a
scale ticket will be produced. Among the information on the scale ticket, the following
information is most pertinent for our current discussion on yield:

• Gross Weight: The weight of the semi or wagon upon arrival at the facility, when it
is full of the crop.

• Tare Weight: The weight of the semi or wagon when empty.

• Test Weight: The weight of the crop required to fill one bushel (a more detailed
discussion on this follows shortly).

The net weight from a load is then determined as a calculation of the tare weight subtracted
from the gross weight. This net weight is then often given in terms of bushels of corn which
was yielded from that given load.

A bushel is a volume measurement. Though it is a volume measurement, a certain weight
in pounds of a given crop is typically used as the correlation of the quantity of the crop per
bushel. For instance, though a bushel is a volume measurement, to fill that volume with
kernels of corn, it is typically going to take a certain amount of pounds of corn. Just as you
may say that a certain poundage of sand, for instance, is needed to fill a 5 gallon bucket -
the same idea is used here with bushels.

With this idea of how a bushel of a crop, like corn, is correlated to the weight of corn
that is needed to fill that bushel, the idea that this may vary based on certain states of the
corn may cross your mind. And you would be correct. For instance, perhaps a farmer’s
corn is a little larger or smaller than another farmer’s - or maybe has more or less moisture.
These factors can cause a given farmer’s corn to be more voluminous, or more or less heavy.
Therefore we have two important terms - a test weight and a standard weight. The
test weight is the amount of pounds of your crop it takes to fill a bushel. The standard
weight is the agreed upon weight that is used as a measure for how many pounds of a given
crop is needed to fill a bushel. The standard weight is what used is for payment and what
is used to assess yield on a field.

4

The standard weights for crops tracked by FieldMind are as follows:

• Corn: 56 pounds per bushel

• Soybeans: 60 pounds per bushel

• Wheat: 60 pounds per bushel

To assess how well a particular field has done, the net yields (in bushels) from all of the
harvest load trips for the field (a harvest load summary), are added together and are then
divided by the number of acres that crop covered in the field. This will result in the yield
for a field in bushels per acre. This is what is used to assess the output produced by a
given field. Not all crop yields are tallied in the form of bushels per acre, but the kinds of
crops which FieldMind tracks are.

5

2. Software Development Process

FieldMind was developed using Agile and Scrum methodologies. Agile was the most suit-
able methodology for this project due to its flexibility, iterative approach, and continuous
feedback loop with the project’s sponsor.

When beginning this project, I had a clear overall objective: to create a software man-
agement tool for Midwestern crop farmers to track various farm metrics and analyze data
through visualizations. However, many specific details were uncertain, such as:

• How a farm is structured in terms of fields, sections, and crops.

• The exact workflow of planting, harvesting, and tracking farm data.

• The key insights farmers prioritize when making decisions.

Given these unknowns, a rigid, upfront design approach would not have been effective.
Instead, an iterative process was necessary to incorporate findings along the way, refining
features and workflows based on evolving understanding.

2.1. Comparison with Alternative Software Development Models

Several other software development methodologies exist, but they were less suitable for this
project for reasons outlined below:

1. Waterfall Model

The Waterfall model follows a linear, sequential approach, where requirements are gathered
upfront, and development proceeds in distinct phases (e.g., Design → Implementation →
Testing).

This model was not appropriate for FieldMind because it assumes that all requirements
can be fully defined at the beginning of the project. In reality, FieldMind’s development
required frequent adjustments as new insights were discovered through consultations with
agricultural stakeholders. Additionally, the rigid structure of the Waterfall model makes
it difficult and costly to return to previous stages once a phase is completed. Given the
complexity and evolving nature of farm management workflows, an iterative approach was
far more suitable.

2. V-Model (Verification & Validation Model)

The V-Model is an extension of Waterfall where each development phase has a corresponding
testing phase before moving forward.

Despite its emphasis on verification and validation, the V-Model was not a good fit for
FieldMind. Like Waterfall, it relies on the assumption that all requirements can be clearly
specified at the start of the project, which was not the case here. FieldMind’s design evolved

6

as understanding of real-world farming needs grew. The V-Model’s rigidity made it difficult
to accommodate these necessary mid-development changes, making it too inflexible for this
type of project.

3. Spiral Model

The Spiral Model is an iterative approach that combines elements of Waterfall and risk as-
sessment, emphasizing early identification of risks and prototyping.

While the Spiral Model is well-suited for projects with high risk or uncertain feasibility,
it was not appropriate for FieldMind. The project did not require the extensive risk anal-
ysis and prototyping phases that the Spiral Model demands. FieldMind was designed as a
practical, goal-oriented application using well-understood technologies.

4. Kanban

Kanban is a visual workflow management method that focuses on continuous delivery rather
than time-boxed iterations.

Although Kanban is effective for managing ongoing work and maintenance tasks, it lacks
the structure offered by Scrum, particularly in terms of fixed Sprint cycles and milestone
planning. For FieldMind, it was important to have defined intervals of progress and sched-
uled feedback sessions. These characteristics are essential in a project that evolves based on
stakeholder input. The more structured approach of Scrum allowed for clearer planning and
timely demonstrations of progress, which made it a better fit than Kanban.

2.2. Why Agile and Scrum Were the Best Fit

Agile’s core principles—flexibility, collaboration, iterative development, and incremental de-
livery—aligned closely with the needs of FieldMind. Within the Agile framework, Scrum was
especially effective for managing the project’s evolving requirements and ensuring consistent
progress. The ability to develop features in small, incremental iterations allowed me to con-
tinually refine FieldMind as new insights emerged. Regular consultations with my project
advisor, a Midwestern crop farmer, provided valuable real-world feedback that guided these
refinements and ensured the application remained practical and relevant to its intended users.

As the project progressed, a deeper understanding of how farmers manage and track data
led to several adjustments in features and workflows. Scrum’s adaptability made it well-
suited for incorporating these evolving requirements. Additionally, to support effective task
management, I used Notion, a web-based productivity application that enables flexible or-
ganization of notes, task boards, to-do lists, and databases. Notion served as a lightweight
and intuitive tool for managing the project backlog, breaking down complex features into
actionable tasks, and tracking progress throughout development. This helped ensure the
project stayed organized and aligned with development priorities, supporting the iterative

7

and collaborative nature of the Scrum methodology, all while being backed up on Notion’s
web servers.

2.3. Task Organization and Execution

For tracking development tasks, Notion was used as a central hub for the following:

• Task Backlog – A list of all features needed for FieldMind.

• Sprint Planning – Prioritizing tasks for each development cycle.

• Feature Implementation – Breaking down tasks into frontend, backend, and data
model components.

• Progress Tracking – Keeping notes on incomplete tasks and areas requiring further
refinement.

Whenever I stopped working on a feature, I recorded notes in Notion to minimize the ramp-
up time when resuming development later.

8

3. Requirements

Glenn, my uncle who is an Iowa crop farmer, agreed to act as a consultant for this project,
and he provided invaluable insights and direction for many detailed aspects for how a farm
of this kind works, and what insights and tracking tools would be of value for a Midwest-
ern crop farmer. Before even embarking on this project, I conferred with Glenn to see if
the concept itself would indeed be something of value for farmers. After expressing that it
would indeed be of value, Glenn was able to give details about how a crop farm is typically
structured - the mechanics of how planting and harvesting work, the various measurement
units which are used for each, and the manner in which yield is determined and tracked.

Throughout the project, I relied on Glenn’s expertise and domain knowledge in order to
inform both the direction of FieldMind and further research of my own. For example, some
of the standard weights, soil nutrient information, and other information of the like is made
available by the University of Iowa through their agricultural division. They put out formal
information regarding these specifications. When doing research on my own, many of the
items that I found assumed some prerequisite domain knowledge in order to properly contex-
tualize the information. The information was either too niche or too broad for the specific
questions I had related to developing FieldMind. Additionally, there were certainly times
when I didn’t even know the question to ask. This is where having Glenn as a consultant
was an invaluable asset.

The insights that I was able to gather from Glenn and the ability to ask direct questions in
the context to how FieldMind should handle certain aspects of its workflow was something
that I don’t think I could have achieved through Internet research alone. Research would
have given me broad strokes of a direction to go and what to implement, but I think the
details about FieldMind which make it shine were only able to come through via the direct
consultation that I was able to get from Glenn.

From my early meetings with Glenn, I was able to get clear vision of the requirements
which FieldMind would need to embody. A crop farmer has a number of essential items to
manage on the farm - and it is not just the tracking of these items, but also the assessment
of them.

The functional requirements of FieldMind are as follows:

1. The system must provide secure login and account management functionality.

2. Each account must be associated with a single farm.

3. Users must be able to track fields on a farm. For each field, the user must be able to
record acreage, crops planted, crops harvested, yield per acre, yield over time, and the
jobs associated with the field.

4. Users must be able to track crops. For each crop, the system must allow the user to
specify the crop type, the amount planted, the area it covers, the planting date, and
the location of the crop within the farm.

9

5. Users must be able to track jobs. The system must record which jobs are currently
active, the status and urgency of each job, the job category, the location of the job,
and the inventory used by each job.

6. Users must be able to track inventory. Inventory must be tracked by type, which
includes:

• Individually tracked items, such as a planter, grinder, or diesel storage tank.
These items are reusable and their use does not reduce inventory stock.

• Bulk tracked items, such as fertilizer, diesel fuel, seed bags, or screws. These
items are consumed upon use, and their usage reduces the inventory stock. For
each bulk item, the system must allow tracking of:

– The quantity in stock,

– The reorder level,

– The reorder quantity, and

– The batch number, if available.

Additionally, the inventory system must allow tracking of cost per unit and the date
the item was added.

7. Users must be able to track equipment. For each equipment item, the system must
specify its category, any farm resources it requires (e.g., diesel fuel), and the quantity
of those resources required for its operation.

8. The system must provide data visualizations for fields, crops, and jobs. These visual-
izations should reflect various tracked metrics within each entity to support user insight
and decision-making.

The data visualizations are a critical part of the application - particularly the visualizations
revolving around yields on the fields. These insights allow the farmer to track how this
crucial aspect of the farm is performing, and they can track this over time.

The non-functional requirements are as follows:

1. The application must use terminology which is accurate for the industry domain.

2. The application should use intuitive symbols whenever possible and avoid excessive
verbiage.

3. The application’s design must be intuitive to use and must not require an instruction
manual to understand.

4. Data visualizations must provide useful, detailed insights without crowding the layout.

5. The application should encourage interaction with the charts from the user.

10

My process for gathering requirements began with initial research to familiarize myself with
what I could about farming operations in general. After this initial information gathering,
I composed a variety of questions and then consulted with Glenn and received clarifications
on the information I had gathered as well as the questions that I had. I would also ask Glenn
to elaborate on various processes that would be followed for tasks such as the planting, fer-
tilization, and harvesting of crops. Through doing this, I was able to get a far more nuanced
view of what the operations at hand entail, both how those would translate into tangible
requirements for the construction of the software, as well as how to convey these processes
visually on the application to a farmer in a way that is meaningful to them.

After these meetings with Glenn, I would take my hand written or typed notes and diagrams
and would organize them with Notion. I used Notion to create a backlog of tasks, broken
down by category, and would consult this to create daily tasks and sprints. This was very
useful as I was able to both create these lists of tasks as well as write notes for myself about
any issues that came up with any of the tasks, or things that I would need to either look into
further on my own or would need to meet with Glenn again and receive more clarification on.

While building FieldMind, I periodically checked with Glenn to make sure that the structure
and process that I was building into the application was representative of what is done on a
farm. Often, while building the project, intricacies would manifest themselves that I’d not
thought of initially. When these would come up, I would schedule a meeting with Glenn in
order to shed light on the approach that I should take.

As mentioned, the charts are one of the the core features of FieldMind. Therefore, once
I’d built enough charts, I was eager to demo this to Glenn in order to get feedback on
whether the charts that I’d created were showing and comparing metrics that would make
sense for a farmer, and would provide value. I also wanted to be sure that the measurement
units that I was using, such as bushels in certain places and pounds in others, made sense
given the context for a given chart.

The feedback that I gathered from Glenn allowed me not only to refine the charts but
also make sure that the labels that I was giving to certain features of the app would be
something that farmers would recognize.

11

4. Design

I believe that well-designed applications should not require an instruction manual. Instead,
the design and layout should lend itself as much as possible to intuitive behavior with recog-
nizable patterns. Achieving this requires thoughtful design in both the backend architecture
of the application and the user interface (UI).

FieldMind is designed to support farmers in managing the complex operations of a crop
farm. At a high level, the system enables users to track the structure of their land, manage
the planting and harvesting of crops, oversee farm-related jobs, and monitor inventory us-
age. In addition to serving as a data entry and management tool, FieldMind also emphasizes
data-driven insights through the use of visual analytics.

The central behavior of the system revolves around managing the crop lifecycle. Users
can enter data on planted crops for a particular year, specifying details such as crop type,
amount planted, area covered, and relevant dates. Harvest data can also be entered, includ-
ing yield information such as bushels per acre. These entries are contextualized within the
farm’s fields, allowing data to be organized and filtered by specific areas of the farm.

A unique aspect of FieldMind is its handling of time. All data entries are linked to a specific
planting year, which the user can select and toggle across the application. This allows the
farmer to view their farm’s state as it was in a given year. In addition, some parts of the
application support selecting a range of years, which enables the user to view patterns and
trends across time.

To make this data meaningful and accessible, FieldMind generates a variety of interactive
visualizations. These charts – such as bar charts, donut charts, and sunburst charts – enable
users to compare yields between fields, evaluate job distributions by category or urgency,
and assess how inventory is being used. The insights pages in particular allow the user to
analyze this data across multiple years, surfacing longer-term patterns that may inform fu-
ture decisions.

To construct FieldMind, it was necessary to develop an in-depth understanding of farming
operations and the structural organization of a typical Midwestern crop farm. These details
were not known at the outset, meaning that the complete set of requirements – as well as
the design of the frontend layouts – could not be fully determined in advance. Instead,
requirements emerged gradually through consultations with Glenn, whose insights helped
shape both the functionality and user interface of the system. As development progressed,
the implementation of previously gathered requirements often revealed additional complex-
ities that required further clarification. In such cases, I conducted independent research to
better understand the issues at hand and then consulted with Glenn to gain practical in-
sight grounded in real-world farming operations. I tailored my solutions based on Glenn’s
experiences, as he was able to provide a realistic perspective on the workflows and priorities
of Midwestern crop farmers – FieldMind’s target user group.

12

Beginning with the backend architecture of FieldMind, I first thought about the data mod-
els, or entities. These are the models which will have a direct mapping to a database table.
Since all of the functionality of the application revolves around the manipulation of the
data models, it makes sense to me to start here when first building a project. The core en-
tities which drive the application are the LandDivision, Crop, CropType, HarvestedCrop,
JobTask, IndividuallyTrackedItem, and BulkTrackedItem entities. Being that FieldMind
is an application for crop farmers, the central entity is one which represents a field. The field
is the central entity because the planted and harvested crops, as well as the ultimate yield
calculations, all are associated with a field. For this crucial data model, I created an entity
called a LandDivision.

The LandDivision entity is what the crops and harvests are associated with. The LandDivision
entity and the Crop entity have a one-to-many relationship from the LandDivision to the
Crop. Each year, the crop planted in a given field may change – and often does every few
years due to crop rotation. The LandDivision and the HarvestedCrop also have a one-
to-many relationship as well. Along with these relationships, the LandDivision entity also
needs to represent the scenario of a farmer subdividing a field into smaller divisions, each of
these divisions having their own set of crops and potentially subdivisions of its own. There-
fore the LandDivision entity has a ParentId property which will either hold the ID of the
given LandDivision’s parent, or it will hold the value of null to represent that the given
LandDivision has no parents and is thus a ”root division”.

Each Crop entity also has a CropType which, as the name suggests, contains the information
about what kind of crop it is - such as corn, soybeans, or wheat. The CropType, entity
also contains information about the yield measurement unit, via a YieldMeasurementUnit

entity, that the given CropType uses. In the case of FieldMind, this is “bushels” for all the
crops that it currently allows for, but by having this be contained in its own entity, this
provides room for growth of other yield measurement units, as well as the increasing of the
properties that the YieldMeasurementUnit has.

The Crop entity represents the planted crop on a given LandDivision, and has proper-
ties relevant to this such as the amount planted, the area covered, the planted date, crop
type, and the harvest completion date. One of the restrictions that are placed on a Crop en-
tity when being associated with a LandDivision, is that only one Crop entity per CropType
can be associated with any given LandDivision. For example, a LandDivision can have
multiple Crop entities associated with it, but each of those Crop entities each have a distinct
CropType. This is important because when the crops are harvested, a HarvestedCrop entity
is used to track this, and they are grouped by CropType for a LandDivision to produce the
derived type of a HarvestedCropSummary. The HarvestedCropSummary is not a database
entity due to it being derived from the HarvestedCrops for a given LandDivision.

When a crop is harvested, it needs a different set of properties and thus is represented
by the HarvestedCrop entity. In practice, what the HarvestedCrop is a representation of a
harvest load trip. As mentioned in the Background section of this paper, when a crop is
harvested, it is typically loaded up into either a semi or a wagon which is then taken to an

13

elevator, ethanol plant, or some other buyer. One of these trips is a harvest load, and this
will produce a scale ticket. It is the information on the scale ticket which the HarvestedCrop
entity is modeled after. Like the Crop entity, there is a one-to-many relationship from the
LandDivision to the HarvestedCrop.

Figure 1 shows a the portion of the Entity-Relationship (ER) Diagram which focuses on
the LandDivision entity its relationship with these entities.

Figure 1. Partial view of ER Diagram focusing on relationships between the LandDivision, Crop,
CropType, HarvestedCrop, and some measurement unit entities.

Because the LandDivision entity has a one-to-many relationship with both Crop and HarvestedCrop,
and because these associated records change from year to year, it becomes necessary to com-
pute certain values dynamically. Some of these values – such as the Harvest Summary – are
useful to display as if they were direct properties of a LandDivision. However, since they
are derived from related data, it would violate database best practices to include them as
actual columns on the entity’s table. To address this, a data transfer object (DTO) called
LandDivisionDto was created to hold these computed values alongside the core proper-

14

ties. Through the use of the DTO, the frontend is able to get a representation of the ”full”
LandDivision object as it would expect to see – with all of its crops and harvest data for
a particular year – while still being able to separate the database entity into its appropriate
parts to follow best practices in this way.

DTOs (Data Transfer Objects) are used for most entities in FieldMind to provide an appro-
priate representation of the data for the frontend. In many cases, the frontend requires either
a subset or a superset of the properties defined on the original entity. A subset may be nec-
essary for security reasons—for example, omitting sensitive fields from a user object. More
commonly, however, a superset of information is needed. This is especially true for DTOs
like LandDivisionDto, which include additional or derived properties to support frontend
functionality such as data visualization. These properties may include metrics related to the
LandDivision’s parent division (e.g., acreage), details about its subdivisions, or a collection
of jobs associated with that LandDivision. DTOs are also used during the creation or mod-
ification of entities, as the frontend typically transmits only partial representations of these
objects to the backend.

The JobTask entity is used to track jobs which are done on the farm. These have the option
of being associated with a LandDivision. When they are, there is once again a one-to-many
relationship from the LandDivision to the JobTask. Each JobTask has a JobCategory that
it is associated with, and each job can also have inventory associated with it in the form of
either IndividuallyTrackedItems, BulkTrackedItems, or both. A job can also have one
or more Equipment associated with it.

The key distinction between the two types of inventory lies in how they are consumed.
IndividuallyTrackedItems refer to reusable items that are not depleted through use. For
example, if a drill set is used for a job, it remains in inventory afterward; its usage does not
reduce the total quantity of drill sets. In contrast, BulkTrackedItems represent consumable
inventory that is reduced upon use. For instance, applying 20 lbs of fertilizer results in a 20
lbs reduction in available inventory, reflecting its consumption.

To facilitate tracking of bulk inventory consumption, a JobTaskInventoryUsage entity was
introduced. When a job is created and one or more BulkTrackedItems are associated with
it, those items are marked as available for use within that job. The actual quantity used is
specified after job creation when viewing or editing the job details. It is this recorded usage
that draws down inventory levels and is tracked by the JobTaskInventoryUsage entity. This
action can be seen in figures 32 and 34 later in this section.

To further illustrate the main entities involved in supporting job-related functionality within
FieldMind, Figure 2 presents a partial view of the ER Diagram. This excerpt highlights the
core entities related to jobs and their relationships with other components in the system,
helping to visualize how job data is structured and interconnected.

For the frontend design, thankfully, the Fuse template gives a great starting point for the

15

Figure 2. Partial view of ER Diagram focusing on relationships between tables related to the
JobTask entity.

layout of the application. To decide how to fill out the template with my customizations,
I first started with the navigation menu. I filled out each option with what I, as a user,
would expect to see an interact with there. This meant a highlight of the main entities
of FieldMind of Fields, Crops, Jobs, Inventory, and Equipment. Additionally, there is a
dashboard which combines highlighted features and insights from each of the entities; and,
an ”Insights” option which allows for the the examination of Fields, Crops, and Jobs over a
year range rather than just for a single year.

16

Figure 3. FieldMind navigation menu.

The side navigation bar, shown in Figure 3, shows the high-level structure of the frontend of
FieldMind, as well as some core entities. Both the “Dashboard” and “Insights” are related
to the “Fields”, “Crops”, and “Jobs” options; therefore, these will be addressed first, and we
will return to the ”Dashboard” and ”Insights” shortly. Each one of these is going to allow
the user to see statistics and options regarding all fields, crops, or jobs, respectively, across
the entire farm. Each one of those pages represents data from the perspective of that data
type. Each one of these pages also allows you to toggle the year for which the data is shown
as well. The “Dashboard” allows you to see an overview of highlights from the entire farm.
This page showcases some of the most notable charts from other pages.

17

Figure 4. Insights option toggled open in the navigation menu.

The “Insights” option opens up and presents the options of “Fields”, “Crops”, and “Jobs”.
Each of these again presents data for each of these entities at the forefront, except the unique
perspective this time is that these pages allow the user to look at a range of years, rather
than just a single year. By allowing the user to toggle between a start and end year, and
subsequently displaying data for the respective entities for the selected time range, a different
variety of insights can be gleaned and patterns over time can begin to manifest.

18

Figure 5. Jobs navigation menu toggled open.

Each of the “Jobs”, “Inventory”, and “Equipment” options in the navigation menu are also
expandable and reveal the option to see and modify categories for each of these entities.
Figure 5 shows the “Jobs” option toggled open as an example.

Certain implementation decisions have introduced restrictions on specific actions and choices.
The measurement units, for example, have been chosen by the system ahead of time and
only allow for specific types. For example, only measurements in the imperial system are
allowed, and only acres are allowed for area measurements rather than also allowing for
hectares, square feet, etc. This limitation exists to avoid the complexity of unit conversions
and rounding adjustments. An example of what is meant with rounding of measurement

19

units would be if you had 18 inches as a measurement. This could be turned into 1.5 feet.
Likewise, the same could be done in the other direction when considering fractional amounts
of a foot.

FieldMind also has predefined crop types which it allows, and it does not yet permit the
user to add additional crop types. This is because of the standard weights which are asso-
ciated with a given crop type for determining the yield on the field. The conversion of the
harvested amount to the proper standard weight is something that would be unwise to place
in the hand of the user as this will likely lead to clerical errors which would have the affect
of causing FieldMind to produce incorrect calculations.

One other area of the design of FieldMind which takes careful consideration is what ac-
tions are and are not allowed for the user. An application needs to strike a balance between
what it should guard against and what it must simply allow the user to do regardless of po-
tential consequences. If too many guards are put into place, the application becomes overly
restrictive, and thus stands in the way of the user instead of enhancing the user’s abilities.

As an example, consider the file explorer program that all computers have. This application
provides the user with a graphical way to move about and interact with the file system.
Those of us who are programmers can see a program like this and seek to impose some rules
on the file structure that we ultimately allow the user to create. One such rule may be that
you do not have a directory (folder) with a subdirectory of the same name, creating a path
like apple/apple for instance. However sensible this rule, and others of this kind, may seem,
by having the application impose these rules upon the user, you take the application out of
what its domain of concern should be and push it into the domain of concerns that should
being to the user.

These kinds of restrictions do not add to the user experience but instead subtract from
it, making the user feel that the application hinders rather than supports them.

Too many guards actually makes the application, or any tool, unusable. An application
should only guard what it has to and nothing more. An example of this with our file ex-
plorer example would be not allowing a user to create two files or directories of the same
name within the same level of a directory. For example, if we are in our apple directory, the
file explorer will not allow us to create files each named berry.txt. If one wanted to have
two files named berry.txt, one would need to house each file in different directories.

In addition to enforcing necessary system rules for functionality, FieldMind relies on a well-
structured database consisting of 43 tables to ensure smooth operation.

4.1. Site Tour

The following section provides an overview of the major components of FieldMind. The
discussion begins with the “Fields” section and proceeds in order through the navigation
menu, eventually returning to the “Dashboard” and concluding with an examination of each

20

of the “Insights” options.

4.2. Fields

When clicking on the “Fields” option, a table appears with one row for each root field -
referred to as a LandDivision in the application. A LandDivision represents a field entity
within the farm. Each row contains high-level information, and clicking on a row reveals
its associated child subdivisions. Any LandDivision in the table can be selected to view a
detailed page with more information.

Figure 6. The top of the “Fields” landing page.

As one scrolls down this page, various charts compare and contrast metrics across all
LandDivisions on the farm. The first thing that is encountered is a five-number summary
of the bushels per acre have been harvested across all the LandDivisions for the selected
planting year based on the crop type selected. As one continues to scroll, a tree map chart
is encountered. This tree map shows a visualization of the farm’s area usage across all the
fields.

21

Figure 7. Farm area usage tree map.

We can see that the number of acres that each LandDivision is displayed in the top-left
corner of each tile. When a tile is clicked on, the chart zooms into that LandDivision to
see a further breakdown of what is contained within that LandDivision.

Figure 8. Zoomed in on the “North Field” tile.

In Figure 8, we can see what is contained inside of the North Field. We see that there are 45
acres used for its subdivision of Meadow Crest, 29 acres of corn, and then 9 acres of empty
space. Because Meadow Crest is a subdivision, this can be clicked on and further zoomed in
to see the contents of that LandDivision.

22

Continuing down on the “Fields” page, we can see charts which further compare LandDivisions
on important metrics, such as yield per acre, number of harvest trips, soil nutrient levels,
and the job category breakdown.

Figure 9. Zoomed in on the “North Field” tile.

Figure 10. Yield per acre and harvest trip count charts.

23

Figure 11. Soil nutrient level and job category count charts.

As mentioned, this page presents data from the perspective of the LandDivision entity,
making it the focal point of the displayed information.

4.3. Field Details

When a specific LandDivision is selected from the table at the top of the page, details on
that specific field for the selected planting year are shown.

Figure 12. Top of the Land Division details page.

24

From this page, one can manage various aspects of the LandDivision such as various meta-
data about it as well as adding subdivisions, crops, harvest load trips for those crops, and
jobs. We can notice from Figure 12 that both the size and the area available are listed in the
top section for the LandDivision. And for each of the Subdivisions and Crops tiles, the
acreage which each of these take up is also listed. When creating a new subdivision or adding
crops to the LandDivision, FieldMind will ensure that the area being added for either is
within the area available. Additionally, when adding new crops to the LandDivision, it is
enforced that only crops of a different crop type than what is already on the LandDivision is
allowed to be added. For example, in Figure X, there is corn on the LandDivision already;
therefore, only crops which are not of the CropType of “Corn” are allowed to be added to the
LandDivision. These rules are important when it comes to the creation of HarvestedCrops
since these are grouped by CropType.

The Harvest Loads tile in Figure 12 currently shows the bushel count for the harvest
summary for corn. All of the HarvestedCrop entities for corn for this LandDivision for the
given planting year make up the harvest summary. When that row for corn is clicked on, it
expands into a scrollable list of all of the trips (HarvestedCrops) for that crop. We can see
this in Figure 13.

Figure 13. Harvest load summary expanded.

Figure 13 shows a slider that can be toggled. This toggle is for marking this crop’s harvest
complete for this LandDivision. This will prevent further harvest trips from being created
and will also internally timestamp that crop has having its harvest completed for that par-
ticular LandDivision. In future versions of FieldMind, this data could be used to create
charts which visualize the efficiency of harvests.

25

Figure 14. Harvest complete for corn for the given LandDivision.

We can see in Figure 14 that the “+” button to add more harvest load trips has disappeared.
This is because, for this LandDivision, there are no other planted crops other than corn;
so, once the harvest has completed for corn, there are no more harvest load trips which
can be created. If there were additional crops planted on the LandDivision, then the add
button would not disappear. When on the form to create a new harvest load trip, the only
option for CropTypes which can be selected are ones which are both on the LandDivision

and whose harvest has not been completed. When the slider seen in Figure 14 is hovered
over, a message appears which indicates that the toggle will either complete the harvest or
mark the harvest as not complete, respectively.

When the arrow in a rectangle icon is clicked for a certain crop in the Harvest Loads
tile, the user is brought to a page which has a table of all of the harvest trips for that crop.

Figure 15. Harvest load summary for corn for the North Field.

At the top of Figure 15, we can see the information about which LandDivision is be-
ing viewed, which crop, and the amount of acres of that crop that is planted on the

26

LandDivision. When one of these rows are selected, the view shown in Figure 15 is pre-
sented. The details on that specific trip are shown and are able to be edited.

Returning back to the details page for the North Field shown in Figure 12, when we continue
to scroll down on the page, there are also charts that are related to the performance of the
LandDivision for its yield, as well as various metrics about the jobs which are associated
with this LandDivision.

Figure 16. Land usage tree map for the North Field.

First, in Figure 16, there is a tree map which shows the breakdown of the area usage
specifically for the LandDivision which is being viewed. Also in Figure 16, there is a
dropdown menu for corn which will show various charts about the harvest information for
that crop. The North Field only has one crop planted in it, but if there were multiple, there
would be one dropdown for each crop.

27

Figure 17. Yield charts for corn on the North Field.

Figure 18. Yield charts for corn on the North Field.

28

Figure 19. Yield charts for corn on the North Field.

Figures 17, 18, and 19 show the yield charts for corn for the North Field.

After these yield charts, there are charts which show information on the jobs and inven-
tory usage on this LandDivision.

Figure 20. Job charts for the North Field.

29

By tracking inventory usage at the job level and associating each job with a category, Field-
Mind enables the visualization of inventory consumption by job category through a dedicated
chart. On the individual field page, I have implemented a zoomable sunburst chart that il-
lustrates inventory usage for jobs on that specific field. The chart breaks down usage by
job category, then further categorizes it into bulk-tracked or individually tracked inventory,
followed by inventory type.

Users can interact with the sunburst chart by clicking on any segment to zoom into a specific
category. Hovering over a slice displays the corresponding inventory count, while clicking
the center of the sunburst zooms back out. Figures 21 and 22 showcase the sunburst chart
at different zoom levels, demonstrating its interactive functionality.

Figure 21. Inventory usage by job category and inventory category for the North Field.

30

Figure 22. Job inventory usage zoomed in on the “Fertilizers” job category.

4.4. Crops

The crops page shows data from the perspective of the crop across the entire farm for the
selected planting year.

Figure 23. Top of the crops landing page.

In Figure 23, the top of the Crops page is shown. In it, we can see that there is one
dropdown for each crop type that has been planted on the farm for the selected year. When
one of those dropdowns is toggled open, as we can see the “Corn” dropdown is, a scrollable
list of all of the corn crops can be seen. For each row, there are various metrics about that

31

crop, such as which LandDivision it is planted in, how many acres are planted there, how
many total bushels have been harvested and how that comes out to bushels per acre for that
LandDivision, and whether or not a harvest is in progress. Each row is also clickable, and
will take the user to the LandDivision where that crop is planted when clicked.

Figure 24. Crops area covered tree map.

Below the aforementioned set of dropdowns, there is a tree map, which we can see in Figure
24. Rather than show the area of all of the LandDivisions as was seen on the Fields page,
here we see the total area of the farm covered by each of the crops planted on the farm.

Figure 25. Soybeans selected in the area tree map, showing which LandDivisions soybeans are
planted in and how many acres are in each LandDivision.

When one of the crop tiles is selected, such as the soybeans tile, that part of the tree map
zooms in to show all of the LandDivisions in which soybeans are planted, and the amount
of acres which it takes up on each of those LandDivisions.

32

Figure 26. Bar charts showing net yield and acres covered for each of the crop types on the farm.

After the tree map, Figure 26 shows the bar chars which show the net yield and total acres
covered, respectively, by each crop type that is planted on the farm.

33

4.5. Jobs

The Jobs page shows charts about various metrics on the jobs throughout the farm for the
selected planting year.

Figure 27. Top of the Jobs landing page.

Each job is only associated with one planting year. If a job is not completed within a planting
year, it does not “roll over” to the next year - instead they are each contained to the one
year. Figure 27 shows the table of jobs which is at the top of the Jobs landing page. This
table lists all of the jobs across the farm for the selected planting year, with each row being
clickable to view the details of a given job.

34

Figure 28. Jobs bar and radial charts.

Scrolling down, there are bar charts which show the count of each category of job across the
farm, as well as two radial charts - one representing the count of the various statuses of jobs,
and the other the count of the urgency classifications of the jobs.

Figure 29. Inventory usage by job category sunburst chart.

Below these there is a zoomable sunburst chart, shown in Figure 29, which shows inventory
usage by job category. When one of the job categories is selected, the chart will zoom
into that category to show the proportion of either Bulk Tracked or Individually Tracked
inventory there are for that job category.

35

When either the “Bulk Tracked” or the “Individually Tracked” options are chosen, that slice
is zoomed in on and the breakdown of what inventory category of that inventory type is
shown.

Below the inventory usage sunburst charts are two other sunburst charts - one allows the
user to start by the job category, and then click into a tile to see the status of the jobs in
those categories, and then click once more to see that urgency classification of the jobs of a
given status. The other sunburst chart shows the inverse once a job category is selected -
first the urgency classification and then the status.

4.6. Job Details

When a specific job is selected, whether from the table on the Jobs page, or on the job area
on the details page for a specific LandDivision, we can interact with the details of a specific
job.

Figure 30. Top of job details page.

36

Figure 31. Inventory and equipment sections of the job details page.

Figure 30 shows the top of the job details page for the “Irrigation Maintenance” job.
The top section allows the user to see various metadata on the job, and also to edit
it if the pencil icon is clicked. We can also see that there is both individually tracked
(IndividuallyTrackedItem entity) and bulk tracked (‘BulkTrackedItem‘ entity) inventory
associated with this job. Figure 31 shows the equipment associated with this job as well.

The job allows the user to select whichever IndividuallyTrackedItem(s) the job needs,
as well as whichever BulkTrackedItem(s) the job needs. Once a BulkTrackedItem is added
to the job, the user is then allowed to adjust how much of that item was used. We can see
this in Figure 32.

37

Figure 32. Bulk tracked inventory unused.

Once the item has been used for the job and the user adjusts the amount, the available stock
for that item goes down. we can see this in Figure 34.

Figure 33. Bulk tracked inventory used.

When a job has drawn down inventory, that job also cannot be deleted. Figure 34 shows
that the “Delete” button which was previously in the top-right corner in Figure 30 before
inventory had been drawn down is now a question mark icon, which is clickable.

38

Figure 34. Bulk inventory has been drawn down, and thus the “Delete” button in the top-right
corner of the job has changed to a clickable question mark icon.

When the question mark icon is clicked on, we are shown a dialog window which indi-
cates the reason that the job cannot be deleted. Additionally, a user can only remove a
BulkTrackedItem from a job if that item has not drawn down inventory. Otherwise, if a
BulkTrackedItem which had drawn down inventory was allowed to be deleted from a job,
there would be no record of where that inventory went. When the “Actions” button is clicked
and the “Remove Item” option is selected, if that inventory item has drawn down inventory,
instead of a red “x” icon being displayed, a question mark which is clickable is displayed.
When that question mark icon is clicked on, a dialog box pops open giving the reason for
not being able to remove that inventory item.

In this way, we have a basic inventory tracking system. I opted for this approach with
deletion rather than just zero-ing out the inventory usages because it makes the decision to
remove it more intentional by the user. There may be some alternative approaches to handle
this situation, but this is the approach FieldMind has taken for this iteration.

4.7. Inventory

The inventory is divided into two broad data types: individually tracked inventory and bulk
tracked inventory, which are backed by the IndividuallyTrackedItem and BulkTrackedItem
entities respectively, each implementing an IInventory interface. Furthermore, every inven-
tory item is also associated with an InventoryCategory entity as well.

39

Figure 35. Inventory table with the “Bulk Tracked Inventory” option selected.

In Figure 35, the inventory page is shown with the table of all of the inventory across the
farm. There are three buttons at the top which allow the user to look through either all
inventory, bulk tracked, or individually tracked. When either the “Bulk Tracked Inventory”
or “Individually Tracked Inventory” are selected, there is a blue “+” button which appears
which allows a user to add either bulk tracked or individually tracked inventory to the farm.
Based on which option was selected when the “add” button was clicked, the appropriate
form will be displayed for the inventory item to add.

Figure 36. Bulk tracked inventory details page.

Any row in the inventory table can be clicked on, and the details for that inventory item will
be brought up. This details page is also what will be shown if an inventory item is selected

40

on a job as well. On this details page, various metadata can be viewed and manipulated,
including the deletion of the inventory item.

If a user chooses to delete an inventory item, a dialog box will appear to confirm this
choice and inform the user of the consequences of this action. As Figure 37 shows, when an
inventory item is deleted, all jobs which have that item on the job will no longer be able to
edit the quantity used for that item.

Figure 37. Job details in which the job has used a bulk tracked inventory item which has
subsequently been deleted from inventory.

The same conditions apply regarding the deletion of an inventory item from a job – if no
inventory has been drawn down, the item may be removed; however, if inventory has been
deducted, deletion is not permitted, as it would compromise the integrity of the inventory
tracking system. In the case where the job has drawn down inventory, as is the case with
Figure 37, the inventory item will indicate that it has been deleted from inventory, and the
user will be prevented from changing the amount used for that item.

When adding new items any item which has been deleted will no longer show up as an
option to add to the job. Deletions for inventory are currently implemented as a soft delete.
Therefore, after an inventory item is deleted, it gives the option to restore it, as shown in
Figure 38.

41

Figure 38. Bulk tracked inventory details page with restore option.

42

4.8. Equipment

FieldMind also tracks equipment that is on a farm. When the “Equipment” option is selected
from the navigation menu, the table shown in Figure 39 is displayed.

Figure 39. Table displaying all of the equipment on the farm.

When a row is clicked on from a table, the details page for that piece of equipment is dis-
played. Currently, the main distinction between Equipment and an IndividuallyTrackedItem
would be that Equipment can have a FarmResource associated with it. This resource would
be whatever it needs in order to operate, such as diesel fuel.

As with the inventory, equipment can also be deleted. When equipment is deleted, any jobs
currently using that equipment will have that equipment listed as deleted from the farm,
just as with the inventory. Unlike with inventory though, since nothing is being tracked by
FieldMind to be depleted, the equipment can always be deleted from the job. Rather than
doing this automatically, I decided to have that be something that the user does for this
implementation. This is largely due to the soft deletion which is performed on equipment,
just as with inventory; and, so if equipment is restored, the state of jobs which were using
that equipment is maintained.

43

4.9. Dashboard

The “Dashboard” page contains some of the important charts from each of the “Fields”,
“Crops”, and “Jobs” pages. There is a section for each of these on the dashboard to house
their charts.

Figure 40. Fields portion of Dashboard page.

Figure 41. Crops portion of Dashboard page.

44

Figure 42. Jobs portion of Dashboard page.

Figure 43. Jobs portion of Dashboard page.

Like the “Fields”, “Crops”, and “Jobs” pages, a specific planting year can be selected on
the “Dashboard” page. The dashboard gives a high-level overview of the farm for a planting
year across the major entities it tracks. In future iterations, I will add additional charts and
options to this page that are unique which specifically combines data from multiple entities
across the farm. In this way it can be part of a hub for how things are connected.

45

4.10. Insights

Like the prior portions of FieldMind, the “Insights” also focuses on the three major entities
of “Fields”, “Crops”, and “Jobs”. Figure 44 shows that each of these can be selected through
the “Insights” dropdown in the navigation.

Figure 44. Insights option toggled open in the navigation menu.

The unique perspective of the options in the “Insights” portion of FieldMind is that, rather
than just looking at one planting year, each of the insights pages allows the user to select a
year range. Charts are then generated to look at trends over time for each of the entities.

Currently, FieldMind presents insights for each entity at the farm-wide level, comparing
all LandDivisions across the entire farm over the selected time range, rather than focusing
on individual entities over time. For example, in the “Fields” insights section, trends are
analyzed by comparing multiple LandDivisions rather than tracking changes within a sin-
gle LandDivision. In future iterations, I plan to introduce the ability to select a specific
LandDivision and generate charts that display trends exclusively for that entity over the
chosen year range. Additionally, I aim to expand the ”Insights” section by incorporating a
broader range of charts for each entity to provide deeper analytical capabilities.

4.10.1. Fields

Due to crop rotation, which is where farmers will seasonally change what is planted in a
field,it is important to have a distinction when viewing bushels per acre for LandDivisions
and to only show data for LandDivisions for a given year in which it had that crop planted
in it. In Figure X, it can be noticed that both the bar chart and the candle stick chart are
showing harvest data for all LandDivisions based on the crop type which has been selected
from the top bar.

46

Figure 45. Charts for Land Divisions generated from data over the years of 2020 through 2024.

The top chart is a bar chart showing the yield in bushels per acre for each LandDivision

which had the selected crop type planted in that year. The bottom chart is a candle stick
chart which visualizes a five-number summary for each year based on the yield by each of
the LandDivisions planted that year. When the user hovers over one of the candle sticks,
a tooltip is shown which shows the information for the five-number summary for that year.
This can be seen in Figure 46.

Figure 46. Tooltip for the candle stick chart.

47

4.10.2. Crops

The “Crops” insights contain two line charts: one for viewing the acres covered by each
crop, and another showing the total bushels harvested for each crop. There is a line for each
crop type on each chart. Additionally, underneath the line charts, there is a five-number
summary on the total bushels harvested for each year based on the crop type that the user
selects.

Figure 47. Charts for viewing various metrics on crops from the year range of 2005 through 2024.

48

4.10.3. Jobs

Currently, the only chart displayed in the “Jobs” insights section is a stacked bar chart that
visualizes the count of job categories created for each year within the selected time range. As
FieldMind’s functionality expands, the JobTask entity can be enhanced to include additional
attributes, such as tracking which jobs experience the most mechanical issues or identifying
the most costly job categories. These additions would enable the generation of more detailed
insights and visualizations for job-related trends.

Figure 48. Stacked bar chart showing the breakdown of the count of jobs by category for the year
range of 2005 through 2024.

49

5. Implementation

FieldMind is a web application which uses ASP.NET Core along with Entity Framework
Core (EF Core) and Identity framework, following a Model-View-Controller (MVC) work-
flow for the backend.

On the frontend, AngularJS is used for the frontend framework along with the Angular
Fuse Template as a foundation for the UI, and TailwindCSS is used for the styling. For the
creation of the charts, I utilized open-sourced examples from Observable HQ, which uses
D3.js in order to create intricate data visualizations. Additionally, ApexCharts is another
library that was used in order to create charts seen throughout FieldMind.

The choice overall to use .NET and Angular is because of the experience that I have with
these technology stacks. I have worked with these technologies in industry, and have also
taken and taught classes using these technologies.

ASP.NET EF Core provides a powerful and flexible object-relational mapping (ORM) sys-
tem. It allows developers to define entity models as standard classes, and based on the
configurations registered in the database context file, the framework automatically gener-
ates the necessary tables. Each table’s columns correspond to the properties of the entity
classes, while relationships between tables are determined by how the models reference each
other in their definitions. For example, take the following simplified (a number of properties
irrelevant for this example have been omitted) Equipment and EquipmentCategory classes:

1 public class Equipment {

2 [Key]

3 public int Id { get; set; }

4

5 [ForeignKey("EquipmentCategory")]

6 public int EquipmentCategoryId { get; set; }

7

8 public virtual EquipmentCategory? EquipmentCategory { get; set; }

9 }

Listing 1. C# Equipment Class

1 public class EquipmentCategory {

2 [Key]

3 public int Id { get; set; }

4 }

Listing 2. C# EquipmentCategory Class

Through the use of what .NET calls a “navigation property” of EquipmentCategory, be-
cause EquipmentCategory is another entity, EF Core knows that by including this navigation
property here (namely that the data type is of the EquipmentCategory entity), that there
is, in this case, a many-to-one relationship from ‘Equipment‘ to EquipmentCategory. This
will be reflected in the database schema. If one were to have two models, each with a property

50

which had a List of the other, EF Core would know that this represents a many-to-many
relationship between the two, and a subsequent junction table would be made between these
entities, creating a composite primary key from the foreign keys of each table.

This ORM system makes defining the entity models, and the relationships between them,
far more intuitive and streamlined. Additionally, when more customized configurations are
needed, EF Core offers an API called the Fluent API in order to have more fine-grained
control of how the relationships between entities should be created.

Additionally, .NET has something called Language Integrated Query (LINQ) which allows
one to interact with collections and database entities, and can be used in conjunction with
EF Core to perform database queries. LINQ provides a powerful way to interact with these
types of objects allowing for filtering, mapping, and other manipulations, in a consistent
way. The syntax can follow a SQL-like form, or it can also use a method syntax as well.
When writing database queries, the queries follow a delayed execution which optimizes their
performance. Using LINQ for database access, this also creates a standard and safe way for
database queries to be built and executed.

SQLite was chosen for the database because it stores the entire database in a single file.
This is convenient for development as it allows the database to be simple and be pushed to
the project’s GitHub repository with the code. This way, if developing on multiple machines,
or for deployment of the application, I would not additionally have to setup a database server
along with the application and connect them.

Angular was chosen primarily because of my familiarity with it on other projects and in
industry. Additionally, Angular provides a very robust frontend framework for handling
asynchronous events, components, and state management. One organizational aspect that
I prefer with Angular over something like React, is that with Angular, each component has
a specific file for its HTML, TypeScript, and CSS. I appreciate the separation of concerns
within the component, as this design contributes to improved organization and maintain-
ability.

The Fuse Angular Template was used as it provides a great foundation from which to base
the UI on. Building the frontend of an app can often take a large amount of time due to the
frontend’s need to handle user interaction as well as visual layout. Fuse provides a robust
starting point which can be leveraged to take a lot of the initial tedium out of the frontend
setup and create a professional and responsive layout with minimal effort.

This streamlined UI design is critical for the application’s ultimate functional use by a
farmer. The layout needs to be something that is intuitive and also quick to navigate. Field-
Mind needs to be something that works with the farmer, not against them. My anticipation
is that there would not be a lot of patience for hiccups in the way that the application
receives data from a farmer. I think with software products like this, where the product
is aiming to be a central part of a critical business operation, that any small amount of
friction becomes greatly magnified due to the significance of the task which the application

51

is designed to support.

Fuse provided a strong foundation for both the workflow and aesthetic early in develop-
ment. Leveraging this framework eliminated the need to build the design from scratch,
significantly reducing the effort required and streamlining the process.

Fuse also provides support to handle and manage the use of JSON Web Tokens (JWTs)
for the frontend authentication system. This is a modern approach to handling the user’s
logged in state and helps to mitigate threats such as Cross-Site Request Forgery (CSRF)
attacks.

Rather than writing custom CSS for the styling, TailwindCSS was used. This choice was
made for two main reasons: I have familiarity with this CSS library, and Fuse also uses this
as its CSS library as well. Additionally, I also think that Tailwind provides a wide range of
options for styling and that the use of this library is easy and intuitive to use, making the
styling a far smoother process.

Taking an approach of using styling libraries, such as Tailwind, is something that I have
taken from my work in industry where using such libraries is preferred. This preference
of using libraries such as these rather than writing custom styles arises from the fact that
these libraries are well-documented and the effects of their styles are known. If one were
to use their own custom CSS, it is often not well-documented, and can also easily lead to
situations where different teams write different custom styles which are incompatible once
each team needs to integrate their piece into the overall project. By using styling libraries,
such as Tailwind, projects can be more consistent and predictable, which allows for better
scalability and maintainability.

Fuse includes Heroicons, a free, open-source collection of SVG icons maintained by the
Tailwind Labs team (creators of TailwindCSS). In FieldMind, these icons are used alongside
FontAwesome icons. I opted for the paid version of FontAwesome because it offers a wider
selection, including agricultural icons that were not available in the Heroicons collection.
These agricultural icons can be seen in the navigation menu of FieldMind, as well as on cer-
tain pages. Additionally, FontAwesome provides a larger overall library with more stylistic
variety. All of these choices contribute to the quality of the user experience as they help in
making the frontend more visually pleasing and intuitive to use.

5.1. Features and Components

When implementing features and components for FieldMind, I started with the structure
of the models. I typically like to start here because, for me, everything starts from here.
I thought generally how the frontend may need to look and function, and used this to de-
termine the general structure of the models. The model that I spent the most amount of
time thinking about, by far, was the LandDivision. The LandDivision model is the one
which the entire application revolves around, and all other models are based around. A lot of
thought went into how this model should be structured in order to allow for the subdivisions,

52

new crops each year, and the association of harvest data and jobs. The development of this
took a number of iterations, as issues with a given manifestation were seen as other parts of
the application were designed or created.

After the creation of the entity models (the model which is mapped to a database table), I
would create the relevant Data Transfer Object (DTO) model. This model would contain a
subset or superset of properties from the entity. For example, a superset of the LandDivision
entity was used when sending down a LandDivision to the frontend. Along with all of the
LandDivision entity’s properties, the crops, harvested crops, harvest summary information,
job information, and various hierarchical information about its parent division were also in-
cluded - all of these properties are not part of the LandDivision entity, but are instead part
of the DTO for the LandDivision. This is because some of these properties, such as harvest
summary information, are derived; while others, such as the crops on the LandDivision, are
properties which change year by year and thus must be gathered based on the selected year.
An example of when a subset would be used would be with the entity representing the user.
Here, a DTO would be used in order to hide some sensitive data, such as the password hash.

Once these models were defined, I created the relevant controller and service for a given
model. The service is where the DTO gets constructed with the combination of mapping
profiles for simple property mapping, along with service methods which do more rigorous
work for getting values for the derived properties mentioned. Through the creation of the
controller and the service, sometimes the entity and DTO models needed to be refined.

From there, I proceeded with creating the frontend component(s) and services which in-
teracted with and display that given model. Once the frontend received the data and I
started to build the layout, there again were times in which I realized that I needed to
add certain properties to either the entity or DTO model in order to facilitate things like
navigation to various routes, display certain information, or to perform various operations.

53

6. Testing and Verification

Because FieldMind is a web application, much of the testing was done through the user
interface. As features were added to the application, those features were tested through the
user interface, and the previous features were also tested to verify that the newly added
features did not break any already implemented features.

There are a number of places where the yield, weight, and area calculations are done. Dur-
ing development, I kept the data seeded in the database at a manageable level so that I
could verify that the math was done correctly. I systematically set up various situations to
represent usual cases as well as edge cases along with their expected outputs so that I could
verify the proper outputs were being produced and correct any issues as they arose.

6.1. Manual Testing Strategy

FieldMind’s testing approach incorporates manual testing to ensure the accuracy and relia-
bility of the application. The primary focus was on the following:

1. Functional Testing - Ensuring that each feature behaves as expected.

2. Regression Testing - Confirming that new updates do not introduce unintended
issues.

3. Edge Case Testing - Verifying how the system handles unusual or extreme input
conditions.

4. Data Validation Testing - Ensuring the integrity of calculations, such as yield and
area usage metrics.

Because FieldMind is a web application, most testing was conducted through the user inter-
face, validating how the system behaves under real-world usage conditions.

A structured manual testing process was followed for key features. The table below out-
lines some of the test cases covering different aspects of FieldMind:

54

Feature Initial State Action
Performed

Expected
Outcome

User Authentication No user logged
in

Enter valid
credentials and
log in

User is
authenticated
and redirected
to the
dashboard

User Authentication Incorrect
password
entered

Attempt login
with wrong
password

Error message
displayed, login
attempt denied

Data Entry - Field Creation No fields in the
database

User creates a
new field with
valid inputs

Field
successfully
saved and
displayed in the
list

Data Entry - Crop Management Existing field
with no crops

User adds a
crop with valid
data

Crop is
correctly
associated with
the field

Data Entry - Crop Management Field already
contains a crop
for the year

User attempts
to add a
duplicate crop

System prevents
duplicate entry,
error message
displayed

Data Retrieval Several years of
farm data exist

User selects a
year from the
toggle

Data updates to
reflect selected
year

Data Visualization Various land
divisions
contain
recorded data

User generates a
yield
comparison
chart

Chart displays
correct yield
data per
division

Field Deletion Field contains
subdivisions
and crop data

User deletes the
field

System prompts
for confirmation
and prevents
deletion if
dependent data
exists

System Performance User interacts
with large
datasets

User loads
multi-year farm
insights

Application
loads and
renders data
without
significant delay

Error Handling Invalid data
input for job
creation

User enters an
invalid date
format

System prevents
invalid input
and displays an
error message

Table 1. Manual Test Cases
55

6.2. Automated Testing Considerations

In addition to manual testing, automated tests could be implemented using unit tests and
integration tests for core components:

• Unit Tests: Used for functions like yield calculations to verify correctness under
controlled conditions.

• Integration Tests: Validate interactions between different components, such as database
queries and API responses.

Future development could incorporate automated UI testing with Selenium or Cypress
to reduce reliance on manual testing for repeated scenarios. Automated testing was not
implemented in the current iteration due to time constraints. Given the broad scope and
feature set of FieldMind, development efforts were strategically focused on building out core
functionalities to ensure a working application could be delivered within the project timeline.
While automated testing offers long-term benefits in terms of maintainability and reliability,
the initial development phase prioritized the implementation of critical features to meet
project objectives and provide a functional application for demonstration and evaluation.

56

7. Validation

Through the demos that I did with Glenn, the project was able to fit many of the practical
needs of a typical crop farmer in the Midwest. The current state of the project is something
that could be used in a production setting with a grain crop farmer in the Midwest. I credit
this to Glenn’s contributions through his expertise on the problem domain. Through con-
tinued conversations with Glenn, I was able to hone in on the right questions to ask and
identify which features would be of most value to farmers like him.

The current state of the project represents a minimum viable product (MVP) release. Field-
Mind fulfills the core requirements of allowing users to track fields, crops, jobs, inventory,
and equipment on a farm, while also supporting a rich suite of data visualizations derived
from this data. Each of these functional areas has been implemented to meet the initial
specifications, and the application enables users to interact with them in a manner that
is intuitive and practical for Midwestern crop farmers. This usability has been validated
through demonstrations and feedback from Glenn.

While the project offers a wide range of functionalities that make it practical for use by
crop farmers, there are still areas for improvement that could further extend its capabilities
and enhance its overall utility.

One such item would be the ability to edit certain aspects of a LandDivision and have
that property only change for that year and not every year. For example, currently, a
user can only edit size information on a LandDivision with no history, but not for any
LandDivisions that do have a history of planting and harvesting of crops. This is because
the LandDivision entity has its size as a property, and because the LandDivision exists
as a single entity in the database, when this property is changed, all years will have this
change. And so, this can break some of the rules of allowing a user to adjust the size of a
LandDivision to a dimension that perhaps is large enough to fit all of the crops and subdi-
visions for that given year in which the user is editing, but this may make the LandDivision
too small for other years given the crops and subdivisions it has during those years. For
example, if a LandDivision is 80 acres in size and in 2023 has 40 acres used for subdi-
visions and and 30 acres used for crops, for that year, the user would be able to reduce
the LandDivision’s size by up to 10 acres, as this is the amount of unused space there is.
Though this may be fine for 2023, if the system has that same LandDivision’s configuration
in 2024 as 40 acres of subdivisions and 40 acres of crops, that reduction made for the 2023
planting year now makes the LandDivision too small for 2024. The solution for this would
be to create an additional table which holds properties, such as size, for a LandDivision,
and associates it with a given planting year. And then when a given year is being viewed,
the state of the LandDivision for that year can be retrieved and edited for that year only
without effecting prior or subsequent years.

In the final meeting with Glenn, he said that the current state of the application has enough
functionality to make it a practical product for a farmer to use. FieldMind represents the
major operational aspects of crop farming to a degree which would add value to a farmer.

57

Glenn confirmed that the terminology aligns with what crop farmers use, and the workflow
of the application as well as the overall design are intuitive and user-friendly.

Based on the initial project goals, FieldMind successfully meets the intended objectives for a
minimum viable product (MVP) release. While there are additional features and refinements
I would like to pursue, the core functionality aligns well with the original vision.

58

8. Security

Given that FieldMind is a web application, it has a very wide accessibility. This access
can come in the form of both legitimate and illegitimate actors. Because FieldMind stores
detailed information on a farm’s operations, it is essential to store this data in a safe way
and prevent unauthorized access of critical data.

8.1. Authentication

FieldMind uses ASP.NET Core Identity Framework which provides support for a wide variety
of authentication methods such as password-based authentication, two-factor authentication
(using SMS, email, or authenticator apps), external authentication through OAuth 2.0, and
token-based authentication. There is also a verbose setup for authorization as well, which
can be enforced on an entire controller, and also on an endpoint-to-endpoint basis.

FieldMind currently uses password authentication on login, and then issues a JSON Web To-
ken (JWT) to persist the user’s login for a configurable duration of time that they are active
on the site. The Angular Fuse Template comes expecting this authentication flow and will
work with the JWT issued by ASP.NET in order to facilitate a smooth user login experience.

FieldMind is an application which requires input from users. In the future, FieldMind
may facilitate interaction between workers and the farmer. In this case, certain data created
by one user may be viewed by others, thus the protection against attacks such as Cross-Site
Scripting (XSS) is a serious concern. In this same spirit, Cross-Site Request Forgery (CSRF)
attacks are also a major concern.

Starting with XSS, Angular has robust defenses against this. Angular will automatically
escape potentially dangerous characters in templates and will instead render such dangerous
characters as plain text rather than executable JavaScript. Angular also sanitizes HTML
when using data bindings in the markup. In order to have Angular not perform this sani-
tization, a programmer would have to explicitly set the bypassSecurityTrustHtml bypass
function.

As for CSRF attacks, these often rely on a browser’s default behavior of sending cookies
associated with a given origin with any requests made to that origin. However, JWTs are
not automatically sent by browsers. Instead, JWTs are typically stored in localStorage

(as is the case with FieldMind) or in sessionStorage. This requires the application itself
to explicitly add the JWT to the request headers. Because this must be manually done by
the application, this greatly reduces the risk of a cross-origin request automatically including
authentication tokens.

8.2. Authorization

ASP.NET also offers authorization packages as well. Part of this is the use of attributes,
such as [Authorize]. This attribute requires that a user is logged in before they will able

59

to access the controller or endpoint which it resides over. The [Authorize] attribute can
be placed over a controller as a whole, meaning that every endpoint is only reachable by a
logged in user; or, you can use the [Authorize] attribute over specific endpoints within the
controller, and guard only those in this fashion.

This [Authorize] attribute is employed on all of the controllers throughout the applica-
tion, providing an exception to only certain endpoints which do not require the user to be
logged-in order to access such as the sign-in and sign-up endpoints.

However, just being logged in is not enough to secure routes in our case. For example,
many backend controllers are reached with the inclusion of the farm ID that a user is de-
siring to get information about or modify. An example is the following route to reach the
LandDivisionController:

"api/farms/{farmId}/land-divisions"

As seen below, though the [Authorize] attribute will protect this route to a certain extent
ensuring that the user is logged in, it does not enforce that the user has rights to the farm
with the farm ID of farmId.

1 [Authorize] // Just Authorize is not enough to secure this controller.

2 [Route("api/farms /{ farmId }/land -divisions")]

3 [ApiController]

4 public class LandDivisionsController : ControllerBase {

5 /* Controller code */

6 }

This means that a logged in user would be able to merely manipulate the part of the URL
string which has the farm ID to be whatever farm that they wanted, and they would be al-
lowed access to data for farms which they are not a part of. This is clearly not an acceptable
action to allow.

The following is an example of manipulating the URL to view data on arbitrary farms:

"api/farms/1/land-divisions" // Farm with ID of 1

"api/farms/8/land-divisions" // Farm with ID of 8

In addition to the enforcement of the user being logged in, we also need an authorization
policy which can enforce that the farm ID that is being requested by the logged in user is
indeed a farm to which this user has access. In order to do this, I created a custom policy
which uses various claims (information about the logged-in user) made available via Identity
Framework which checks for and enforces exactly this. The following block of code shows
the use of said policy, though I have defined this policy elsewhere in the application (the
details of its definition are not needed for this description).

60

1 [Authorize(Policy = "FarmAccessPolicy")]

2 [Route("api/farms /{ farmId }/land -divisions")]

3 [ApiController]

4 public class LandDivisionsController : ControllerBase {

5 /* Controller code */

6 }

Listing 3. C# LandDivisionsController

This policy will provide the access control that is required to ensure that farm data is only
given to users which are authorized to view that data. Currently, FieldMind is built for use
of a farm run by a single person, and therefore this person has no privilege restrictions on the
farm. However, in future iterations of FieldMind, the user base may expand and there may
be a more tiered structure on access privileges. This approach used the FarmAccessPolicy,
and other approaches similar to this can be leveraged in order to include more intricate
access privilege structures.

8.3. Error Handling

Security of an application also extends to the proper handling of errors which may occur
during its operation. One of these critical error checks is ensuring proper checks for null.
The C# language has a rather verbose ability to allow for nullable types (marked with a ?

such as int?) and provides convenient accesses to know whether or not a value is null and
to retrieve the actual value which a nullable variable holds.

There were times throughout the construction of the FieldMind where errors cropped up
and debugging was needed. Because I had taken care to check for various error states and
produce appropriate error messages when said errors occurred, when these issues occurred,
I was able to quickly locate the source of the issue and correct it. If not for those error
checks and subsequent descriptive messages, finding the errors would have been much more
time-consuming.

For the backend code, there are controllers and various services which facilitate the gathering
and modification of data. The flow of the system is that the controllers handle requests, and
will then use services and call methods of those various services in order to perform whatever
transformations or more intricate manipulations of data are necessary. This separation of
concerns keeps the code more streamlined and organized; but, there also needs to be a way
for the controller to handle an error that may have occurred deep within a service. The
controller must have an indication of whether or not a service was able to complete a given
action, and if it was not, to know what went wrong.

61

In order to facilitate this requirement, the following ValidationResult data type was cre-
ated.

1 public class ValidationResult <T> {

2 public T? Result { get; set; }

3 public string? ErrorMessage { get; set; }

4 public bool HasError => !string.IsNullOrEmpty(ErrorMessage);

5 }

Listing 4. C# ValidationResult Class

Notice how the ValidationResult data type uses a generic for its payload. This structure
allows for the payload to be very dynamic as far as its type, while simultaneously having
guarantees about the overall structure of the ValidationResult type as a whole.

Below, we can see how the ValidationResult<T?> is used within the
GetAllLandDivisionsForYear(int farmId) method. The generic type is leveraged to al-
low a variety of types for the payload that will be returned while also maintaining the
consistency of indicating if an error occurred, and if one did, the message of what that error
was. In the below example, if an error does occur in one the the subsequent method calls
made by this GetAllLandDivisionsForYear(int farmId) method, we merely place that
error message into the validationResult and then return that validationResult. In this
way, we are able to propagate errors up the stack and also prevent further execution of a
method if an error occurs. This prevents unexpected crashing and also lends the way for
much faster problem diagnosis and resolution.

62

1 public async Task <ValidationResult <ICollection <LandDivision >>>

GetAllLandDivisionsForYear(int farmId) {

2 ValidationResult <ICollection <LandDivision >> validationResult = new

ValidationResult <ICollection <LandDivision >>();

3

4 if (! _yearContextService.StartYear.HasValue) {

5 validationResult.ErrorMessage = "No planting year has been

selected. Planting year is required.";

6

7 return validationResult;

8 }

9

10 ValidationResult <Expression <Func <LandDivision , bool >>> predicateResult

= this.AllLandDivisionsForYearPredictate(farmId);

11

12 if (predicateResult.HasError) {

13 validationResult.ErrorMessage = predicateResult.ErrorMessage;

14

15 return validationResult;

16 }

17

18 if (null == predicateResult.Result) {

19 validationResult.ErrorMessage = "Expected to have queryable

predicate for parent divisions , but got null instead.";

20

21 return validationResult;

22 }

23

24 /*

25 Other code continuing here.

26 */

27

28 return validationResult;

29 }

Listing 5. C# GetAllLandDivisionsForYear Method

The reason that this flow is desired over merely throwing an exception is because we are
dealing with controllers for a web application. Therefore, ultimately, we want the controller
to be able to respond to the client with an HTTP response. The application gives error
messages which the frontend code parses in order to respond with a redirection and/or ap-
propriate error message. The extra time invested into having verbose error messages paid for
itself in dividends of time which was recovered in diagnosing and fixing bugs when they arose.

I make such a significant mention of this because the handling of errors is often some-
thing that can fall by the wayside when trying to move quickly in building an application.
And though this mention of error messages is in the security section of this thesis, proper
checking and handling of errors has far wider implications than just security. As mentioned,
when errors occurred, because of the care given to checking for these issues and then produc-
ing descriptive messages which are indicative as to what happened and where something
happened, these errors were able to be quickly tracked to their source and corrected.

63

When working on more complex systems, the need for the thoughtful detection and handling
of errors makes itself manifest. There is an upfront cost to creating these mechanisms, but
the benefits are very quickly realized. Even if there are often no errors which crop up, there
is a peace of mind in knowing that checks are being done and that invalid states of various
kinds are being handled. It gives far more confidence that the progress one is making is
actually progress, and that there is less of a likelihood of some unanticipated “trap doors”
lurking somewhere.

8.4. Database Interaction

Database accesses are another area which can introduce significant security vulnerabilities.
FieldMind uses LINQ, which stands for Language Integrated Query, in order to retrieve data
from the database and also to perform updates. LINQ is a feature of .NET languages, such
as C#, which allows for the querying and manipulation of data from various sources such as
collections, databases, and others, in a unified, readable, and type-safe syntax.

When using LINQ, there are a number of benefits over writing raw SQL queries. LINQ
performs compile-time checks on the code that is written rather than being just a raw
string, as is the case with SQL. The queries that are generated with LINQ are also parame-
terized, which means that the input is treated as data, not executable SQL code. LINQ also
optimizes the queries that it generates based on the database provider that the application
is using.

By using LINQ, there is a standardized way to access the database - and interact with
any collection for that matter - and therefore, this will be a common, well-documented API
for other developers as well. This makes the use of LINQ much more scalable and main-
tainable. The LINQ code that is written by the developer is also database agnostic, so if
the project were to change its database provider, none of the LINQ code would need to
change since it will generate the appropriate SQL code based on the database that it needs
to communicate with.

64

8.5. Concurrency

One of the important features of FieldMind is its ability to provide aggregated data over a
span of years. Throughout the application, there are a number of pieces of data which need
to be retrieved from the database, and various transformations that need to be done on each
entity in order to put it in the desired form for either further manipulations or for serving
to the frontend. The use of asynchronous code is critical for these operations, particularly
with a user base that grows, so as to keep the server able to handle this kind of load being
placed upon it. However, asynchronous code on its own is not enough to reduce bottlenecks.
In conjunction with the asynchronous code, for operations such as transformations which
must be done for each element in a set of elements, running these tasks concurrently in an
asynchronous fashion provides the desired efficiency.

1 public async Task <D3HierarchyData > FarmAreaUsageTreeMapData(ICollection <

LandDivision > landDivisions) {

2 D3HierarchyData rootNode = new D3HierarchyData {

3 Name = "Farm",

4 Children = new List <D3HierarchyData >()

5 };

6

7 if (0 < landDivisions.Count) {

8 // Create tasks for each Land Division to execute concurrently.

9 IEnumerable <Task <D3HierarchyData >> landDivisionTasks

10 = landDivisions

11 .Select(landDiv => this.AreaUsageTreeMapNode(landDiv));

12

13 /**

14 Using Task.WhenAll () allows for all Land Division tasks

15 to run concurrently.

16 This approach is more efficient than awaiting each

17 task sequentially , as it waits only for the

18 longest -running task , not the sum of all tasks.

19 */

20 ICollection <D3HierarchyData > childNodes

21 = await Task.WhenAll(landDivisionTasks);

22 rootNode.Children.AddRange(childNodes);

23 }

24

25 return rootNode;

26 }

Listing 6. C# FarmAreaUsageTreeMapData Method

Take the above block of code, for example, which demonstrates the use of the Task.WhenAll()
approach, a common pattern throughout the application. The Task.WhenAll() method can
accept either a collection of asynchronous tasks, as shown here, or multiple asynchronous
tasks as separate arguments. Instead of awaiting each task sequentially, Task.WhenAll()
enables them to execute concurrently, ensuring that the total wait time is only as long as
the longest-running task rather than the sum of all tasks.

65

The FarmAreaUsageTreeMapData method processes a collection of LandDivision entities to
build an interactive tree map representing the farm’s area usage. To determine area usage, it
retrieves relevant data for each LandDivision within the selected year, including associated
crops and subdivisions, as well as any nested subdivisions and their corresponding data.
Since this requires multiple database look-ups, execution time can vary depending on the
number of crops and subdivisions at each level.

To maximize efficiency, all necessary database queries and processing tasks are initiated
simultaneously. By gathering all Task objects and tracking them with Task.WhenAll(), the
method ensures that data retrieval is completed in the shortest possible time - dictated by
the longest-running task rather than the cumulative execution time of individual tasks. This
significantly improves performance by leveraging concurrent execution.

Care has been taken throughout the backend to apply this approach wherever possible,
optimizing CPU utilization and making the application more scalable and responsive to user
interactions.

66

9. Deployment

FieldMind is deployed using Azure cloud services, chosen primarily because the backend is
built as an ASP.NET web application. Given that ASP.NET and Azure are both Microsoft
products, I anticipated that Azure would provide a streamlined deployment process. Re-
search confirmed this assumption, and I also received guidance from coworkers experienced
with this technology stack.

For domain registration, I purchased fieldmind.io through Porkbun and configured it to
connect to the web app on Azure during deployment.

9.1. Preparing FieldMind for Deployment

Before deployment, a production build was required for both the backend and frontend:

1. Backend (.NET) Build

• A production build was generated using the dotnet publish command, which
compiles the application into its binaries and places them in a Publish directory
inside the bin folder.

• The location and naming of this output directory are customizable in the com-
mand.

2. Frontend (Angular) Build

• The Angular portion was compiled using the ng build --configuration=production

command, creating a dist directory containing the built frontend files.

• Since the project uses the Angular Fuse Template, the output files were placed
inside a fuse subdirectory within dist.

3. Integrating the Angular Frontend with the .NET Backend

• By default, .NET serves frontend files from its wwwroot directory.

• Since FieldMind uses an Angular frontend, the existing contents of wwwroot were
removed.

• The compiled files from Angular’s dist/fuse directory were then copied into
wwwroot so that .NET could serve them properly.

4. Configuration in Program.cs

• Additional configurations were required in Program.cs, which serves as the entry
point for the .NET application.

• These included setting up environment variables, defining database paths, and
ensuring that the SQLite database would be created on startup if it didn’t already
exist.

67

9.2. Setting Up Azure Resources

• Resource Group – A logical container managing all related Azure services. This
functions as a virtual server environment.

• App Service Plan – Defines the computing resources allocated for running the ap-
plication.

• App Service (Web App) – The primary hosting service for the ASP.NET backend
and Angular frontend. Multiple web applications can be hosted within a single resource
group.

• Storage and Database Considerations – Since SQLite was used as the database,
it was stored in Azure’s persistent storage (/home/) instead of wwwroot, which could be
overwritten during deployments. Proper write permissions were granted to the /home/
directory to ensure data persistence.

9.3. Deploying FieldMind to Azure

Once the necessary Azure resources were created, the application environment was config-
ured:

1. Setting Environment Variables

• Sensitive information such as JWT authentication keys and database connection
strings were securely stored as environment variables in the Azure portal.

2. Database Configuration

• The SQLite database path was updated to be stored in /home/ for data persistence
across deployments.

• A configuration was also added to ensure that FieldMind automatically creates
the database on startup if one does not already exist.

3. Uploading the Application to Azure

• The Azure Command Line Interface (CLI) was used to push the application to
the web server.

• Once uploaded, I accessed the server via SSH through the Azure portal and nav-
igated to /home/site/wwwroot/.

• Inside this directory, the Publish folder (containing the compiled .NET applica-
tion) was moved to wwwroot, and the now-empty Publish directory was removed.

4. Starting the Application

• A start command (or restart command, if updating an existing deployment) was
issued via the Azure CLI to launch the application.

68

5. Configuring the Domain

• After verifying that the application was running, I configured DNS records in
Azure to associate fieldmind.io with the IP address assigned by Azure.

One potential improvement would be migrating from SQLite to an Azure SQL Database for
the production environment. SQLite operates as an embedded database and relies on file-
based storage, which can become inefficient for a data-intensive application like FieldMind.
As the database grows, query performance can degrade since SQLite loads entire datasets
into memory rather than leveraging optimized indexing and query execution strategies used
by full-fledged database management systems. By transitioning to Azure SQL Database,
FieldMind could benefit from better scalability, optimized query performance, and improved
memory management, ensuring a more efficient and responsive application.

Overall, deploying FieldMind to Azure required careful preparation, from generating produc-
tion builds for both the backend and frontend to configuring the hosting environment and
ensuring data persistence. Azure’s compatibility with ASP.NET, along with its suite of cloud
services, made it a logical choice for hosting FieldMind, providing a streamlined deployment
process with scalability for future enhancements. The use of environment variables, database
persistence strategies, and structured resource management ensures that the application runs
efficiently and remains secure. With fieldmind.io now fully operational, future improvements
can focus on optimizing performance, expanding feature sets, and refining user interactions
to better serve the needs of Midwestern crop farmers.

69

10. Challenges

Early on, in the spirit of scalability, I was trying to make FieldMind applicable for any kind
of crop farm that you could think of - whether that be corn and soybeans, or something like
bananas or cherries. However, as I built FieldMind with this aim, I began to realize that this
mindset was causing me to become deadlocked in not knowing the proper manner in which
to proceed. I would question whether my approach was general enough to fit all cases or if I
was being too specific. And I had no way of knowing either way. I also did not even know the
questions that I should be asking for these other farming situations either. The intentions
were good - I was trying to make something that was not too specific for a given situation.
In other words, I did not want to overfit a specific problem domain. I soon came to the
conclusion though that, by trying to do everything, I was not being able to do anything.
What I have is a consultant for a Midwest crop farm for grains. Therefore, that is what
the application should be built for. Perhaps there would need to be some reworking and
expanding of certain aspects of FieldMind in order to accommodate other kinds of farming,
but those features and challenges are something that need to be addressed when tangible,
actionable knowledge has been gained about those problem domains. Otherwise, I would be
truly just making shots in the dark.

By narrowing the scope to a Midwestern crop farmer, whom I had as a consultant, I could
create an application which was well-suited for this purpose. In doing this, this allowed me
tangible implementations of not just aspects that manifest itself currently in the application,
but also a setup that is still expandable to other kinds of crops as well. The implementation
details for these other kinds of crops are left for future versions of the application because,
just as with the situation of a Midwestern crop farm, a consultant(s) would be needed in
order to get the details right. By getting the details right for the tangible situation of a
Midwestern crop farm, many of these design choices set the stage for what would be needed
for other kinds of farms once that domain knowledge is accessible by way of a consultant.

For example, yield calculations for Midwestern grain farms are given in bushels. Further-
more, to assess the efficiency of a field, the bushels gathered for a given crop are divided by
the area covered by that crop to give a “bushels per acre” measurement for the field. There
are surely other measurement units and divisions done on other crop types as well. Though
the conversions and specifics of this can be acquired through research, having the research be
vindicated and contextualized by a farmer who farms that crop is a necessary requirement
in order to have proper implementation of not just the aforementioned conversions, but also
so that the data can be gathered, aggregated, and displayed in a way which makes sense for
those kinds of farmers.

70

The idea of overfitting also embodied itself early in the design as well when I was first
gathering requirements and building the initial models. I did overfit a description from Glenn
about how farms subdivide their fields and how they label these subdivisions. Glenn had
described how a farmer can subdivide their field and that it worked in the following way:

• A field can be subdivided in half, each being called a section.

• A section can be divided in half, each being called a section quarter.

• Finally, a section quarter can be subdivided into a plot.

• A plot is the smallest unit.

With this information, I initially created one entity for each of these different divisions, and
based on whether that division could be divided, it would have a property of a collection
of the entity lower in the hierarchy. For example, a Field had an ICollection<Section>

Sections, the Section entity had an ICollection<SectionQuarter> SectionQuarters,
the SectionQuarter entity had an ICollection<Plot> Plots, and then the Plot did not
have such a property since it always functioned as a leaf node in this structure.

However, as indicated, this design was overfitted to its description and actually created
a number of problems as I began to think more about the necessary mechanics of the ap-
plication. First of all, each of the above types really would only differentiate by name and
by what - and if - it had a collection of children divisions. Otherwise, at each level, there
was the option to hold crops. But, if say, the Field entity, was divided into two Section

entities, since this would mean that the Field was divided in half, that would mean that
the Field cannot hold any crops since that would be delegated to the Section. And then
what if the Section was divided? And what if those SectionQuarters were divided? How
do we know where the planted crops should be attributed? And then furthermore, we would
also have to limit the size of the collections as well. This becomes unnecessarily complicated
to track and enforce.

Additionally, imagine if a farmer wanted to use a small part of the farm for a seasonal
pumpkin patch, or something of this sort. If it was small, the size of a Plot, then in this
setup, the system would force the farmer to create a Section, then SectionQuarter, before
ultimately being able to create a Plot. This does not make sense, and also can create an
organizational nightmare for the farmer for wanting to do such a simple action of creating a
small plot for one thing or another.

The deletion of an entity within this hierarchy presents significant challenges. Consider
a scenario where a farmer has a fully structured hierarchy down to the Plot level - a Field

divided into two Sections, each further divided into SectionQuarters, which in turn con-
tain Plots. If one Section were to be deleted, the system would need to determine how to
reassign the remaining SectionQuarters. Since a Field can only contain two Sections,
one of the SectionQuarters would have to be promoted to a Section to maintain the re-
quired structure, while the other might need to be converted into a Plot. This restructuring

71

is neither intuitive nor practical, leading to inconsistencies and unnecessary complexity.

Furthermore, all entities within this hierarchy share more similarities than differences. Their
primary distinction lies in their assigned entity names (‘Field‘, ‘Section‘, ‘SectionQuarter‘, or
‘Plot‘) and the specific rules governing their subdivision relationships. Given these structural
similarities, enforcing rigid hierarchical constraints introduces unnecessary complications.

Instead of creating all of these different entity types with these rules, I created an gen-
eral LandDivision entity. This LandDivision entity functions just as a regular tree node
in computer science, wherein every node is the same as all others and is only differentiated
by where it is in the tree and by what value(s) it carries. Each LandDivision entity has a
Subdivision property, which is just an ICollection<LandDivision> for its data type, and
it has a nullable ParentDivisionId which contains the ID of the LandDivision which is its
parent. If it is a root LandDivision, then the value of ParentDivisionId will be null. In
order to represent the Field, Section, SectionQuarter, and Plot idea, each LandDivision

has a LandDivisionType property which is just a category for the LandDivision. This
LandDivisionType is user-defined and therefore allows the farmer to decide how they would
like to have any sort of hierarchy organized. But these decisions will be placed in the hands
of the farmer. This satisfies the organizational structure that Glenn had described, while
also allowing this to be general enough to fit more than just the described hierarchy. This
simultaneously frees FieldMind from having to micromanage this organization - a task which
would have likely only caused excruciating overhead with very little, if any, payoff.

One of the other major challenges that was faced was the management of data over time.
Maintaining the integrity of historical data while still allowing the user to make edits to
the various entities is something that needed to be handled delicately. And I think that
there are still some places where some improvements can be made in addition to the already
mentioned LandDivision size adjustments. For example, does it make sense that a user
deletes a given entity and then later restores it? In certain cases, perhaps the answer to this
is “yes”, but in others, perhaps the answer is “no”. What would be the deciding criteria
for this? If someone mistakenly deletes something, I think that, in general, they should be
allowed to undo this action. However, in what ways should this deletion happen and what
limits should be imposed on them? If a user is interacting with a LandDivision and then
goes back a certain number of years on that LandDivision and wants to delete a subdivision
- if that subdivision persisted for the years after the year currently being viewed. . . should
that subdivision only be deleted for that year? Should it be deleted for all years after that?
And what of its harvest information and all other data associated with it such as jobs and
resource consumption - what should be done with all of that data?

It is questions like these that I found presented the most challenges. And to highlight -
these questions are difficult not because there is a lack of knowledge for how to technically
execute one solution or another; instead, the difficulty comes from knowing which path
should be taken, or which combination of paths should be taken. These kinds of questions
are really design questions, and are also questions about, psychologically, what the user is
going to expect when certain actions are performed - and whether or not these actions should

72

even be allowed to be performed.

I think that when building systems like these, when the technical know-how is there, much
more attention turns to what should be done rather than the technical how - at least for the
kinds of problems I’m describing. And again, I would say that this is where the consultation
with domain experts is critical, because perhaps you are looking at a problem in the wrong
way; perhaps you are fretting about situations which will not occur and thus should not be
allowed to occur in the application. Knowing the bounds of what the application should
concern itself with and what it should not is where the answers to some of these questions
are, and where the breadcrumbs of the path to take can be found.

There is also nothing wrong with deciding that an application does not support certain
features for a given release either. This circles back to the idea of wanting to do one thing
well. Not everything is going to be able to be accomplished in one step. Perhaps the conclu-
sion is reached that at a given point in time, the “right” decision is just to not have whatever
given feature or action is in question. Those features perhaps are better introduced when
the application is more mature and when a better understanding is held by the programmer
and/or team.

This is the exact conclusion that I came to when thinking about the span of agriculture
and software features that I wanted FieldMind to be able to support for this MVP release. I
strongly believe that making these decisions in the right places can actually make an appli-
cation’s use more broad because, ironically, it is not trying to solve all problems on a given
release. You have to make something specific enough so that it can transition from idea to
reality. From there it can grow.

I would say that the greatest challenges when developing FieldMind were these exact prob-
lems rather than the technical execution of them per se. I knew how to create everything
that I wanted to create, but it came down to questions of what should be implemented,
and in what ways the user should interact with these aspects. The manner in which these
features would be displayed and controlled by the user was another matter as well.

73

11. Conclusions and Future Work

I’ve worked in industry as a software engineer for about seven years. Each of the companies I
worked for were startups, and they all had significant codebases that I contributed to. Since
they were startups, I led the projects I worked on and was responsible for implementing ma-
jor features. These included integrating merchant processors—financial services that handle
electronic payments between businesses and customers—to overhaul how client companies
paid their entire staff, adding multilingual capabilities to a telephony system, developing
a Google Home agent for contextual conversations, integrating QuickBooks’ API with an
existing accounting system, and other projects.

All of the aforementioned experiences have caused me to grow tremendously as a software
engineer and pushed forward my programming and problem-solving skills in major ways. I
would say that this project with FieldMind has grown my software development skills in
ways that I did not anticipate.

As with any project, there is an initial underestimation of the complexity and the chal-
lenges. And with this project, there were a number of instances where I “did not know the
question to ask” because even though I’d worked on large systems, I’d never built them from
scratch.

There is an inclination to dismiss away concerns about the UI and how that will shape
up and be interacted with by the user. The rationale for this being that these things are
rather superficial and are more “design” aspects and not the “hard engineering” aspects
which are the “real work” of the project. However, I would give much more attention to
drawing out what the UI would be if I were to do a project like this again. The UI ultimately
is what is going to trigger the backend machine to turn its gears in the desired ways. The UI
offers the levers which will make the machine function, and in turn tells you the functionality
that you must have. As the project progressed, this is why I made my to-do lists based on
the frontend navigation menu - because this is what was going to inform me of what I needed
to do for all of the functionality mechanics, and it kept all of this very nicely organized.

As I say these things, it may sound obvious. However, I would argue that many of us,
as programmers, can have a tendency to have this exact sort of attitude, which in turn can
decrease user-friendliness, and in turn, the functionality that actually ends up being used or
implemented, for a given application.

For example, I mentioned earlier in this paper about how the LandDivision entity cur-
rently has a restriction of not being able to edit the size, and some other details, if there
is any historical data on that LandDivision due to the fact that changing those properties
would change it for all years since there is not a separation of those properties year-by-year:
when you change it, you change it for the single instance of the LandDivision. This over-
sight happened because I was focused on looking at a LandDivision, and indeed the entire
application, for one year for the initial design. I did not want to focus on a UI feature such
as looking at data over a span of years. However, had I paid more attention to some core

74

features of how the UI would flow and what the user should be allowed to do, this flaw could
have been seen and addressed earlier in the process. This issue would have required far less
testing to verify its correctness early on because every feature would have been built with
this design already a part of the app, rather than now, having to retroactively add this in
and then address any issues caused by this adjustment.

This example is also what I mean when I say that being dismissive of the UI design ele-
ments can indeed affect the actual implementation of an application. If you build too many
things up without considering a more holistic picture of how it all fits together, UI and
all, this may end up pushing out some features for a given release because of the risk of
introducing them at the stage in which they enter your foreground of your thoughts and
attention. Even if the given features do get implemented, if attention is not paid to how
the UI is structured, they may never be used anyway - and that is about as good as not
implementing it at all.

Lingering on the design of the LandDivision, which is a core entity of FieldMind, I ini-
tially thought of this as being an entity which would have properties such as the crops,
harvest, and yield information as part of its definition. But, as I began to see, this would not
work since this information would change year-to-year. This year-to-year change was more
obvious earlier in FieldMind’s development because of the role that this data plays in the
application - these are more central to many of the charts. Instead, this data, along with
other pieces of data, on the LandDivision are actually not a part of the LandDivision

entity, but are instead part of the Data Transfer Object (DTO) for the LandDivision. This
means that the LandDivision that is ultimately displayed is actually more assembled by the
application upon request rather than existing in the database as the user sees it. We “put
Humpty Dumpty together” every time that we request and interact with a LandDivision.

This “scattering” of the properties like this also happens because there are a number of
properties, such as all of the yield information, which are derived and thus not something
that you would want to store in the database. These ideas were illustrative for me about
how all of these components fit together. When building simpler projects, you do not nec-
essarily see how all of these pieces come together, and how it is not any one part which
does everything, but how the “machine” itself is only whole once it becomes comprised of all
of the parts which make it up. An example of this would be how the LandDivision entity
actually does not store all information about the LandDivision, but instead only a fraction.
If you want to look at a LandDivision in the way that you would understand it with crops,
harvest, yield information, and so forth, whether for a single year or span of years, you have
to use the various services for the LandDivision, Crops, HarvestedCrops, and Yield, in
order to assemble the whole picture. I picture this like a vehicle in the real-world - a car is
not any one of its parts, but it is the sum of them; and, each part is dependent upon the
others. Seeing this connection only reveals itself when a project grows to a certain level of
complexity. With simpler projects, one part may dominate more and not rely so heavily on
all of the others.

For future work with FieldMind, I would like to extend its ability to track more details

75

about the existing entities. I would also like to incorporate 3rd party APIs, such as ones
from the USDA, so that a farmer can see how their farm compares to overall trends seen
across the United States. Expanding on more charting features can also provide a richer set
of insights for farmers as well, further adding to the value that FieldMind provides. Addi-
tionally, the incorporation of physical sensors which can be placed out in a field and then
have that data sent to FieldMind and displayed to the farmer would add another layer of
depth which would be unique to each farm. I would also like for FieldMind to be able to allow
for workers on a farm to have an account and the appropriate permissions as well. These
workers could work on just one farm, or multiple farms, and have all of this be facilitated
through FieldMind.

FieldMind could also allow for the tracking of LandDivisions owned by a certain farm
and then rented by another. This would allow for a deeper network of connections to be
made through the application. On this note, a given company or person may own multiple
farms, and the ability to manage and switch between these would be something for future
development as well.

The ease of use of the application by having as little manual entry of data as possible
for common tasks would greatly increase the user-friendliness of the application. For the
entry of scale ticket information, I would like this to be done via the user taking a picture of
the scale ticket they received, and then having FieldMind fill in the data from that photo.
This way the user would only need to audit this data in the application. In this same spirit
of reducing that amount of manual work that would need to be done, if a farmer would
like to enter in data from previous years before signing up for FieldMind, I would like the
application to allow for the farmer to be able to upload their harvest summary data for
previous years. This way these totals for the harvest summary can be used and the main
charts showing performance of a field over time can still be built without forcing the farmer
to enter in scale tickets for previous years.

A number of these features have some foundations already setup in FieldMind, but would
need some more significant work in order to come to full fruition. These are features that I
would like to continue to develop with the application. Agriculture is such a crucial part of
our society, and I think that there is a need and opportunity here to bring value to farmers
in a way that puts their concerns first.

76

12. References

[1] U.S. Department of Agriculture, National Agricultural Statistics Service, “2022 census of
agriculture data now available.” https://www.nass.usda.gov/Newsroom/2024/02-13-2024.
php, 2024. Press release announcing the release of the 2022 Census of Agriculture data.

[2] United States Department of Agriculture, National Agricultural Statistics Service,
“Table 52. selected operator characteristics: 2022 census of agriculture - iowa.”
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,

_Chapter_1_State_Level/Iowa/st19_1_052_052.pdf, 2024. Provides demographic infor-
mation about Iowa farm operators, including age, sex, and experience.

[3] A. Plastina et al., “Iowa farm costs and returns 2019–2023 (agdm file c1-10).” https:

//www.extension.iastate.edu/agdm/wholefarm/pdf/c1-10.pdf, 2023. Supports the crop-
land figure: full-time Iowa farms averaged 587 crop acres in 2023. This sample includes pri-
marily larger operations.

[4] United States Department of Agriculture, National Agricultural Statistics Service, “Quick
stats: Iowa state agriculture overview.” https://www.nass.usda.gov/Quick_Stats/Ag_

Overview/stateOverview.php?state=IOWA, 2024. Provides key statistics on Iowa agricul-
ture, including acreage, production, and economic value across various commodities.

[5] USDA National Agricultural Statistics Service, “Farm production expenditures – iowa 2023.”
https://www.nass.usda.gov/Statistics_by_State/Iowa/Publications/Economics/

2024/IA-Farm-Production-Expenditures-07-24.pdf, 2024.

[6] United States Department of Agriculture, National Agricultural Statistics Service, “Iowa state
agricultural statistics.” https://www.nass.usda.gov/Statistics_by_State/Iowa/index.

php, 2024.

[7] U.S. Department of Agriculture, Economic Research Service, “Farm income and wealth
statistics - state-level farm income statement.” https://www.ers.usda.gov/data-products/
farm-income-and-wealth-statistics/, 2023.

[8] United States Department of Agriculture, National Agricultural Statistics Service, “2022 cen-
sus of agriculture.” https://www.nass.usda.gov/AgCensus/, 2024.

[9] Iowa State University Extension and Outreach, “Costs and returns – ag decision maker.”
https://www.extension.iastate.edu/agdm/cdcostsreturns.html#yields, 2024. General
reference page for cost and return estimates.

[10] USDA National Agricultural Statistics Service, “Usda nass publications.” https://www.nass.
usda.gov/Publications/, 2024.

[11] United States Department of Agriculture, National Agricultural Statistics Service, “2022
census of agriculture - iowa state data (volume 1, chapter 1).” https://www.nass.usda.gov/

Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/,
2024. Landing page for 2022 Census of Agriculture - Iowa state-level reports.

77

https://www.nass.usda.gov/Newsroom/2024/02-13-2024.php
https://www.nass.usda.gov/Newsroom/2024/02-13-2024.php
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/st19_1_052_052.pdf
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/st19_1_052_052.pdf
https://www.extension.iastate.edu/agdm/wholefarm/pdf/c1-10.pdf
https://www.extension.iastate.edu/agdm/wholefarm/pdf/c1-10.pdf
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=IOWA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=IOWA
https://www.nass.usda.gov/Statistics_by_State/Iowa/Publications/Economics/2024/IA-Farm-Production-Expenditures-07-24.pdf
https://www.nass.usda.gov/Statistics_by_State/Iowa/Publications/Economics/2024/IA-Farm-Production-Expenditures-07-24.pdf
https://www.nass.usda.gov/Statistics_by_State/Iowa/index.php
https://www.nass.usda.gov/Statistics_by_State/Iowa/index.php
https://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/
https://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/
https://www.nass.usda.gov/AgCensus/
https://www.extension.iastate.edu/agdm/cdcostsreturns.html#yields
https://www.nass.usda.gov/Publications/
https://www.nass.usda.gov/Publications/
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/

13. Appendices

13.1. Thoughts on Efficiency

One of the major takeaways that I’ve had from this project has been a maturing of my
view of software design - particularly how to write well-written code and balancing this with
moving at an effective rate of progress. The question of what should be implemented, as
mentioned, is certainly the first pressing question that must be answered. After this has
been decided, the decision must now be made with the way in which you would like to build
something. With the aim of building something that is robust, it can be easy to over-commit
to a certain approach which must only be redone later. Or perhaps making something robust
becomes more of a distraction and instead slows down progress towards the overall objective.
And so the question becomes how to balance these two seemingly opposing requirements -
writing software that is robust, while at the same time not over-engineering a certain aspect
or over-committing to a certain approach only to find later that it was not ideal.

A commonly used quote among programmers, by Donald Knuth, is that “premature op-
timization is the root of all evil.” This quote aims to encourage simplicity of a sort, and so
there is an irony in dissecting it for its details; but there is a nuanced approach nonetheless.
I’ll make the argument both for and against the spirit of this quote, while ultimately set-
tling on the need for a balanced take on its interpretation. But I think the journey to this
conclusion can yield some fruitful insights.

Often times, I think this quote gets used as an excuse to write poorly organized code. While
functionality is the primary goal, a system that merely ’works’ is often far more fragile than
we’d like to admit. However, for something to be in a state of “working” is often more fragile
than we would like to admit.

In the pursuit to get our digital machine “working”, we can, justifiably, pick the simplest
path to that destination. We may notice certain patterns and opportunities to “gather sup-
plies” on our journey, but choose to ignore them until we reach our destination. And once
the destination is reached, we decide that rather than refining the path that we took, or
our “inventory”, that we should instead continue on. It is only later in our journey, that we
may find ourselves confronted with an obstacle - a metaphorical “river” that we must cross.
Perhaps a different path may have avoided us coming to this “river”, or perhaps all paths led
to this; but, maybe some more careful consideration of “gathering supplies” on our journey
may have left us more prepared for what we are confronted with now.

The “path” that we will consider is the gathering of LandDivision entities. When first
creating the functionality for FieldMind, I chose, justifiably, to focus only on a single year’s
worth of data. This simplified the approach and allowed me to implement functionality for
entering in data which would allow for viewing over a multiple-year range.

While implementing the necessary endpoints, I noticed that there were recurring instances
in the controller in which I would retrieve all LandDivisions. The resultant code was some-

78

thing like this:

1 var landDivisions = await _context.LandDivisions

2 .Where(landDiv => landDiv.OwnedByFarmId == farmId)

3 .Include(landDiv => landDiv.Subdivisions)

4 .Include(landDiv => landDiv.LandDivisionType)

5 .Include(landDiv => landDiv.SoilType)

6 .Include(landDiv => landDiv.SizeUnit)

7 .ToListAsync ();

Listing 7. C# Query for Retrieving Land Divisions

Seeing this, there was a desire in me to create a method in the LandDivisionService

which could “get all land divisions” for me (more on this tendency to pattern-match later).
However, I stymied this action in myself at the time, attributing the method creation to a
“premature optimization”, and that, furthermore, it would provide unnecessary “nesting”
of method calls - creating a “Russian doll” kind of situation. After all, these Include()

methods and database accesses with EF Core are themselves methods encapsulating logic,
and are meant to be called when needed. I wanted to be cautious of encapsulating methods
inside of methods just for the sake of doing it. I reasoned that each controller can make its
call with the EF Core methods shown above and that this is precisely what they are for.

This reasoning is not wrong in that “that is what those methods are for”. However, once
the job of implementing the functionality of looking at multiple years is turned to, some
issues emerge. The issues emerge when we consider the Where() method and the inclusion
of subdivisions.

When we move from looking at data for the year 2019 to instead look at data for 2022,
there are a number of things that may have changed in that amount of time. We may have
created or deleted LandDivisions in that time. When viewing the 2022 data, we should
only see LandDivisions which are in existence at that time - meaning that they were either
created before the year that we are looking at and were not deleted; or, if they have been
deleted, they are deleted after the year that we are looking at. Our Where() condition now
changes to the following.

79

1 var landDivisions = await _context.LandDivisions

2 .Where(landDiv => landDiv.OwnedByFarmId == farmId

3 // Created before or during the plantingYear we are looking at

4 && landDiv.CreatedAt.Value.Year <= plantingYear

5 // And has not been deleted

6 && (! landDiv.DateDeleted.HasValue

7 // Or if it has been deleted , it has been deleted after the

plantingYear we are looking at.

8 || landDiv.DateDeleted.Value.Year > plantingYear)

9)

10 .Include(landDiv => landDiv.Subdivisions)

11 .Include(landDiv => landDiv.LandDivisionType)

12 .Include(landDiv => landDiv.SoilType)

13 .Include(landDiv => landDiv.SizeUnit)

14 .ToListAsync ();

Listing 8. C# Query for Retrieving Land Divisions with Filtering

You can notice also that the Include(landDiv => landDivSubdivisions) has also been
highlighted for consideration as well. And indeed, our collection of subdivisions in the way
the code above was written presents the same issues that we have aimed to correct with our
Where() clause. The issue is the same - we do not want every subdivision associated with
a given LandDivision, but instead we want only the subdivisions which were in existence
during the year in which we are looking at.

And so now we have an issue which rears its head for single years, but also will roar just as
loudly, but in some unique ways of its own, when we look at LandDivisions over a range
of years as well. At this point, we can appreciate our need for the additional inventory of
specialized methods to retrieve this data and allow us to be prepared to cross the “river”
which is before us. This “additional inventory” is needed as going through all of our end-
points and implementing this fix would not only be tedious, but it is very error-prone in
the action itself, and it also increases the likelihood of writing code which is inconsistent as
more endpoints are written. This inconsistent code will lead to bugs which will appear in
only circumstances which use the code paths calling the methods which contain the errors
from the copy-pasting or re-implementation of the fix multiple times (one for each endpoint).

Due to the need of the reuse for this functionality combined with its critical role of be-
ing foundational and depended upon to retrieve the correct data in order for subsequent
functionality to work, refactoring this code to be more modular is well-justified.

The code would be well-adjusted to be broken down in the following way: One method
each for getting LandDivisions for a specific year, and one for getting LandDivisions for
a range of years. We will also create the same for subdivisions and for root LandDivisions
specifically.

80

1 GetAllLandDivisionsForYear(int farmId , int plantingYear)

2

3 GetAllLandDivisionsForYearRange(

4 int farmId ,

5 int startPlantingYear ,

6 int endPlantingYear

7)

8

9 GetAllRootLandDivisionsForYear(int farmId , int plantingYear)

10

11 GetAllSubdivisionsForYear(

12 int farmId ,

13 int parentLandDivisionId ,

14 int plantingYear

15)

16

17 GetAllSubdivisionsForYearRange(

18 int farmId ,

19 int parentLandDivisionId ,

20 int startPlantingYear ,

21 int endPlantingYear

22)

Listing 9. C# Method Signatures for Retrieving Land Divisions

Furthermore, we will create the following methods, and inside the implementation of the each
of the above, we will call the respective following method which will handle the creation of
the appropriate predicate.

1 AllLandDivisionsForYearPredictate(int farmId , int plantingYear)

2

3 AllLandDivisionsForYearRangePredictate(

4 int farmId ,

5 int startPlantingYear ,

6 int endPlantingYear

7)

8

9 AllRootLandDivisionsForYearPredictate(int farmId , int plantingYear)

10

11 AllSubivisionsForYearPredictate(

12 int farmId ,

13 int parentLandDivisionId ,

14 int plantingYear

15)

16

17 AllSubivisionsForYearRangePredictate(

18 int farmId ,

19 int parentLandDivisionId ,

20 int startPlantingYear ,

21 int endPlantingYear

22)

Listing 10. C# Predicate Methods for Filtering Land Divisions

81

The reason for the breakdown of not just the gathering of the collection of relevant LandDivisions,
but also the predicate used to gather them is twofold - there are further complexities which
are needed when gathering collections of LandDivisions, and it is advantageous to segregate
this with the pivotal functionality of crafting the appropriate predicate for gathering what
we need. Creating these distinct methods also allows us to be better prepared for a future
“river” we may encounter where we need to gather a collection of LandDivisions but under
a different predicate. In this way, we have a centralized, streamlined approach to adjust
what needs to be adjusted while not affecting the other pieces of the code which will remain
the same aside from the change in the predicate.

This is an example where the path to getting things “working” quickly actually slowed
down the process, and in fact made the “working” state far more fragile of an element than
it would have otherwise been had more attention been paid to the pattern which was reveal-
ing itself.

And this brings about an important point in which the “premature optimization is the
root of all evil” seeks to illuminate: Sometimes, you are not going to know ***the path***
until you start walking a path.

In order to describe a pattern, that pattern must first reveal itself. For example, if I were
to present to you a sequence which starts with the following numbers: 2, 1, and then asked
you to tell me the next number in the sequence, this is not something that you would likely
be able to do with confidence as a pattern has not made itself readily manifest - at least not
without some context.

If I were to first give you the pattern 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... , I think
you would see the pattern that we add the 0 and 1 to get the next number in the sequence,
and then add that number, 1, with the previous number in the sequence, 1, to get the next
number, 2, and that we continue on in that fashion adding the previous number to the most
recently generated one, for as long as we like. You may even recognize this sequence as the
famous Fibonacci Sequence.

If I were to again present to you the numbers 2, 1 and ask you the next number, I think
you may now be inclined to say 3. And that the next number after that would be 4, and
then 7, and so on - continuing on in this same fashion as before. And indeed you would be
correct in this pattern that I have in mind - the Lucas Sequence.

This example serves as an analogy to the insight that comes with programming experi-
ence. When one is presented with the initial numbers of a sequence such as 2, 1, someone
could could give any multitude of defensible answers for the next number in the sequence.
This is analogous to being confronted with a programming problem for the first time. Ru-
minating on trying to find “the” answer can stand in the way of the achievement of this goal
in the first place. This is part of what is meant by “premature optimization is the root of
all evil.” No matter how long you sit and ponder the next number from 2, 1, at the end of
the day, if this is your first encounter of a problem like this, it will serve you better to just

82

pick a path which you think is best, and proceed with that and see how your choice lines up
with what you find out is actually the next element in the sequence. The key thing here is
that the proper adjustments are made after your knowledge increases.

Once the pattern manifests, whether in the problem you find yourself currently tackling
or in a similar one, the next time you encounter either the same problem, or a derivation of
it, now is the time where it would be the more strategic move to implement your lessons
learned from the past and to make your go at readying yourself to walk the path rather
than merely trudging ahead, full brunt towards a path. You now have more context of what
is likely to lie ahead, and at this point to neglect in making the proper preparations may
be ill-informed to do.

To make the counter argument to walking the path. . . sometimes even the path is not the
right path. Let’s dive into this. When building anything, and particularly when looking at
things from an engineering perspective, everything has a tradeoff. This is where engineering
experience and insight can lend itself to another approach to the kinds of problems presented
above.

When readying yourself for the journey ahead, you may know that you are going to ap-
proach a “river”, but perhaps instead of building a sturdy bridge to cross it, you know that
a rope bridge will do for your case. You’re confident of this because of your experience,
and you are fully aware that this solution is not going to be one that necessarily “scales.”
However, it will hasten the journey, and you therefore opt for this.

The cliche of “it is the journey, not the destination” is something that applies here with
our decision of approach. The tradeoff with walking the path and building that “bridge”
which you know is scalable, is that this does require more upfront cost in time and resources
which must be immediately paid. Depending on the circumstance you find yourself in, pay-
ing this cost at the beginning may not be ideal. Perhaps you need to quickly get the project
to a workable state for a demo or some kind of launch. Or perhaps, this is a project which is
not meant to last for a long time as a long-term project. These are cases in which the path
is not necessarily the right path. In either case, there is technical debt which can be paid
immediately through creating a system which is more robust, or it can be paid later in favor
of immediate speed. The key thing to note is that at some point, if the project persists, that
technical debt must be paid. It is just a matter of when.

13.2. More Can Be Less

A mention was made earlier in our exploration of efficiency about pattern-matching. As a
programmer, one has a tendency to look for, and see patterns, and seek to find a way to
leverage that pattern into some kind of structure. This structure can manifest itself by way
of methods, classes, interfaces, etc., as well as design patterns like the factory pattern or
others. In general, this tendency will lead us to writing higher quality software. However,
this tendency can sometimes lead us to over-correcting or “correcting” too early. These can
be made in an attempt to create more streamlined software, but this can easily turn on itself.

83

Let us consider an example of the following FormatDataForStackedBarChart method. The
important piece for this example is the Dictionary value for the return type, and the
Dictionary for the data parameter of the method. The value will be a List which is either a
list of nullable integers (List<int?>) or a list of nullable decimal values (List<decimal?>).
Both the return type and the parameter type will match—so if the return type is a List<int?>,
then the parameter type will also be a List<int?>. Other than this, the method’s imple-
mentation is exactly the same.

Because the implementation is exactly the same, the idea of copy and pasting one im-
plementation just to change the list’s data type can scream to a programmer’s mind to
refactor this method to perhaps accept a generic type for the list as List<T?> and thus
we can save the coding real estate and just use the one method in both cases because no
implementation details change. However, due to the requirements of the chart building, the
only data types that we can accept for T are either an int or a decimal. This will lead us
to impose some restrictions on T in our method implementation, as well as a runtime check
to specifically verify that T is either an int or a decimal. This would lead us to something
like the following:

1 private Dictionary <string , List <T?>> FormatDataForStackedChart <T>(

2 Dictionary <string , List <T?>> data ,

3 Dictionary <string , Dictionary <string , T>> landDivDictionary

4)

5 where T : struct , IComparable , IConvertible , IComparable <T>, IEquatable <T>

6 {

7

8 if (typeof(T) != typeof(int) && typeof(T) != typeof(decimal)) {

9 throw new InvalidOperationException("Only int and decimal are

supported.");

10 }

11

12 // Other logic here

13 }

Listing 11. Generic Method for Formatting Data in a Stacked Chart

84

We can see here that in our attempt to simplify, we have instead written something compli-
cated. Though we may have a single method which can be used in either case for the data
types aforementioned, we are far better off overloading the method than writing this generic
method. We can see the overloaded FormatDataForStackedChart method below.

1 private Dictionary <string , List <decimal?>> FormatDataForStackedChart(

2 Dictionary <string , List <decimal?>> data ,

3 Dictionary <string , Dictionary <string , decimal >> landDivDictionary

4) {

5

6 foreach (string name in data.Keys) {

7

8 foreach (

9 KeyValuePair <string , Dictionary <string , decimal >> item

10 in landDivDictionary

11) {

12 var itemsForLandDivDictionary = item.Value;

13

14 if (

15 itemsForLandDivDictionary.TryGetValue(name , out

decimal value)

16) {

17 data[name].Add(value);

18

19 } else {

20 // insert null

21 data[name].Add(null);

22 }

23 }

24 }

25

26 return data;

27 }

Listing 12. Method for Formatting Data in a Stacked Chart (Decimal Version)

85

1 private Dictionary <string , List <int?>> FormatDataForStackedChart(

2 Dictionary <string , List <int?>> data ,

3 Dictionary <string , Dictionary <string , int >> landDivDictionary

4) {

5

6 foreach (string name in data.Keys) {

7

8 foreach (

9 KeyValuePair <string , Dictionary <string , int >> item

10 in landDivDictionary

11) {

12 var itemsForLandDivDictionary = item.Value;

13

14 if (

15 itemsForLandDivDictionary.TryGetValue(name , out int

value)

16) {

17 data[name].Add(value);

18

19 } else {

20 // insert null

21 data[name].Add(null);

22 }

23 }

24 }

25

26 return data;

27 }

Listing 13. Method for Formatting Data in a Stacked Chart (Integer Version)

Yes, there is some repeated code above, but, think of all of the code that is happening under
the hood to enforce those checks for the generic method implementation we had before. And
also think of how unreadable the generic version of the method is - you have to contemplate
for a bit to decipher what it wants. And ultimately, if you give it something that is not
an int or a decimal, you will have a runtime error. Whereas with the overloading of the
method, you get a much preferred compilation error and a far more direct message of what
is wrong. Additionally, the overloading approach is far more readable - it does not require
the pondering and deciphering that the generic implementation of the method requires. Be-
cause of this, the overloaded method is more maintainable, and is safer from bugs due to its
being more understandable.

There is an irony in the pursuit to reduce lines of code, sometimes we can leveragemore code
and resources due to the underlying features that we use. And just because we reduce the
lines of code does not necessarily mean that we have increased efficiency either. Efficiency
can take a number of forms in addition to the number of lines of code. Sometimes more is
less.

86

In total, what we ultimately want to build is a digital machine that will suit our needs. In
order to do this, we leverage (and build) our skills in order to create products which better
suit the needs of the circumstance that we find ourselves in. Looking at projects as iterative,
growing things - like a seed which grows into a tree - can help to inform these decisions. A
certain stage in the “growth” may necessitate certain approaches for that stage.

Throughout the building process, I think that it is important to build the best product
you can for the moment in time that you are in, given all contexts. If what is called for hap-
pens to be a “rope bridge” rather than a fortified “concrete” one, then one should make that
rope bridge have the best knots that you can and not neglect the craftsmanship that goes
into every project. I think that the signs of a good engineer should show through whether
it is a “rope bridge” or a “concrete bridge”.

13.3. Thoughts on Use of Internet and AI for Research

At a time where people boast about the availability of information on the Internet and the
proliferation of various artificial intelligence (AI) tools, it is important to be mindful that
these resources are only as useful as what a person has made available at some point on the
Internet. There are certain topics and certain industries which are more opaque than oth-
ers. For example, many farmers are not necessarily blogging or writing articles about their
day-to-day operations and struggles. Therefore, there is less information on the Internet as
a result of this.

Even information that is found on the web, does not necessarily map well to what is true
for the day-to-day operations of what, in my case, a Midwestern crop farmer is going to be
doing. To find out what common methods and concerns are, I think that you do need a
consultant who is in the industry to relay that information to you. In one way or another,
the information needs to be conveyed to you. With Internet research, that can get you to a
certain level, but it may leave some dots undiscovered or unconnected. You could be missing
some very important context. It is not just about seeing the dots, but it is about connecting
them. And sometimes, you may not even know the right questions to ask at the outset.

As much as the impression can be given that we all can just retreat to our “cave”, and
with only an electronic device and connection to the Internet be in touch with the world,
I do not think that this is true. Ultimately, that human interaction, and content which is
generated ultimately by humans, is not so easily substituted or replaced. There can be a lot
of pride garnered from doing research on your own via the Internet or books. Whether you
are reading information on the Internet or from books, you are receiving information from
an expert in some manner.

For FieldMind, there were questions which would have been very difficult to articulate to an
Internet search to get meaningful results, because what I was aiming to get was some very
specific information or feedback for the process in which crops would be planted, a harvest
would be executed, or yield would be calculated. For example, the information which gets
put onto a scale ticket and how that information will ultimately relate back to the field’s

87

yield statistics would have been difficult to gather. This would have been difficult to gather
because though I’m sure that I could have found something indicative of a scale ticket, to
further verify that what I found through Internet searches was the common format and
information for scale tickets for grain crops throughout the Midwest would have been a bit
on shaky ground. Having the direct vindication from a farmer is really what was needed.

Furthermore, when looking into some various other ways that yield is calculated for spe-
cific types of corn or soybeans, I had asked ChatGPT which types of corn use the standard
weight of 56 lbs / bushel. I was given an answer for this and asked Glenn about the list
that was created - which also included some descriptions of the corn type. Some of the
items on the list were correct, but others were specialty crops which are not often planted,
and when they are planted, the yield is not calculated in bushels but rather by the ton for
some of these. Others on the list Glenn did not have any knowledge of, and even when he’d
done some research attempting to find what measurement units were used and the harvest
details, he struggled to find that information. I think this speaks volumes about the limits
of Internet research on certain topics: being that Glenn is an experienced farmer, he is also
aware of where the official sources of some of this information is, and he still came back
empty-handed.

There is one other issue that comes with finding this information as well for an outsider to
the industry like me - knowing where the official sources for this information are. Addition-
ally, again, even knowing what information is crucial to know and include (the “questions
to ask”) is not always clear. For certain industries the “how-to” tutorials are not out there.
Instead prerequisite knowledge is required.

Though undoubtedly the Internet combined with tools like AI are powerful and open up
access to information not previously accessible, there is still the challenge of verifying that
the information that is gathered is actually representative of the current reality. One must
also find the hubs of information which are used by the industry as well in an official manner,
and navigate all of the various intricacies of the industry as well.

88

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Glossary
	Introduction
	Overview
	Background

	Software Development Process
	Comparison with Alternative Software Development Models
	Why Agile and Scrum Were the Best Fit
	Task Organization and Execution

	Requirements
	Design
	Site Tour
	Fields
	Field Details
	Crops
	Jobs
	Job Details
	Inventory
	Equipment
	Dashboard
	Insights
	Fields
	Crops
	Jobs

	Implementation
	Features and Components

	Testing and Verification
	Manual Testing Strategy
	Automated Testing Considerations

	Validation
	Security
	Authentication
	Authorization
	Error Handling
	Database Interaction
	Concurrency

	Deployment
	Preparing FieldMind for Deployment
	Setting Up Azure Resources
	Deploying FieldMind to Azure

	Challenges
	Conclusions and Future Work
	References
	Appendices
	Thoughts on Efficiency
	More Can Be Less
	Thoughts on Use of Internet and AI for Research

