Squirrels Gone Nuts: Adapting Software
Engineering Principles to Solo Game

Development

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of Wisconsin—La Crosse

La Crosse, Wisconsin

by

Logan Larson

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering
March, 2024

Squirrels Gone Nuts: Adapting Software Engineering Principles
to Solo Game Development

By Logan Larson

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s re-
quirements for the degree of Master of Software Engineering in Computer Science. The
candidate has completed the oral examination requirement of the capstone project for the
degree.

Prof. Kenny Hunt Date
Examination Committee Chairperson

Prof. Rig Das Date
Examination Committee Member

Prof. Elliott Forbes Date
Examination Committee Member

Abstract

This manuscript describes the development of a 2D, multiplayer video game employing var-
ious software development techniques and project management strategies throughout the
duration of the project. The game consists of short play sessions where players move their
characters throughout uniquely designed levels with the goal of eliminating the other play-
ers in the game. This report explores the application of software engineering principles
to the process of game development and the challenges that arise from blending art with
engineering.

Acknowledgements

I would like to express my gratitude to my advisor, Kenny Hunt, whose guidance and support
were invaluable throughout the development of ”Squirrels Gone Nuts.” Special thanks to the
faculty and staff of Computer Science at UW-La Crosse, whose resources and encouragement
were crucial to my development efforts. I would also like to acknowledge the contributions of
the participants in the playtesting sessions. Their feedback was essential in refining the game
mechanics and enhancing the overall player experience. Lastly, I wish to extend my thanks
to my family and friends for their constant support and encouragement on this project.

i

Table of Contents

Abstract i
Acknowledgments i
List of Figures. v
Glossary vi
1. Introduction 1
1.1. Project Inspiration and Overview 1
1.1.1. Inspirationo 1

1.1.2. Overview 1

1.2. Project Objectives 1
1.2.1. Game Objectives oo 2

1.2.2. Software Engineering Objectives 2

1.3. Relevance and Need 2
1.3.1. Innovationo 2

1.3.2. Redefining Movement 3

1.4. Expectations: Game and Report 4
1.4.1. Market Expectations 4

1.4.2. Transitioning to Technical Insights 4

2. Software Development Process 5
2.1. Introduction to Software Life Cycle Models 5)

2.2. Criteria for Choosing a Life Cycle Model 5
2.2.1. Gathering Requirements)

2.2.2. Art and Engineering 5

2.2.3. Finding the Fun oL)

2.2.4. Solo Development 6

2.3. Journey through Different Life Cycle Models 6
2.3.1. Evolutionary Prototyping Model 6

2.3.2. Evolutionary Scrum Model 10

2.3.3. Losing My Way 16

2.3.4. Returning to Scrum 17

2.4. Approach Moving Forward 17

3. Requirements 18
3.1. Overview and General Project Requirements 18

3.2. Evolutionary Prototyping Requirements Process 18

3.3. Evolutionary Scrum Requirements Process 20

3.4. Final Thoughts 21

4. Design 22
4.1. Data Storage Design Lo 22

4.2. Architecture Design 22
4.2.1. Reflections on Technology Influencing Design 26

4.3. Design Decisions oo 26

5. Implementation 28
5.1. Technology 28

il

10.

11.

5.1.1. Game Engine: Unity 28

5.1.2. Networking Solution: FishNetworking 28

5.1.3. Hosting Provider: Hathora 30

5.1.4. Live Ops: Beamable 30
5.2, Process 30

5.2.1. Gameplay Loops 30

5.2.2. Project Components 31

5.2.3. Kanban o 31
5.3. Changes to Requirements 32

5.3.1. Added Functionality 32

5.3.2. Unfulfilled Goals 33
Testing and Verification Lo 34
6.1. Overview of Testing Approaches 34
6.2. Test Development and Execution 34
6.3. Testing Frequency and Coverage 34
6.4. Reflections and Future Testing Strategies 34
Validation 36
7.1. Overview of the Project Proposal 36
7.2. Validation Assessment Techniques 36

7.2.1. Acceptance Criteria 36

7.2.2. User Acceptance Testing 38
7.3. Conclusions and Future Improvements 39
Security 40
Deployment 41
9.1. Deployment for Playtests 41
9.2. Deployment for Release 41
9.3. Reasons for Changing from Web to Steam 41
9.4. Future Plans 42
Challenges 43
10.1. Designer vs. Developer oo 43
10.2. Continuous Learning and Adaptation 43
10.3. Prototyping for Understanding 43
Conclusions and Future Work 45
11.1. Project Summary 45
11.2. Future Work o 45
11.3. Final Remarks 46

v

List of Figures

Movement evolution modeling page. 8
State management and synchronization evolution requirements and specifica-

tlons page. L 9
Project timeline estimation before starting the project and after the first two

evolutions. 9
User Story Backlog for Combat Evolution. 12
Sprint Planning Example.00 13
Sprint Tasks and Test Cases. 14
Evolutionary Scrum Sprint Backlog Item. 15
Requirements and Specifications Procedure 19
Core Gameplay Evolution User Story Backlog 21
My ECS Modeling Technique 24
Movement Evolution ECS Models 25
Beamable Security Overview L 40

Glossary

2D (Two-Dimensional)

Refers to graphics and gameplay that occur on a flat plane, having length and width but
no depth. In video games, this typically describes scenes or actions viewed from a side or
top-down perspective.

Arena Shooter

A subgenre of shooter games characterized by confined play areas where players engage in
fast-paced, shoot-out battles focusing on quick action and precision.

Entity Component System (ECS)

An architectural pattern used in game development that separates logic and data, enabling
flexible handling of game objects and behaviors without the inheritance complexities of
traditional object-oriented programming.

Scrum

An agile development methodology where work is broken into sprints, or short phases of work,
followed by review and adjustment. It emphasizes iterative progress through collaboration.

Evolutionary Prototyping

A model in software development where an initial prototype is evolved through iterative
modifications and improvements based on user feedback and testing.

Kanban

A method for managing knowledge work with an emphasis on just-in-time delivery while
not overloading the team members. In software development, it involves visual management
with cards and boards to track work progress.

Matchmaking System

A system in multiplayer online games that groups players into sessions based on their skill
level or other criteria to ensure fair and balanced gameplay.

MMR (Matchmaking Rating)

A numerical value assigned to each player based on their gameplay performance. It is used
in competitive gaming to match players of similar skill levels.

vi

User Story

A feature of Agile software development, describing functionality from an end-user’s per-
spective. It helps developers to focus on delivering value based on user needs.

Lag Compensation

Techniques employed in online gaming to minimize or counteract the effects of lag or latency,
thus ensuring that player actions are responsive and consistent despite delays.

Client-Side Prediction

A technique used in networked computer games where the game client predicts the results
of certain actions without waiting for server confirmation, to make the game appear more
responsive.

Server Reconciliation

A network programming technique used in multiplayer video games to ensure that the server’s
authoritative game state resolves conflicts between multiple clients’ states. It corrects dis-
crepancies between a client’s predicted state and the server’s calculated state, ensuring con-
sistent gameplay across all players.

Entity Interpolation

A method used in real-time multiplayer games to smoothly render the movement of objects
or entities between updates received from a server. It interpolates positions and states based
on previous and current data to reduce the jarring effects of network latency.

Polish Criteria

Elements of game development that enhance the aesthetic and sensory appeal of a game,
which are not essential for basic functionality but are crucial for enriching the player expe-
rience.

vil

1. Introduction

1.1. Project Inspiration and Overview

“Squirrels Gone Nuts”, is a video game where you play as a squirrel and shoot other squirrels
with nut-themed weapons. I can take a guess at what you're thinking: “There’s no way this
kid did his Software Engineering Master’s capstone project on a video game about squirrels
with guns.” However, I invite you on the journey behind “Squirrels Gone Nuts”, a project
that blends inventive game design with the principles of software engineering.

1.1.1. Inspiration

Before stepping foot on UW - La Crosse’s campus my freshman year, I knew I wanted to
make a video game for this capstone project. I had been making games since I was around
10 years old, and I saw the MSE program as an opportunity to build and finish a long
term project. Throughout college however, I let those dreams fall to the wayside as I grew
more interested in web development among other areas of computer science. At one point, I
even planned on graduating early with just my Bachelor’s because I was not enjoying classes
(mainly due to COVID). But, I stuck with it and before I knew it, my capstone project
proposal was due. I had a few project ideas floating around, but that urge to make a video
game found its way back into my head. One fall day, I was walking back from class observing
the squirrels running around on campus, and thought, “Wouldn'’t it be fun to run around as
one of them?” Thus, “Squirrels Gone Nuts” was born.

1.1.2. Overview

“Squirrels Gone Nuts” is a 2D, multiplayer, arena shooter where you play as a squirrel that
can traverse every visible surface in the game. Let’s break that down. 2D’ is the view from
which this game is observed. The specific version of a 2D view is a side-on view, commonly
called a side-scroller. Similar to games like Super Mario Bros and Jetpack Joyride. The game
features online multiplayer, so players from around the world can connect and play with each
other. "Arena shooter’ is the genre of the game, and it refers to a few key mechanics and
design decisions that set arena shooters apart from other shooter genres. Typically an arena
shooter consists of a small amount of players (4-12) fighting in an enclosed area with the
focus on fast-paced movement and precise shooting. The character controlled by the player
is a squirrel which offers a unique perspective on platformer movement in a crowded market
of standard platform movement controllers.

1.2. Project Objectives

There were two categories of objectives for this project. First being the tangible product-
based objectives pertaining to the game itself, and second being applying software engineer-
ing principles and life cycle development models to independent game development.

1.2.1. Game Objectives

For the objectives of the game itself, I dreamed and set many lofty goals that are on par with
the top competitors in the market. What I failed to realize was there were teams of 50+
people working on those games, and I am a one man team. Suffice to say, I over scoped the
game which is very common in the indie developer scene. As much as it hurts my ego to say,
the game was over scoped both in terms of complexity and timeline. When thinking of the
games features, I assumed I had more experience and understanding of how those features
could be implemented than I actually did. In reality, each step of this journey met me with
unforeseen challenges and resulted in many deadline extensions. The Dunning-Kruger effect
was in full effect throughout most of this project, but maybe that is the reason the game is
where it is today. Had I not believed I was capable of implementing the features I wanted
in the game, I probably would have settled for a much simpler and less fun game.

1.2.2. Software Engineering Objectives

While the development of the game itself was my primary objective for the project, I also
wanted to determine how software engineering principles could be applied to the game de-
velopment process especially as a solo developer. Throughout the project, I iterated through
and adapted many different software life cycle models.

Successfully integrating software engineering principles into game development proved to
be a significant achievement. That is not to say development was consistent and smooth
throughout. I went through many iterations of life cycle models until I landed on one that
complemented my workflow and the project’s needs. Exploring various software development
models turned out to be crucial in overcoming the technical challenges faced at different
stages of the project. Each part of the game’s development called for a unique approach,
and being able to adapt the life cycle model improved the architecture and the velocity of
the project.

In Section 2., Software Development Processes, I'll discuss the advantages and trade-offs
of each model I examined. T’ll also share the adjustments I implemented in developing my
current software process.

1.3. Relevance and Need

The arena shooter genre, once at the pinnacle of gaming with classics like “Quake” and
“Doom” has seen a noticeable dip in its popularity. This downturn, I argue, isn’t due to
a dwindling player base but rather a stagnation in innovation. The early successes set a
high standard, yet as the industry evolved, many developers shifted their focus to broader
markets, leaving arena shooters in a state of creative limbo. Veteran players dominate the
arena due to the steep learning curve for the movement mechanics. This has created an
unwelcoming environment for newcomers slowly diminishing the player base of newer titles.

1.3.1. Innovation

With “Squirrels Gone Nuts,” my ambition was to tackle the high barrier to entry head-on
while ensuring the game remained rewarding and engaging for both newcomers and veterans.

The key to this was innovation, particularly through the game’s movement system and
mechanics, ensuring everyone starts on equal footing but with enough depth to keep gameplay
interesting.

Originally I envisioned “Squirrels Gone Nuts” as a 3D third-person shooter, but a pivotal
discussion led to a shift towards a 2D platformer. This decision, influenced by my experience
level and desire for innovation, allowed for a more focused approach to game mechanics,
particularly in how players move and interact within the game’s environment.

1.3.2. Redefining Movement

With the change of perspective, I had to shift the design of the movement mechanics from
a something that mimicked a squirrels movement to a stylized and simplified version in two
dimensions. Due to the nature of a squirrel’s movement incorporating both vertical and
horizontal movements from climbing trees to running on the ground. I knew the perspective
needed to allow for this freedom of movement which is why I decided to use the side-on
perspective.

Throughout my game development journey, I have been interested in unique camera
movements to enhance immersion. So, I thought of a simple yet impactful camera movement
for the player. The camera matches the player’s orientation. When the player runs up a
wall, the camera rotates to follow the player’s rotation to make it look as though the wall
has become the ground. This helps the player orient themselves better in the world for the
same reason as it is easier to accurately drive a real car vs a remote control car. This sort
of camera movement is common for 2D top-down games, but, to my knowledge, is the first
of its kind for a side-on game.

In real-life, squirrels predominantly move around on all fours, with the exception of when
they are using their front two legs to eat. I took this idea and adapted it into my game
by allowing player’s to traverse the world in different modes. The first two modes were
sprinting and shooting. In sprint mode, the player is quadrupedal and able to move fast, but
they cannot fire their weapon. In shoot mode, the player stands bipedal and moves slower,
but the player equips their current weapon and is able to shoot the other players with said
weapon. As the project progressed, I added in another mode that has little connection to
real life squirrel movement, sliding. When transitioning into slide mode, the player retains
the momentum from the previous mode. While sliding, movement input is locked, meaning
the player can’t directly influence the speed or direction of the character. However, sliding is
physics based, so if the player is on an incline, they can gain momentum as they slide down
the incline. The combination of these different movement modes creates a unique system
that requires quick decision making based on the trade offs of each mode.

Another integral mechanic to the movement system is jumping. This is how the player
can change which surface they are connected to. When the jump input is pressed, the player
leaves the current surface they are standing on and follows a trajectory based on the player’s
momentum and the world’s gravity. After leaving the ground, a landing spot is predicted
and the player’s character rotates to match the surface of the landing spot.

The final movement mechanic is an airborne mechanic that relies on the weapon shooting
system. While airborne, the player is given the option to switch to shooting mode and fire
their weapon. When this occurs, a force is applied to the player in the opposite direction

of the shot, a recoil force. This recoil force varies by weapon type and allows for interesting
and emergent player movement behavior. A side-effect of this mechanic grants the player
the ability to fly by shooting towards the direction of descent.

1.4. Expectations: Game and Report
1.4.1. Market Expectations

“Squirrels Gone Nuts” stands as a symbol of innovation within the arena shooter genre,
yet I approach its release with measured expectations. In today’s competitive market, I am
realistic about the game’s commercial prospects with hopes of niche success. The primary
goal was never to dominate the charts but to innovate within a genre that has significantly
shaped my gaming experience.

The journey and development of “Squirrels Gone Nuts” has been a great learning expe-
rience, providing me with skills and knowledge that extend far beyond this project. This
endeavor has reignited my passion for pushing the envelope in game design and mechanics
within the arena shooter genre. Although “Squirrels Gone Nuts” may not revolutionize the
genre, it represents a significant step towards future innovations that might.

1.4.2. Transitioning to Technical Insights

With the foundation laid and expectations set for “Squirrels Gone Nuts,” the report now
transitions into a detailed examination of the technical journey behind the game. The
upcoming sections are crafted to provide an overview of the methodologies, challenges, and
solutions encountered during the development process.

This report aims to dissect the process of intersecting software development processes
with game development. Offering a detailed account that balances technical rigor with the
practical realities of bringing a creative vision to life.

2. Software Development Process

2.1. Introduction to Software Life Cycle Models

The software development process is understood and documented through the concept of
software life cycle models. Software life cycle models provide a guide for the parties involved
in creating a software product. Coordinating people, events and timelines is handled by the
selection of a life cycle model. Each model has a different approach for achieving the end
result of functional software. There are many pros and cons to each approach depending on
a multitude of factors ranging from team size to project requirements.

2.2. Ciriteria for Choosing a Life Cycle Model

Throughout the course of this project I gathered an understanding of what criteria are
necessary for the choosing of a life cycle model. The following are some of the reasons I
deem important when selecting a life cycle model in the context of solo game development.

2.2.1. Gathering Requirements

The process of developing a game, while similar, has many differences from developing soft-
ware. In software development, typically there is a client with specific needs. Therefore,
there can be rigidity in when the development team meets with the client to gather require-
ments. As for game development, the client is the player and, more often than not, the needs
of the player are far more abstract than a client’s. The player has an idea of what he or she
wants but it is up to the designer and developers to figure out what they want and how to
implement it. So, it is not as easy as setting up a meeting between players and developers
and gathering the requirements for the game.

2.2.2. Art and Engineering

Game development is the blend of art and engineering, so the final product needs to be
functionally correct while also being aesthetically pleasing to the player. Customer facing
software applications also have the requirement of being visual appealing, but to a much
lower degree. Software solves a functional need for a user while a game solely relies on its
engagement and immersion which requires more aesthetic appeal. While I know that wasn’t
entirely necessary for this capstone project, I still had goals of building an aesthetically
pleasing game. Therefore, I needed to factor this into the selection of a life cycle model.

2.2.3. Finding the Fun

Something unique to game development, in regards to picking the life cycle model, is the
concept referred to as “finding the fun”. Video games are entertainment and, as mentioned
before, are not required to be functionally useful in the same way as software products are.
Therefore a video game development life cycle requires flexibility to “find the fun”. Let me
define “finding the fun”. It is an abstract concept designers and developers use to describe
the gut feeling they have when implementing a mechanic, and want to change or add to it

because they think it will make the game more fun. For example, lets say in the original
design document, the game is supposed to have a jump mechanic. The developer goes ahead
and implements the jump mechanic. Then the developer tries adding a double jump into the
game because they think it will be more fun for the player. This is the developer expressing
his gut feeling of finding the fun. The life cycle I chose for my game needed to have the
flexibility for me to “find the fun”. I only started to realize this about halfway through
development which is why I changed life cycle models.

2.2.4. Solo Development

The final major influence on which life cycle model I chose was that I developed the project
on my own. There are many aspects of development that become easier as a solo developer.
Team coordination is not required, no roadblocks from waiting on team members to finish
work, and creative decisions are resolved much faster. But, other aspects become more
difficult like the lack of accountability and brainstorming solutions to difficult problems.
Throughout the course of the project, I realized that building in accountability mechanisms
helps tremendously when developing a game by yourself. As for the brainstorming difficulties,
I regularly participate in Discord servers which is basically a network of game developers
just like me that are willing to help me solve bugs and brainstorm ideas for the game.

2.3. Journey through Different Life Cycle Models

I wish I could say I picked the perfect life cycle model for this project and I had no issues with
it during development, but with most things in life this was not the case. I was constantly
evaluating and adapting the life cycle models to fit my needs. Since the duration of the
project was so long, I was able to run experiments for how well a life cycle model was
working for me. Then I was able to adapt the model to remedy its weaknesses and play to
its strengths. In some cases, I changed life cycle models entirely.

2.3.1. Evolutionary Prototyping Model

In the beginning of the project, I did not consider many models because I did not know what
to look for. As previously mentioned, the criteria discussed above was discovered throughout
the course of the project.

In my mind, the game was easily divided into sections of related concepts: movement,
shooting, multiplayer, etc. So, I went looking for a model that fit that idea of building upon
each previous concept, and I found the evolutionary prototyping model. And, I only got
as far as the name because I completely misinterpreted the process of this life cycle model.
Right from the start, I adapted this model into my own version of a life cycle model. I was
under the assumption that the evolutionary prototyping model broke the project down into
distinct sections and then each section was developed as a mini-waterfall. I realize now that
is not the intended use of the model, but I can’t go back now. Here is the journal entry
outlining the process I followed for the first two evolutions of development.

Software Lifecycle Model
Wednesday, April 27, 2022, 1:16 PM

As of the day I got my project approved (4/27/2022), I am thinking about
using the Evolutionary prototyping model.

I chose this model because the game can be divided into many distinct “evo-
lutions”: movement, combat, multiplayer, etc.

Each evolution will follow this rough outline:

1. Requirements & Specification
(a) Define features and systems as requirements
(

¢) Expand requirements details

a

b) Organize the requirements

(d) Write formal requirements document
e

(
(e) Estimate time needed for implementation

2. Design

(a) Divide system into subsystems and decide how subsystems will in-
teract

(b) User interface design (if applicable)

(c) Database design (if applicable)

(d) Player input design (if applicable)
3. Modeling

(a) Architectural modeling - design patterns, component diagrams

(b) Structural modeling - class diagrams, ERDs

(¢) Behavioral modeling - behavioral class diagrams, DFDs, Petri nets
4. Implementation

(a) Just code
5. Testing

(a) Play test with friends
(b) Fix bugs

While this may not be a formal specification of a life cycle model, I do believe this model
helped me tremendously in the early stages of development. To me, it seems foolish to start
implementing and iterating right away without any designing or modeling. Especially for
a project with such a large scope it is critical to set a proper foundation. A project that
has a clearly defined architecture is much easier to extend and modify later in development
rather than systems that are built on a week-to-week basis. Maybe this is just my opinion
or I don’t apply my software engineering skills well enough in real-time. There is a similar
phenomenon in writing approaches: outline writing vs discovery writing. And personally,
I like setting the outline for the project and filling in the gaps rather than discovering the
gaps and filling them in real-time.

Another benefit of this approach is reducing the scope of the project to each “evolution”

instead of the project as a whole. When starting a project of large scope, it is natural to
get overwhelmed with everything that needs to get done. By breaking the project up into
distinct evolutions, I was able to manage the overwhelm and focus on a single section of the
project at a time. Somewhat like a modular development workflow where each section of
the application is built in solitude and only towards the end of development are the modules
integrated. But with this project, the components built in one evolution tended to have
dependencies on the previous so it was more like the project was evolving rather than being
built in modules.

At the start, I was only using Microsoft OneNote to manage the project. Later, I ex-
panded to using Notion alongside OneNote. OneNote is a virtual note taking application
that provides a hierarchy of sections and pages for organizing ideas. The general structure
of OneNote is a user has multiple notebooks, each notebook has multiple sections, and each
section has multiple pages. In the case of my project, there is one notebook for the entire
project, and each evolution of the project has a separate section. Each section contains pages
related to each stage of the evolutionary prototyping process.

Here are some artifacts from the first two evolutions of the game: Movement and State
Management and Synchronization.

F Modeling
Thursday, May 12,2022 926 AM

Plaver 5‘351—0/\ “Acts <5 aevac léoP for (ﬂ\aﬂf/ =\

Figure 1. Movement evolution modeling page.

Initially T had planned for the state management and synchronization evolution to be
implemented towards the end of development. But, I heeded the advice from the many
game developers that came before me and implemented it early on in development. This
ended up being a great decision because I had grossly underestimated the amount of effort
required to implement multiplayer. It would have been a massive undertaking to retrofit
multiplayer capabilities into the game late in development.

At the start of the State management and Synchronization evolution, I began writing

> [l Logan's Notebook

Castify

Zelt

€S 798 - MSE Capstone Project
Proposal

Plan

Research

Movement

State Mgmt and Synch
Combat

Core G

Menus and Lobbies

Marketing

Architecture

\agement

Deployment
Monetization
The Final Evolution

Mobile

New Section

@ Add Page . e .
e Requirements and Specification

Research and Logs Tuesday, October 4,2022 2:20 PM
Requirements and Specification
Design
B asifas I. Define features and systems as requirements
Modeling a. Multiple clients connect to a local server
T B b. When a client connects, a player is spawned for the
toeas corresponding client
. Client inputs are sent to the server
d. Server determines game state based on clients' inputs
. Server sends updated game state to all clients at regular
intervals
. When a client disconnects, their player is removed
. Set up a persistent remote test server
. Multiple clients connect to the remote test server
i. Client predicts game state based on user input
j. Client reconciles predicted state with authoritative server
state
. Client interpolates entity positions given the game states
provided by the server
I. Server compensates authoritative state for client latency
Il. Organize requirements
on

Figure 2. State management and synchronization evolution requirements and specifications page.

Figure 3. Project timeline estimation before starting the project and after the first two evolutions.

development logs. These acted as recaps of the work accomplished for the day and plans for
moving forward. Although these are not required by any certain life cycle model, 1 think
they are invaluable for recording the progress of a project and documenting growth as a
developer. This practice also makes re-acclimating to the project much easier. For example,
there would be stretches of time where I didn’t touch the project, but by documenting the
progress daily, [was able to jump right back into development rather than needing to spend
time figuring out where I left off.

As for improvements to the modified evolutionary prototyping model, a simple improve-
ment would be to allow changes to the requirements, design, and models during the imple-
mentation process. In the planning periods, I would develop a big grandiose plan for how
the software will seamlessly fit together, but as soon as I started implementing the plan, I
would realize I didn’t account for something and now the whole design needs revisiting. So
I think for a process like this to be very effective the models and designs need to be live
documents with version control just like code. The version history is key to understanding
timelines and how changes in the models coincide with changes in the code. By the end of
each evolution, so much had changed from designs to implementation, and the models no
longer reflected the current state of the project.

Something that would have made this process easier is making the designs and models
more easily extensible and modifiable. I drew the designs in OneNote with my stylus because
that is how I like to brainstorm. But, for future reference I will move the models to a tool
that allows for easier modification and tracking of changes.

Another issue I found with this model was the lack of accountability. Since the deadlines
were rather loose I found myself slacking off because I had given myself such a large buffer for
the work. I only noticed this after I moved to the scrum approach because that approach has
consistent deadlines and expectations of work done by those deadlines. So I think building
in accountability mechanisms for this life cycle such as shorter timescale work expected
deadlines would be another good improvement to the model.

I will take a page from agile here and say there should have been a larger evaluation stage
of the process at the end of the evolution. I should have taken a moment and reflected on
the process to see where improvements could be made rather than assuming it was working
the best it could and moving to the next evolution. I think this is partially the reason why
I ended up switching models entirely after the second evolution.

2.3.2. Evolutionary Scrum Model

Rather than recalling from over a year ago the reasons why I switched life cycle models, here
is the journal entry explaining why I switched life cycle models.

Switching Project Management Models
Wednesday, February 8, 2023, 9:13 PM

For the first two evolutions of the project, Movement and State Manage-
ment and Synchronization, I used a standard evolutionary prototyping model.
Where each evolution consisted of a mini waterfall cycle. This proved to be

10

really helpful for the movement evolution because it was also the evolution
it which I needed to design the project structure. This also worked well
in the state management and synchronization evolution because there was
a good deal of designing and modeling that needed to take place before I
started implementing the system. However, I have now come to the point
where the bulk of the designing and modeling is complete, so I am proposing
a switch from waterfall evolutions to scrum evolutions. 1 believe moving to
this model aligns better with the current state of the project and how devel-
opment is likely to proceed on the project. Another reason for switching is I
am currently in Software Project Management where we are learning about
the scrum model and I am starting to grasp the benefits the model provides.

For each evolution I have a set time frame I would like to complete the
evolution in. For example, I would like the Combat evolution to take 4
months. FEach sprint lasts 2 weeks. So, the Combat evolution will last 8
sprints.

A typical scrum evolution will go as follows.

At the beginning of the evolution, I will generate a list all of the prospective
user stories for that evolution and their story point values. I then total up all
the story points and divide them by the number of sprints in that evolution
minus one. I like to leave one buffer sprint at the end for unforeseen challenges
and uncertainty. For example, the total story points for the Combat evolution
is 75. With there being 7 working sprints, I should aim to complete 10-11
story points worth of user stories each sprint to keep project velocity constant.

Each sprint will start by prioritizing and grooming the backlog. I will use
the MoSCoW method for prioritizing. With that, I select user stories for
the current sprint and the next sprint. By selecting user stories for the next
sprint, I give myself a chance to work ahead on relatively important and
high priority tasks. Then for the user stories in the current sprint backlog,
I expand them into sprint tasks and test cases. A user story has acceptance
criteria that defines when the user story is considered done. After all that
setup, I implement the sprint tasks. After the implementation, I demo the
product to Prof. Hunt for review.

This life cycle model proved to be very effective in producing consistent progress. The
main perceived benefit of this model was the accountability. Every two weeks, I had a
self-imposed due date for features or bug fixes. This seems to improve the consistency of
progress with a small compromise for the architecture’s robustness. I say this because there
is no longer a large focus of development effort on the planning of the project’s architecture.
Instead the focus is on implementing and iterating to arrive at a functional product. Figure
4 displays a portion of the initial planning process for the evolution. This list was revisited

every sprint planning session: adding, modifying, and removing user stories.

Figure 5 shows the process I used to plan the sprints using the MoSCoW method. The
top number in the column header is the sprints corresponding to each of the MoSCoW
categories. The other number in the column header in parentheses is the number of story

11

User Story Backlog

Thursday 3

Figure 4. User Story Backlog for Combat Evolution.

points for all the user stories in the column. The numbers in the column bodys correlate
with numbered user stories in the evolution’s user story backlog.

The final document used to plan the sprints, Figure 6 was something I called tasks and
tests. These represented the steps to take when implementing the user stories. Also they
provided acceptance criteria for me to know when a user story was fulfilled enough to move
on. I also added another category of acceptance criteria called polish criteria. These were
not essential to building a functional product, but were things that would improve game feel
and overall polish to the game.

During this time, I introduced Notion to the project management tools list. Notion
provided me with a extensible Kanban board. The board view provided clear oversight to
the project, and I was able to gauge the project’s velocity much easier. My version of the
Kanban board contained seven different columns: evolution backlog, next sprint backlog,
current sprint backlog, in progress, testing, polishing, and done. Cards would originate in
the evolution backlog after the initial evolution planning session. Then proceed to move
along the board based on current state of the card relative to its acceptance and polish
criteria. Figure 7 displays the details contained in a card on the Combat evolution’s Kanban
board.

I used this approach for the next two evolutions of the game: Combat and Core Gameplay.
All development efforts during this time were relatively smooth. Progress was slow, but
consistent because I was able to tackle small pieces at a time rather than implementing the
full system in one go.

Then, I attempted to use the model for the Menus and Lobbies evolution, but that proved

12

ﬁprint 2 Planning

y, Febru 3 10:07 PM

Figure 5. Sprint Planning Example.

13

LSprint 2 Tasks & Tests

Tuesday, February 21, 2023 10:07 PM

Figure 6. Sprint Tasks and Test Cases.

8. Bullets damage enemies

Done

Should

As a player, | want to damage enemies with my weapon'’s bullets

Acceptance Criteria

(&
2 B

[] It's polished when a sound is played when a player is hit by a bullet
[] Distinct sound for a headshot

IEHS

[] Create PlayerHealth component that reflects players’ health across server

[] Create visual health indicator that corresponds to player health 6’3 I

¢ Number above player’s head or simple health bar

Figure 7. Evolutionary Scrum Sprint Backlog Item.

to be difficult. At this point, I was again going to be navigating uncharted territory in the
game development landscape. I had general ideas about how I was going to implement the
lobby system, but those ideas ended up being far off from the current implementation today.
Because I had little understanding about what I was going to implement, I had a difficult
time even coming up with user stories to implement. This and some other reasons explained
in the next section caused the project to come to a halt. As far as project management
techniques, I think reverting to the previous development lifecycle model for this evolution
would have benefited me greatly. There was so much I didn’t know about how lobby systems
were implemented, and I think a proper research and planning phase would have been very
beneficial.

Overall, I think the Evolutionary Scrum Model is a good model for solo game developers.
It is helpful to break the game down into evolutions so the developer does not get lost
in the big picture for the game. Also, having a visible task list on a KanBan board is
helpful for visualizing progress. Finally a tip I would give is try to recognize when there
are sections of the project that need careful architecture design or research and planning
before implementing. And, give yourself grace when tackling those problems because rushing
through them will only hurt the project in the long run.

2.3.3. Losing My Way

In early December 2023, I fully stopped development on “Squirrels Gone Nuts”. The project
was a mess with build times over 5 minutes and “hot reload” times being over 30 seconds
every time I saved a file. Also the project did not follow good software engineering principles
because everything was tightly coupled and when one thing broke so did the entire project. I
am not completely blaming scrum for this but it definitely held some responsibility with the
lack of planning and documentation for the project. Another reason why development halted
was that I was moving into a new evolution and I tried to jump right in to the scrum sprints
without any research and planning. A lobby and matchmaking system was something I had
zero experience with and it was very daunting to start tackling tasks without having any
idea where to start. I think going back to the previous life cycle model would have benefited
me a lot during this period of development.

Anyways I didn’t touch the project for a good month. Then in January 2024, I opened a
new project and started rebuilding the project. I did a small amount of preliminary planning
for the new project’s architecture. I used plenty of code and assets from the previous project,
but I carefully inspected each script and tailored it to follow better software engineering
principles. By February, I had gotten the project almost back to its original state. Also this
was the first time I started working on the project full-time so progress was happening very
rapidly. During this time, I completely lost my way with adhering to a software development
life cycle, and I essentially woke up each day and wrote out what tasks I wanted to accomplish
and set out to do them.

Although this is not a recommended approach, I found it to be extremely effective in
the short-term. Especially for the task of refactoring the project. I was not adding any new
features so I had the benefit of hindsight while implementing these features. However, issues
started occurring when I continued trying to use this “model” after I had rebuilt the project
to its previous state. I continued setting tasks for only the current day well into February

16

and I started to see the diminishing returns of this technique. Without structure and project
management I had no foresight into the project’s timeline. I overscoped the amount of work
I expected I could do by the time I was supposed to finish the project. This was also a time
where I was trying to learn new technologies and implement them simultaneously. Which led
to me running into a bug that I got stuck on for over 3 weeks. The combination of learning
new software and lack of project management led to March being one of the worst months of
development on the project. Obviously not ideal timing with this being my final semester.

2.3.4. Returning to Scrum

I knew something needed to change. So, I found my way back to the evolutionary scrum
model. I set out one final evolution that was mainly focused on tying up loose ends and
testing the project.

2.4. Approach Moving Forward

Given this experience of testing and using different life cycle models, I can confidently say
there is no single best approach to managing the development of a game especially for
independent development. A few takeaways. I think breaking the project into evolutions
helped tremendously with managing the scope of the project, and I will continue to do this for
my projects in the future. When approaching an evolution or problem that has a known state
space, that is there are few techniques and technologies to learn to complete the task. Then
I recommend using an agile scrum approach because the development can be easily broken
down and developed just by putting in the work. On the other hand, when the upcoming
development is relatively new in terms of challenging your understanding as a developer,
then I recommend taking some time to learn the technologies and best practices before
implementation. During the State Management and Synchronization evolution I made three
small prototypes implementing new multiplayer concepts before programming those concepts
into the main project. Finally, reflect on and adjust the software development process often.
There are always areas for improving efficiency and effectiveness of the project management
process.

17

3. Requirements

3.1. Overview and General Project Requirements

In the previous section, I provided a chronological explanation of the different software
development processes used over the course of the project. For this section and subsequent
sections hereafter, I will only provide the relevant differences between the processes without
chronological ordering.

The following are the general requirements of the project as stated in the project proposal.

1. Create a simple movement system that allows for creativity

2. Develop a fast-paced environment through player mechanics and map design
3. View the game in 2D as a side-view platformer

4. Players operate in two modes: combat (bipedal) and parkour (quadrupedal)
5. Players can run on any surface like they are on the ground

6. Connect players to game servers via matchmaking system

By design, these requirements are vague. From past game design experience, I knew the
original idea I set out to build would probably differ from the final result. Some aspects would
be better and some would be worse. So, I attempted to set the overall project requirements
in a way that they could be adapted as the development required. That is not to say I
allowed myself to completely pivot the game halfway through development. It just allowed
for the freedom to “find the fun” in the game as development progressed.

3.2. Evolutionary Prototyping Requirements Process

While following the evolutionary prototyping model, the requirements were brainstormed in
the initial phase of each evolution, and I followed the formula shown in Figure 8 to docu-
ment them. I wrote out this formula for gathering and organizing requirements before the
Movement evolution started. Since I interpreted the methodology to follow mini-waterfall’s,
I assumed I should gather the requirements into a formal requirements document and dis-
missed the idea of using user stories. Later, I would realize gathering requirements in the
form of user stories is just as valid, and in the case of video games, more effective at fully
conveying the requirement.

18

Requirements and Specification

Define features and systems as requirements
Organize the requirements

Expand requirements’ details

Write formal requirements document
Estimate time needed for implementation

A

Figure 8. Evolutionary Prototyping Model - Requirements and Specifications Procedure

The following list demonstrates the end result of the Requirements and Specifications
process in the form of a formal requirements document.
Movement Requirements

1. Grounded Movement

(a) Lateral Movement

e Move left or right relative to body orientation when movement input is
pressed

o Accelerate relative to acceleration variable
e Limit top-speed to set amount

e On key release, apply friction to reduce speed
(b) Sprinting
e When sprint input is held, increase top speed by sprint multiplier
e On release, don’t apply sprint multiplier
e Sprinting is only allowed in parkour mode

(¢) Grounded Orientation

e When grounded, match player orientation to surface below’s normal vector

e (rounded is a property that returns true when the player is within a height
threshold above the ground

(d) Grounded height above ground

e When grounded, set height above ground to certain amount
2. Player State

(a) Parkour mode

e Player is quadrupedal

e Increased movement speed
(b) Combat mode

e Player is bipedal
e Reduced movement speed

19

e Other functionality will be added, but it is irrelevant at the time
3. Jumping

e On jump key press, grounded is false

e On jump key press, impulse force is added to player movement in direction of
cursor

e If cursor direction is between 180 and 360 relative to the player body, no jump is
performed

e Jumping can only be performed in Parkour mode

— If in combat mode, switch to parkour mode then perform jump
4. Airborne Movement

(a) Landing prediction
e When in air, use projectile motion physics to predict landing spot
e With known landing spot, rotate player body to match surface normal of
landing spot
(b) Forces applied

e Movement mechanic will be added during combat

e Must allow for forces to be applied to player while airborne

3.3. Evolutionary Scrum Requirements Process

During the evolutionary scrum requirements process, there again was an initial phase of
brainstorming. However, this time the requirements were not documented in a formal re-
quirements document. Instead they took the form of user stories. This proved to be a much
more useful strategy for brainstorming in my opinion. With formal requirements, I was
trying to jump ahead and figure out exactly what the player should do from a mechanical
perspective. I could use the framework of “As a player, I want to...” to express what the
player wants to do instead of what they should be doing.
Here are examples of both scenarios:

1. Formal Requirement

e The player moves horizontally when pressing the left and right arrow keys and
calculates the body rotation to match the ground so that the player can run on
all surfaces.

2. User Story

e As a player, I want to run on all surfaces.

20

User Story Backlog

Saturday, September 16, 2023 10:15 AM

Figure 9. Core Gameplay Evolution User Story Backlog

By removing the technical aspect of the requirement, the implementation details remain
separate from the idea. This leaves the implementation solely up to the developer. As a solo
developer, it can be difficult to separate the roles of game designer and game developer, but
user stories provide a simple framework to do just that.

In the context of game development, there is another benefit of user stories as opposed
to formal requirements. User stories emphasize a player centered approach which focuses on
the player’s wants vs the software’s needs. In turn, user stories guide the development path
while still providing a connection to the emotional and entertainment needs of the player.

Figure 9 shows the user stories for the Core Gameplay evolution.

3.4. Final Thoughts

Going into the project, I had a rough idea of how I wanted the game to look and play. This
is a pleasant change from having to guess and translate the client’s ideas into requirements.
So, the requirements phase of the project was really a matter of articulating my thoughts
and vision instead of the traditional route of gathering requirements from the client.

21

4. Design

There are many components that make up a video game: graphics, physics, animation, audio,
networking, and the list goes on. Luckily, modern game engines come equipped with many
of these features off the shelf. While there are games built from scratch by solo developers,
Minecraft being the most popular, most games today are built using sophisticated game
engines like Unity or Unreal.

Considering a game engine is utilized to handle most of the low-level functionality nec-
essary to make a game, the high-level components of this project include the following:

e (Client interface
e Game server

e Database

The client interface needs to support 2D graphics capabilities and audio, 10, and net-
working interfaces. Then there is the game server that runs a simulated game environment
based on the clients’ inputs and communicates the updated game state to the clients. The
database stores user profile data and manages real-time updates for the lobby states.

4.1. Data Storage Design

In the scope of this project, there was only a small amount of data storage necessary to fulfill
the requirements, so external microservices were used to manage the data and reduce my
development load. The authentication system and lobby management system were provided
by Beamable [1], a 3rd party live ops service. The authentication mechanism was an anony-
mous and automatic login based on client’s unique machine ID. That same service supplied
the lobby management system which acts as a relay server between clients and the game
server. Aggregating and synchronizing the clients into a virtual lobby before the matches
take place. Both of these services were available through Beamable’s API, so as far as data
design, there was none.

4.2. Architecture Design

Going into the project I knew I needed to produce designs and models, but I didn’t know
the underlying architecture of the software I was using. I started designing the game around
the assumption I would have full architectural control. In other words, my initial designs
assumed [was not using a game engine that had predefined architectural patterns. As a
result, I designed the preliminary project architecture around this model called the Entity
Component System (ECS) [2]. This is a game architecture that is commonly implemented in
game engines because it separates the data from the computation. However, Unity [3], the
game engine I chose, does not follow this architecture at least not fully. I was designing the
game without understanding what system I needed to program the game into. This resulted
in many complications when it came time to implement the designs.

22

On the surface, it seems that Unity follows the patterns of ECS. There are scenes which
are comprised of game objects similar to entities and these game objects are made up of
components. However the components in Unity are intended to handle both the data and
the computation. This marrying of the two concepts into one script creates tight coupling
between the data and computation. Resulting in tightly coupled game objects which reduces
the modularity of the scripts produced.

The following is a journal entry discussing decisions around ECS.

Reasons for Choosing ECS for Architecture and Modeling
Wednesday, May 18, 2022, 9:35 AM

1. Unity follows this structure already

(a) One difference is Unity combines components with systems into one
class

2. ECS makes more sense for game development

(a) Eliminates messy inheritance trees

(b) More accurately represents a game state
3. Will allow for small amounts of necessary network data to be sent

(a) Simplifies the objects being sent over the network

As seen in the entry, I knew Unity combined the notion of components and systems
into one unit, but I failed to foresee the implications it would cause. In retrospect, I was
borderline obsessed with this architecture to such an extent that I designed my own modeling
technique for ECS as seen in Figure 10. I used this technique to model the components in
the movement evolution as seen in Figure 11.

During the implementation, I tried splitting data and computation into separate scripts,
but this was inefficient and led to drastically more coupling than intended. The core idea
of the ECS pattern is that the systems act independently from the entities. Systems are
executed by the main game loop and are only concerned with performing computations on
the components. This design philosophy is elegant, but Unity requires that the systems be
placed on the entities themselves which undermines the entire point of the ECS.

After this failed attempt at formal design during the movement evolution, I abandoned
it altogether. This was a mistake looking back on the project. I tried to comply with
the agile philosophy where designs emerge from competent programming and intentional
refactoring. The result was incomprehensible design diagrams and poorly organized code
that required many refactoring sessions. Due to my novice knowledge of Unity, I believe the
poor organization was inevitable.

The development of this game would have benefited from regular refactoring sessions.
Ones where the project architecture was fully taken into consideration and components
were carefully crafted to adhere to Unity’s architectural design philosophy. Also, I think
consuming more literature on the topic would have been very helpful. Instead of diving into
the first solution I found and abandoning all others. Recently, I started reading the book

23

My ECS modeling technique

Wednesday, May 18, 2022 7:32 AM

Figure 10. My ECS Modeling Technique

24

Figure 11. Movement Evolution ECS Models

25

“Game Programming Patterns” [4], and if T had known about this book before starting the
project, I predict I would have made a lot less mistakes in terms of design.

The one thing Unity did get right about the pattern was favoring composition over
inheritance. Especially in game development, composition is favored over inheritance because
it is more extensible and easier to refactor with changes to the requirements. In Unity, game
objects or entities are represented as collections of components and other child game objects.
Although these components contain both data and computation, they still adhere to the
principle of separation of concerns, enabling a more modular and flexible approach to game
development.

4.2.1. Reflections on Technology Influencing Design

A common theme throughout this entire process is unfamiliarity with the technology causing
incorrect design assumptions. I don’t think this could have been avoided unless I built my
own engine from scratch which would have brought along with it a whole host of other
problems.

With the benefit of hindsight, I would have chosen a different game engine that aligns
better with my intuitions for architecture design. Unity is very unopinionated in terms of
its architecture guidelines. From this project and others, I learned that I prefer opinionated
languages and software tools. Even if the implementations tend to be more verbose, I
enjoy the ability to develop a consistent mental framework for architecture design within the
constraints of the tool. For example, in my second to last semester, I took it upon myself
to learn Golang with my machine learning class. Within a week or two of learning it, I
felt confident that I could design complex software architecture in Golang because it offers
a simple and consistent design philosophy. Whereas to this day with Unity, I can set out
to build a new project with all the components laid out and still not properly design the
architecture so that it doesn’t become too coupled down the line.

There is an engine called Bevy written in Rust, and it enforces the ECS architecture.
Many times throughout the project I considered switching game engines because of archi-
tecture design issues and other factors. However, I fell victim to the sunken cost fallacy and
stayed with Unity. Had I chosen to use Bevy or had I written my own engine, progress in
the beginning would have been much slower. But, I believe the return on investment would
have been much greater by the end of the project solely due to the architectural control.

4.3. Design Decisions

I document a large portion of the projects I work on, but my documentation process rarely
fits into formally defined process. My notion of Design Decisions are another one of these
cases. In development, there are crossroads and a decision has to be made about using a
specific technology or process to solve a problem. I document these decisions in the form of
a journal entry. Usually this is a constant flow of consciousness to the page pouring out all
the current knowledge I have on a particular topic and why I chose a certain technology or
process over the other. There are plenty of times where this decision is reverted in the light
of new information. But, I think this process helps me organize the information I gathered
and come to reasonable conclusions on the topic.

26

Design Decisions for Combat Evolution
Tuesday, February 7, 2023, 12:55 PM

So I am currently working on the camera positioning and feel. I know this is
more related to the movement evolution but whatever.

I experimented with making the camera dynamic to follow the midpoint
between the mouse and the player. However this is somewhat jarring. I
think it is just too much movement especially since it is controlled by the
player. It doesn’t feel like I am in control when it is enabled.

So I think am going to try a different technique. Instead of panning the
camera around the player to give them the chance to see more, I am going
to zoom out the camera when the player is moving fast and zoom it back in
when the player’s velocity is lower. I think this will give the player a good
sense of speed and it will be nice to know where you are in relation to the
rest of the map when you are moving fast.

I implemented the new system and I think it feels really good. Definitely
going to have to run it by some play-testers to get a final verdict. I also
moved away from the Cinemachine and I will have to clean up that part of
the project now that I'm not using it. I didn’t solve the jitter issue but I think
I will have a better chance at solving it now that I’'m not using Cinemachine.

27

5. Implementation

5.1. Technology
5.1.1. Game Engine: Unity

The choice of game engine has been eluded to many times in this report. If the last section
wasn’t clear enough, the one decision I regret was choosing Unity [3]. The choice was based
entirely on familiarity even though I had only built small games and prototypes with Unity.
I can’t fully discount Unity though because it does simplify much the game development
process. Unity satisfies all of the functional requirements of the project by providing a
graphics engine, physics engine, and a suite of development tools that streamline the creation
of games. In reality, I would have likely not achieved as much as I did, had I not used Unity,
and there is good reason why it is the most popular game engine today.

5.1.2. Networking Solution: FishNetworking

Out of all the technology choices in this project, the networking solution was the one I spent
the most time researching. There were many requirements to fulfill and FishNetworking [5]
met all the needs. Here are compiled journal entries detailing my thought process and all
the solutions I considered.

Design Decisions for State Management and Synchronization Evolution
Thursday, October 6, 2022

I am starting the unity Netcode tutorials to evaluate if this is the networking
system I want to go with.

Tuesday, October 18, 2022

I looked into networking alternatives and here is what I found:

e Unet: the old networking solution that Unity provides. It is now being
deprecated because of the new system

e Mirror: an opensource fork of Unet that has been improved upon the
many pitfalls of Unet. However it was mainly built with MMOs and low
tick rate games in mind, so it is not the best solution for a fast-paced
environment like mine.

e Photon Fusion: this was the go-to solution for developers that were
building a fast-paced high tick rate game because of the features pro-
vided by it such as client-side prediction and lag compensation. However
like all good things it isn’t free.

e In-house: some developers report writing their own networking solution
and have really enjoyed the solution they came up with because it is a

28

lot more lightweight compared to general purpose solutions. However
through anecdotal evidence they have reported working on their projects
for multiple years and that is something I don’t have.

Tuesday, October 25, 2022

Netcode for GameObjects

I am going to use Unity’s built in networking solution for my state manage-
ment and synchronization. I chose this for a few reasons. First being it is
built by Unity so I know it will be compatible with their current versions
and it is intended to be their all-in-one networking solution for the foresee-
able future. Second, it has plenty of documentation because the solution has
been in ’beta’ for a while with developers ironing out the kinks. So, after
a few years of development the documentation has become pretty robust.
Thirdly, it is going to save me a lot of time rather than developing my own
in house solution. I considered it throughout this research phase, but there
never seemed to be good reason to do it. Especially when Unity is going to
provide this working and relatively lightweight solution with probably five or
more developers working on it as I write this.

Wednesday, November 2, 2022

So, I was wrong. In my initial findings I thought Netcode for GameObjects
was going to be the perfect solution for all my needs. Long story short,
it’s not. I was going to start listing out my requirements and specifications
when I realized I don’t know how to design a multiplayer architecture. So,
I looked it up and found plenty of fantastic resources. There were a few
things that stuck out to me that I knew I would need in my game: client-side
prediction, server reconciliation, entity interpolation and lag compensation.
Only entity interpolation is implemented in the current version of Netcode
for GameObjects with the others on the roadmap.

After a bit more research, I found an option that I think will suite my needs.
FishNetworking. It has client-side prediction, server reconciliation, entity
interpolation all for free. Lag compensation is available for a fraction of the
cost of Photon Fusion. There also is plenty of documentation and tutorials
as well as an active discord server. From taking a quick look at the doc-
umentation, the development process and experience seems very similar to
Netcode for GameObjects, if not better.

Saturday, November 12, 2022

29

Today I followed those concise tutorials I found. Very helpful in understand-
ing some techniques used when designing and making a game using FishNet.
I threw FishNet into SGN and it just worked. I don’t know how to explain
it, it just worked flawlessly.

5.1.3. Hosting Provider: Hathora

The server hosting provider was iterated through a few times throughout the project. At first
I was using a service called PlayFlow Cloud [6]. I primarily used it for the initial multiplayer
testing because the service offers a free testing server.

The next hosting provider I moved to was intended to be the all-in-one final solution,
Microsoft’s Azure PlayFab [7]. This service provides much more beyond server hosting.
They provide multiple API’s for user authentication, lobbies, matchmaking and plenty of
other live ops services. I moved the project to this solution and got a solid implementation
working with the API’s. The only problem was that I didn’t read the fine print for the server
hosting. The service provided 750 free core hours per month which is great because that
covers running the server nonstop. The problem is PlayFab requires the usage of a server
with minimum of 2 cores. So halfway through the month PlayFab would start charging for
the server even when it wasn’t in use. After that first bill, I knew I needed a new solution.
But, I was nervous to give up the live ops services.

I started searching for new solutions and came across a newer hosting provider called
Hathora [8]. This service promised on-demand servers that only charged based on usage,
and they would shutdown the servers after all connections were closed. As a solo developer
without high expectations for a large playerbase, this is a huge benefit. On the chance
"Squirrels Gone Nuts’ does explode in popularity, the service promises the servers are globally
scalable. Hathora also gave me 500 dollars in free credit to use for testing and prelaunch.

5.1.4. Live Ops: Beamable

After finding a hosting provider, I was still looking for a live ops service to replace PlayFab.
I had considered implementing my own but I knew time was running slim on the project and
honestly I didn’t want to implement all those things. One day, I was on Hathora’s discord
server and I noticed people were talking about this service called Beamable [1]. T checked out
their website and it felt like a golden egg landed in my lap. This service provided everything
that Azure PlayFab had and more and at a cheaper price. The Beamable services currently
in the project are the authentication and lobby management services.

5.2. Process
5.2.1. Gameplay Loops

Before explaining the order in which the project was assembled, I need to explain the frame-
work behind dividing the project into its components.

30

“In game design, a gameplay loop is a repeatable sequence of actions the
players engage in that makes up the primary flow of your players experience
that keeps the them playing over and over again.” [9]

There are three categories of gameplay loops: primary, secondary, and tertiary. Each
encompass sequences of player actions on timescales ranging from seconds to days. The
primary gameplay loop is the sequence of actions happening on a second to second basis.
For simplicity, I will use Tetris as an example. The primary loop in Tetris is rotating and
placing blocks to leave no gaps in the stack. The primary loop is generally regarded as the
most important loop because the player engages with these actions the most. If the player
doesn’t enjoy the primary gameplay loop, they won’t ever make it to the secondary and
tertiary loops. The secondary gameplay loop takes place on a minute to minute basis. In
Tetris, the secondary loop is setting up the stack such that you can perform a 4 line clear with
the long piece. This loop generally keeps the player engaged throughout the play session.
The final gameplay loop is the tertiary loop. This loop is focused on actions over hours and
days. For Tetris, this is the player attempting to beat their high score. This loop provides
engagement over longer time periods spanning multiple sessions and is typically what keeps
the player coming back to the game.

5.2.2. Project Components

As explained in the Software Development Process section, the project was divided into
many evolutions. The division and ordering of these evolutions was based the progression
of the gameplay loops from primary to tertiary. Since the hook of the game would be the
movement system, I set it as the first evolution. I wanted to allocate adequate time to getting
it right because it was a major contributor to the primary game play loop. Following the
Movement evolution was the State Management and Synchronization evolution. Initially,
I had planned for the Combat evolution to be next, but I figured it would be easier to
implement the networking earlier rather than later. Soon after was the Combat evolution
which also played an integral role in developing the primary loop. With the conclusion of
the Combat evolution, I could move on from the primary gameplay loop and focus on the
secondary loops. The Core Gameplay evolution focused on respawning, picking up health
nuts, free-for-all gamemode, and other quality of life changes. Then the Menus and Lobbies
evolution which is also categorized as a factor of the secondary gameplay loop. This involved
players hosting, finding and joining lobbies. Finally, the tertiary gameplay loops. These were
listed as stretch goals for the project and I haven’t reached them in development yet, but the
plans are to implement the ranked system and unlockable weapon and player skins through
challenges before release.

5.2.3. Kanban

During the first two evolutions of the project, following the evolutionary prototyping method-
ology, I didn’t have a specific process for implementation. After writing the requirements
and designing the architecture, I would simply write code to fulfill those requirements and
designs. This resulted in a loose timeline for these implementation phases, and deadline

31

extensions were common. The only thing for tracking progress were the development logs
and the Git history. Both of which are not ideal for tracking progress visually.

After moving to evolutionary scrum, I started using a Kanban board to track the progress
of the user stories. The board provided a visual overview of the progress I was making
throughout an evolution. This was helpful in organizing activities from the day-to-day im-
plementation to the overall evolution planning. I enjoyed this version of project planning and
implementation due to the small achievements sprinkled throughout the process whenever
a user story was marked complete. The Kanban board was a healthy way to view progress
and keep motivation high because I could break the project down into simple components
and not be overwhelmed by the big picture.

5.3. Changes to Requirements

Earlier I talked about this concept of finding the fun and how it brings a unique perspective
to the definition of a game’s requirements. Due to this there were plenty of changes to the
requirements.

Back in the 3D version of the game, I intended the player to have precise control over
which direction their player jumped. This would have been a novel movement system for
the genre. When I transitioned the game to 2D, I thought I needed to retain this idea. So
I set out to build just that mechanic. When the player was quadrupedal the player would
be able to jump in the direction of the cursor. On paper this idea sounds really cool being
able to pull off crazy stunts like jumping in the opposite direction of player movement. But
in practice, the controls were unintuitive and acted as more of a hindrance than benefit.
Unforeseen challenges such as what to do when the player tries to jump into the ground
started to make that mechanic difficult to implement. I ended up abandoning the mechanic
in favor of a more traditional jump mechanic that just adds an impulse to the player in the
direction above the player. Although simpler, the mechanic turned out to be very expressive
in its own right. Players became accustomed to the mechanic and were able to perform
interesting move-sets due to the consistency of the mechanic.

This is just a single example of a change in the requirements to which there were many
throughout the course of the project.

5.3.1. Added Functionality

Two unplanned mechanics found their way into the game during implementation. The first
being sliding and the second being airborne knockback.

At the start of the project, there were two modes the squirrel could exist in: sprinting
and shooting. During the Core Gameplay evolution, however, I added another mode called
sliding. This mechanic allows the player to conserve momentum at the cost of not being able
to shoot or directly increase speed. I say directly because the player is still subject to gravity,
so when the player is on an incline the squirrel will increase speed like a ball rolling down a
hill. Nowadays, this sort of mechanic is common in first person shooters, and I thought it
would be a great fit for a game based on fast movement.

The airborne knockback mechanic was set be implemented during the Movement evolu-
tion, but I abandoned the idea due to complexity and dependence on the weapon systems

32

which weren’t implemented at the time. The mechanic essentially applies a force to the
player when they shoot their weapon in the air. I revisited the mechanic during the Combat
evolution, but again the complexity proved to be a major time sink. It wasn’t until the large
refactor at the start of 2024 that I realized the mechanic was far more trivial than previ-
ously anticipated. Without going too far into the weeds, the movement system is a client
predictive system where the player sees their inputs reflected in the game before the server
authorizes the game state. The weapon system is also client predictive but it is purely event
based whereas the movement system operates on synchronization mechanism between client
and server. These two systems don’t mesh well together, so during the refactor I moved the
weapon system to also operate on the same synchronization mechanism.

5.3.2. Unfulfilled Goals

I had set many lofty goals at the beginning of this project and plan to continue working
towards those goals post graduation. Two stretch goals in the proposal were a ranked
matchmaking system and a profile system.

Starting with the ranked matchmaking system, I am deeply interested in the problem
of matchmaking players based on skill. There is plenty of nuance to this topic and it is
central to many discussions around competitive games. In November 2023, I attended a
game development conference in Madison. One of the talks [was at was about the concept
of hidden MMR (Matchmaking Rating) which is how most games implement their ranked
systems. Players have a visible rank and a hidden rating, and the latter is used by the
matchmaking algorithms. This concept leads to frustration among the players because while
their visible rank is low the hidden rating could be much higher leading them to be paired
with more skilled opponents preventing a natural growth in rank as their skills progress.
There are also issues with stagnation in the ranks where the algorithm determines the player’s
skill level and provides little opportunity for change to that level even as the player’s skills
progress. The presenter of the talk argued there is no need to differentiate the visible rank
from the hidden rating if the MMR adjustments are fair. I would have liked to design and
implement a fair MMR system into my game because I have always enjoyed competitive
games and I believe I could improve the algorithms used today.

As for the profile system, I implemented the simple authentication mechanism using
Beamable, but that hardly scratches the surface of what I initially intended with the profile
system. By release I would like to implement a proper authentication mechanism, player
statistics, friends system, and storage for in-game items. All of these features are available
through Beamable APT’s, so it is a matter of taking the time to implement them.

33

6. Testing and Verification

6.1. Overview of Testing Approaches

7

In developing “Squirrels Gone Nuts,” a variety of informal testing approaches were utilized,
each serving a crucial role in enhancing game reliability and performance. The primary
methodologies included integration and system testing, which focused on the interaction be-
tween various game components during the development phases. Usability feedback, derived
from playtesting sessions, provided invaluable insights into player interaction and game in-
terface design. Regression testing was also employed, particularly useful following iterative
updates to ensure new features did not disrupt existing functionalities. These testing meth-
ods, though informal, were pivotal in ensuring the game components not only functioned
together but also resonated well with player expectations.

6.2. Test Development and Execution

The development of test cases for “Squirrels Gone Nuts” was centered around anticipated
user interactions and gameplay mechanics. These test cases were somewhat informally docu-
mented, captured through development logs and direct feedback during playtesting sessions.
Testing execution was predominantly manual, utilizing tools like the Unity Editor, which al-
lowed for real-time bug tracking and immediate adjustments. This manual testing approach
provided a hands-on way to identify and resolve issues quickly. Looking forward, there is a
plan to formalize the test documentation process and incorporate automated testing meth-
ods to enhance the efficiency and coverage of tests, ensuring a more robust and reliable
experience.

6.3. Testing Frequency and Coverage

Testing was conducted intermittently, aligned with significant development milestones and
prior to public playtesting sessions. This approach was chosen to balance the need for thor-
ough testing with the constraints of an agile development process. The coverage of these
tests primarily focused on functional requirements such as gameplay mechanics and network
performance. However, non-functional aspects like performance optimization and hardware
compatibility, particularly concerning the upcoming Nintendo Switch port, were not as rig-
orously tested. The absence of formal unit testing has been recognized as a significant gap,
which is planned to be addressed in future iterations of the game development to ensure a
comprehensive testing framework.

6.4. Reflections and Future Testing Strategies

Reflecting on the testing processes employed during the development of “Squirrels Gone
Nuts,” it is clear that while the informal testing approach facilitated rapid iteration and
feedback integration, it also highlighted the necessity for a more structured testing regi-
men. Future testing strategies will include the integration of systematic unit testing and an

34

increased emphasis on test automation. These enhancements are aimed at improving the ro-
bustness and consistency of the game across different platforms, particularly in preparation
for the planned console ports. By adopting a more structured approach to testing, the goal
is to not only maintain the game’s quality across various platforms but also to prepare the
game for a broader and more successful release.

35

7. Validation

Software is validated by answering the following question: “Does the product built satisfy the
high-level requirements?” This question is answered through various techniques comparing
the end result to the initial requirements. With software development cycles becoming more
iterative, validation occurs more often in the development process. This is especially true
in game development. The requirements are defined by satisfying the player’s desires, and
these desires can be hard to identify. Furthermore, the game might meet the designer’s
requirements, but still not meet the needs of the players. So, the game must be constantly
validated and iterated on.

To start this section, I will outline the requirements stated in the project proposal. Then,
I will demonstrate the validation techniques employed throughout development. Finally, I
will examine these processes and note improvements for future projects.

7.1. Overview of the Project Proposal

The project proposal denotes a few key goals for the project from a software validation per-
spective. I set out to build a game summarized by this statement: “a web-based multiplayer
videogame that produces a competitive and fast-paced environment for players.” Initially, I
planned to deploy to a web-based environment, but I quickly pivoted to a traditional software
application. This will be explained further in the Deployment 9. section, and for validation
purposes, it is irrelevant.

The first goal was to create a multiplayer game; satisfied by connecting multiple players
to a single game state. I also set out to create a competitive and fast-paced environment.
These are more difficult to measure as they are feelings experienced by the player rather
than functional requirements.

The project did not have an external client, so the requirements were my interpretation
of the player’s needs.

7.2. Validation Assessment Techniques

I used two techniques to validate the game. For the concrete requirements, I validated
them through the notion of Acceptance Criteria. I validated the more abstract requirements
through User Acceptance Testing.

7.2.1. Acceptance Criteria

A user story’s acceptance criteria are a list of functional requirements that must be satisfied
for it to be marked complete. The acceptance criteria were generated in the sprint planning
phase. After backlog grooming, I would examine each user story on the next sprint’s backlog
and list out its acceptance criteria. In Agile environments, stakeholders are consulted in the
setting of the acceptance criteria. But, the only stakeholders on the project were potential
players and me because this was a solo endeavour. So, I did not involve any stakeholders in
the setting of these criteria.

36

I also invented another set of criteria I coined Polish Criteria. Polish criteria are not
essential to creating a functional game, but they satisfy the artistic and game feel require-
ments. These were not required to be completed to mark a user story as complete. However,
the more polish criteria I completed, the richer the game felt.

I used Notion to organize the user stories and track the fulfillment of the criteria. In the
Kanban board, I designated a column titled Polish. When a user story’s acceptance criteria
was satisfied but not the polish criteria, I would move the card to the Polish column. If all
the cards were moved to this column and time was left in the sprint, I would implement the
polish items. But if there was no time left in the sprint, I just moved the cards to the Done
column because the next set of user stories needed attention to maintain velocity.

Here is an example user story from the Combat evolution:

“As a player, I want to fire a weapon in the direction of my aiming mechanism when I
press the fire button.”

Acceptance Criteria:

1. It’s done when the player fires their weapon and a bullet is spawned

2. It’s done when the player can see bullets

3. It’s done when the player can see enemies bullets

4. Tt’s done when the bullet firing uses lag compensation

5. It’s done when a bullet’s direction is toward the player’s aiming mechanism
Polish Criteria:

1. It’s polished when the weapon has a firing sound

2. It’s polished when the weapon has a recoil animation after firing

3. It’s polished when a weapon has a muzzle flash visible to all players

It is worthy to note that for the Movement and State Management and Synchronization
evolutions, I did not generate acceptance criteria. I only started writing out the acceptance
criteria when I moved to the Fvolutionary Scrum model. In the Combat evolution, which
was the first one using the evolutionary scrum section, I had not yet created the notion of
polish criteria. This caused a blending of criteria and confusion on whether a user story was
considered complete or not. I later divided the criteria into acceptance and polish and it
provided much more clarity to the whole process.

Something I did not consider at the time was using external feedback to verify the ac-
ceptance criteria. In retrospect, I think it would have been useful to provide the acceptance
criteria to playtesters to get their feedback on the fulfillment of the criteria. This would have
given playtesters a framework/lens to view the game through rather than just playing and
giving general feedback.

37

7.2.2. User Acceptance Testing

As stated before, User Acceptance Testing focused on validating the abstract requirements
of the game. These include the game feel and player engagement. To validate these, I invited
my friends to playtest the game with me. These were open play sessions where we would
play a few games. In the first few playtests, I focused more on the multiplayer actually
functioning properly. But by the last one, my friends and I were just playing the game to
see who could win the most matches.

I conducted unscripted interviews after the playtest sessions where I would ask the
playtesters to give me their thoughts. I had a OneNote page setup to take notes, mainly not-
ing bugs, feature suggestions and general feedback. Since these players were not QA testers
by trade, they often couldn’t tell if something was a bug or if it was intentional. I noted
this after the first few playtests which led to me asking them to record their gameplay. This
proved to be a good strategy for finding bugs, but also observing how the player interacted
with the game. Also, I participated in the playtests alongside my friends, and this helped
me find bugs that are far more difficult to discover by yourself. For example, one of the
playtests had an issue with the respawning system always spawning players in one of two
spawn points. This is something I had difficulty testing until I ran a playtest with 5 other
players.

I tried creating a regular playtesting schedule around the development cycle, but I found
myself scrambling and crunching before every playtesting session because of the lack of
integration testing. I would delay and then skip playtests which resulted in very infrequent
playtests. Looking back I wish I would have improved the unit and integration testing so
that I could have performed regular playtests. I am confident in my continuous integration
and deployment skills in the web and mobile development realm, but I have yet to explore
it in game development.

Despite the infrequent playtests, there were many great insights gained from them. One
being, the weapon balancing, which is how powerful the guns are in relation to one another.
Weapon balancing is a difficult scenario to test with one individual because it is more of a
feeling gained from actual play. In multiplayer shooters, it is common to have to balance
weapons even after release because if one gun is over powering the others, then the game
becomes unfair to players who don’t have that gun. Weapon balance issues were by far the
most common feedback from players which I took as a positive because that meant the other
areas of the game were working well.

There were also plenty of feature suggestions from the playtesters that have made it into
the game. I can assure you the game would not be where it is today without them. Here
are a few suggestions from the playtesters:

o Kill feed
e Sliding
e Health nuts

e Scoreboard

38

7.3. Conclusions and Future Improvements

There were two validation methods used to ensure Squirrels Gone Nuts met my promises in
the initial project proposal. The acceptance criteria validated the day-to-day operations of
development whereas the user acceptance testing validated the overall project goals. Both
of these methods were effective in identifying the successes and shortcomings of the game.

Moving forward, I would like to implement more frequent playtests on a schedule aligned
with the chosen lifecycle model. I foresee this benefiting development in more ways than one.
First, it would provide steady feedback which makes it easier to realize when a mechanic
is not working before sinking too much time into it. Secondly, consistent feedback surfaces
bugs that are difficult to test independently like the respawn issue stated earlier. Finally,
playtests fuel my motivation. Hearing feedback from players enjoying the game motivates
me to fix the areas where they see need for improvement.

39

8. Security

In the current state of the game, there are few security concerns. The only user data stored is
the player’s username. I opted to use a 3rd party service, Beamable [1] for authentication and
storage of player data. The player is anonymously authenticated using the device ID upon
launching the game. After authentication, the player’s username is retrieved via Beamable’s
API. Beamable provides a secure API that handles the authentication and transfer of data,
and it assures the use of proper security practices in their documentation.

Beamable Securty Overview
https://docs.beamable.com/docs/security-overview

Authentication
For user auth, Beamable implements OAuth2 with the following grant flows
for token-based auth:
e Password
e Authorization Code
e Federated/Social Login
e Anonymous/Guest
For server auth, we use signed requests using an MD5 Digest of the app secret

and other information. The signature is then included in the header of the
request.

For password storage, Beamable uses the BCrypt password hashing function,
which encompasses a random salt and a difficulty factor in hash, protecting
against both brute force and rainbow-table attacks.

Encryption
All data is secured at rest and in flight by industry-standard SSL/TLS en-
cryption within the Beamable platform.

Figure 12. Beamable Security Overview - Authentication and Encryption

I mentioned there are only a few concerns for the current state of the game. I plan
on expanding the authentication mechanism later in development which could increase the
security concerns. Beamable provides a mechanism for authenticating using username and
password that I plan to use come release. Still there appears to be no valid attack vector
because only encrypted data transfer occurs through the Beamable API.

From an infrastructure perspective, the game servers are of interest for an attacker. If
they are compromised, then there is no game. The main attack vector for this would be a
Distributed Denial of Service (DDoS) attack. Hathora [8], the game server hosting provider,
assures protection against DDoS attacks.

40

9. Deployment

The deployment for this project was simple because Unity provides a versatile build system.
The build system compiles the entire game into a single executable and can target all the
major gaming platforms. This tends to be implied with a multiplayer video game, but the
client must have a computer connected to the internet. As for hardware, the following are
the minimum specification recommendations:

e OS: Windows 7 or later
e Processor: Intel Core 2 Duo, 2GHz or AMD Athlon 64 X2 2GHz
e Memory: 2 GB RAM

Graphics: DirectX 10 or OpenGL 3.0 compatible GPU with 512MB VRAM

DirectX: Version 10

Network: Broadband Internet connection

e Storage: 1 MB available space

9.1. Deployment for Playtests

During development, I used a website called itch.io [10] to facilitate the distribution of the
executable for the playtests. This site is a game distribution platform aimed towards indie
developers. Playtesters would simply visit my itch.io profile, download and extract the zip
file containing the executable, and run the game.

9.2. Deployment for Release

For release, I am choosing to publish on Steam [11], a digital distribution platform. Steam
is one of the most popular platforms for buying and playing PC games. I am planning to
release the game in November 2024. There are a few tasks I need to do before release, and
I will go into further detail of my plans in Section 11..

9.3. Reasons for Changing from Web to Steam

The decision to switch from web deployment to a traditional application happened early
in development. There are a few reasons behind the decision. Web-based games are far
less lucrative than traditional games. This is evident by the fact that a majority of games
are published to platforms other than the web. Also, the revenue model for web games is
typically advertisement based, and I did not want to have ads in my game. However, money
was not the only reason for the switch in deployment strategy. Unity’s WebGL build requires
a different transport layer for the network communications. This likely would have increased
the complexity of the project. Also, Steam provides many built-in promotion mechanisms.
With a web-based game, I would have to do all the marketing whereas Steam has built in
mechanisms to show your game to players who might enjoy it.

41

9.4. Future Plans

About halfway through development, my plan was to publish the game on all the major
gaming platforms: Xbox, PlayStation, Nintendo, and PC. I still have that ideal in mind but
on a longer timescale. Initially, Squirrels Gone Nuts will be exclusively available on Steam.
Shortly after launch, I plan to publish on the Nintendo Switch. At that point, if there is
substantial traction, I will look into publishing on the major consoles.

Another aspect of deployment I would like to improve in the future is the server deploy-
ments. For now, [manually compile the build and upload it to Hathora, the server hosting
provider. Eventually, I would like to setup a CI/CD pipeline to automatically compile and
upload server builds. I have set up a CI/CD pipeline for my web and mobile app Castify,
but it would be a new endeavour for me in the realm of game development.

42

10. Challenges

10.1. Designer vs. Developer

Something specific to my case was that I was playing the role of both the developer and
the designer. Again pros and cons of each. Being the same person I could design mechanics
I knew were feasible to implement within a certain time frame. But, I also got lost in
designer mode while developing. I would implement a feature and think, “I should expand
this feature” and then sink 3 more hours into it to end up with no progress. 1 addressed
this by dividing the roles based on phases in the life cycle mode. During the requirements
and planning phase, I would focus specifically on game design. Then, I would implement the
requirements and make notes of new features I wanted to implement, but I would push those
features into the next sprint. This allowed me as a designer to evaluate those ideas from a
fresh perspective during the planning phase. When I was able to separate my designer and
developer roles I was able to achieve progress at a higher velocity.

10.2. Continuous Learning and Adaptation

This was my third ever project in Unity. The first game I made in Unity was for an FBLA
(Future Business Leaders of America) competition my senior year of high school. I partici-
pated in the Computer Game and Simulation Programming event. I made a game where you
walk around the office from the show “The Office” and answer questions related to FBLA.
Not exactly the most fun game, but it was a fun experience. The second game I made was
during my sophomore year of college for my astrophysics capstone course. I worked in a team
with two other Computer Science students, and we made a Lunar Lander simulator that is
still used today by the physics department in astronomy labs. Both were great experiences,
but nothing compared to the project I was going to take on.

When [started this project my experience with Unity was novice at best. This made de-
velopment difficult, especially for a project with such a large scope. It is common knowledge
in the game development community that you should not make a multiplayer game for your
first game. The following are reasons often stated: increased scope, networking complexity,
and difficult testing. Now this technically wasn’t my first game in Unity, but it felt like the
first time I really set out to understand Unity. As a result, I learned so many things along
the way. This made it difficult to adjust the project to these new findings as the project got
bigger and bigger. Which is what led to the refactor at the beginning of 2024. Even now, I
have been finding plenty of great techniques to better manage the project’s architecture but
it will be very difficult to retrofit these findings at this stage. The positive takeaway is that
I know my next game will have a much improved architecture.

10.3. Prototyping for Understanding

One thing I would do different is create throwaway prototypes more often. During the State
Management and Synchronization evolution I created a simple multiplayer space shooter
based on the arcade game asteroids. Building it allowed me to understand how the server
authoritative networking worked. It was a simple game, but it provided me with so much

43

insight into how I should implement it in the main project. I think next time I would try to
create the game in such a way that I can have these prototypes in the game. Let me explain.
I would try to make the game very modular and be able to construct small demos of certain
features independently of the entire game. This way I could get the benefits of prototyping
without having to throw away the prototype. Instead the scripts and features would already
be in the game just separated into components that I could add to the existing game. so in
broad strokes I would try to improve the project architecture from the beginning to promote
modularity and single responsibility.

44

11. Conclusions and Future Work

11.1. Project Summary

“Squirrels Gone Nuts” set out with two primary objectives: develop an innovative and
engaging game, and apply software engineering principles to independent game development.
The project resulted in a unique 2D multiplayer arena shooter where players control agile
squirrels wielding nut-themed weapons. The game distinguished itself through inventive
movement mechanics, such as sliding and shooting recoil, as well as a dynamic camera
system that rotates to follow player movement on any surface.

Development was not without challenge; ambitious goals led to overscoping and required
adjustments in both complexity and timeline. An iterative process was integral to overcoming
these hurdles and ensuring a quality final product.

By blending the creative aspects of game design with software engineering principles, the
project achieved a delicate balance that resulted in unique gameplay features. The movement
system offers an unprecedented freedom of traversal for platforming games. The other game
mechanics complement each other to provide a fresh and engaging experience within the
arena shooter genre.

Ultimately, “Squirrels Gone Nuts” demonstrates how adaptability and persistence lead
to success when working solo on a large-scale project. The knowledge and insights gained
from this journey will shape my future projects and innovations in both software and game
development.

11.2. Future Work

I mentioned in the Deployment section that I am planning to release the game in November
2024. Before that, I am going to participate in the October Steam Next Fest in hopes of
attracting players. Next Fest is a virtual festival hosted by Steam [11] three times a year
where developers can show off their unreleased games to millions of players. I am planning
on using this as a promotional mechanism for the game. Then in early November, I will
be attending the Midwest Game Development Conference (MDEV) in Madison. I attended
last year for the first time and it was an excellent experience. This year I am applying for
a booth, so players can experience Squirrels Gone Nuts first hand. For demonstrating the
game at a booth in a conference, I will need to create a snapshot of the game easily playable
in a short session.

There are a few items on my to do list before release. I have broken them down into
evolutions the same way I did throughout the project.

1. Gamemodes
I have a few gamemodes planned beyond the standard free-for-all (FFA) gamemode.
All the other modes besides FFA will be team based. The team based modes will
feature 3 teams of 3 players instead of the standard 2 team dynamic found in other
multiplayer games. This adds a layer of strategic depth to the gamemodes and has
been proven in practice by the game The Finals. Here are the other modes I have
planned:

45

e Team Deathmatch: The only objective is to eliminate players on the opposing
teams. The first team to reach a set amount of eliminations wins the game.

e Capture the Flag: Each team is assigned a flag and a base. Players must capture
the opposing teams’ flags and bring them to their base. The first team to reach
a set amount of captures wins the game.

e King of the Hill: Teams will fight over control of areas around the arena. Score
points by having majority control of the “hill”. The first team to reach a set
amount of points wins the game.

e Capture and Conquer: This is a new mode of my own devising with a few more
layers of strategy. The gamemode combines Capture of the Flag and King of the
Hill. Each team is assigned a flag and base. There is a center area that represents
the “hill”. Players must capture the opposing teams’ flags and place them on the
center hill. When a there is a flag on the hill and a team has majority control of
the hill, that team takes points from the team whose flag was captured.

. Player Profiles and Stats

Player profiles will track plenty of data including kill/death ratios, win/loss records,
and progress on weapon skin challenges. This system will enable players to monitor
their growth and accomplishments in the game.

. Matchmaking and Parties

The matchmaking system will employ an algorithm to match players and teams based
on skill levels, ensuring competitive and balanced gameplay. Players can form parties
with friends, entering a pre-matchmaking lobby to ensure they play on the same team
in team-based modes, enhancing the social and strategic aspects of the game.

. Bots

To support practice and offline play, there will be Al-controlled bots with adjustable
difficulty levels. These bots will mimic human-like behaviors. They can be used to fill
multiplayer lobbies and will provide a way for players to enjoy the game even if there
are not many players online.

. Tutorial and Demo Build

A tutorial will be available to help new players familiarize themselves with game con-
trols and mechanics. Additionally, a demo version of the game will be made for Steam
Next Fest and the MDEV Conference. It will have limited content but enough features
to showcase the game’s unique elements and mechanics.

11.3. Final Remarks

The goal of this project was to build a 2D, multiplayer, shooter with an emphasis on fast-
paced gameplay anchored in a unique movement system. By my judgement, evidenced by
this report, this goal was fulfilled. Hopefully the future players of “Squirrels Gone Nuts”
agree.

46

Bibliography

Beamable Documentation. Beamable, 2024. URL: https://docs.beamable.com/docs/
beamable-overview.

Wikipedia contributors. Entity component system. 2024. URL: https://en.wikipedia.
org/wiki/Entity_component_system.

Unity Documentation. Unity Technologies, 2024. URL: https://docs.unity.com/.
Robert Nystrom. Game Programming Patterns. Genever Benning, 2014.

Fish-Networking Documentation. FirstGearGames, 2024. URL: https://fish-networking.
gitbook.io/docs.

PlayFlow Cloud Documentation. PlayFlow, LLC, 2024. URL: https://docs.playflowcloud.
com/.

Azure PlayFab Documentation. Microsoft, 2024. URL: https://learn.microsoft.
com/en-us/gaming/playfab/.

Hathora Documentation. Hathora, Inc., 2024. URL: https://hathora.dev/docs.

Alexander Brazie. Designing The Core Gameplay Loop: A Beginner’s Guide. 2024.
URL: https://gamedesignskills.com/game-design/core-loops-in-gameplay/#:
~:text=What%20is%20a%20gameplay’%20loop, aim}2C%20fire?2C%20advance2CY
20repeat.

itch.to Homepage. itch corp, 2024. URL: https://itch.io/.

Steam Homepage. Valve Corporation, 2024. URL: https://store . steampowered .
com/.

47

https://docs.beamable.com/docs/beamable-overview
https://docs.beamable.com/docs/beamable-overview
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system
https://docs.unity.com/
https://fish-networking.gitbook.io/docs
https://fish-networking.gitbook.io/docs
https://docs.playflowcloud.com/
https://docs.playflowcloud.com/
https://learn.microsoft.com/en-us/gaming/playfab/
https://learn.microsoft.com/en-us/gaming/playfab/
https://hathora.dev/docs
https://gamedesignskills.com/game-design/core-loops-in-gameplay/#:~:text=What%20is%20a%20gameplay%20loop,aim%2C%20fire%2C%20advance%2C%20repeat
https://gamedesignskills.com/game-design/core-loops-in-gameplay/#:~:text=What%20is%20a%20gameplay%20loop,aim%2C%20fire%2C%20advance%2C%20repeat
https://gamedesignskills.com/game-design/core-loops-in-gameplay/#:~:text=What%20is%20a%20gameplay%20loop,aim%2C%20fire%2C%20advance%2C%20repeat
https://itch.io/
https://store.steampowered.com/
https://store.steampowered.com/

	Abstract
	Acknowledgments
	List of Figures
	Glossary
	Introduction
	Project Inspiration and Overview
	Inspiration
	Overview

	Project Objectives
	Game Objectives
	Software Engineering Objectives

	Relevance and Need
	Innovation
	Redefining Movement

	Expectations: Game and Report
	Market Expectations
	Transitioning to Technical Insights

	Software Development Process
	Introduction to Software Life Cycle Models
	Criteria for Choosing a Life Cycle Model
	Gathering Requirements
	Art and Engineering
	Finding the Fun
	Solo Development

	Journey through Different Life Cycle Models
	Evolutionary Prototyping Model
	Evolutionary Scrum Model
	Losing My Way
	Returning to Scrum

	Approach Moving Forward

	Requirements
	Overview and General Project Requirements
	Evolutionary Prototyping Requirements Process
	Evolutionary Scrum Requirements Process
	Final Thoughts

	Design
	Data Storage Design
	Architecture Design
	Reflections on Technology Influencing Design

	Design Decisions

	Implementation
	Technology
	Game Engine: Unity
	Networking Solution: FishNetworking
	Hosting Provider: Hathora
	Live Ops: Beamable

	Process
	Gameplay Loops
	Project Components
	Kanban

	Changes to Requirements
	Added Functionality
	Unfulfilled Goals

	Testing and Verification
	Overview of Testing Approaches
	Test Development and Execution
	Testing Frequency and Coverage
	Reflections and Future Testing Strategies

	Validation
	Overview of the Project Proposal
	Validation Assessment Techniques
	Acceptance Criteria
	User Acceptance Testing

	Conclusions and Future Improvements

	Security
	Deployment
	Deployment for Playtests
	Deployment for Release
	Reasons for Changing from Web to Steam
	Future Plans

	Challenges
	Designer vs. Developer
	Continuous Learning and Adaptation
	Prototyping for Understanding

	Conclusions and Future Work
	Project Summary
	Future Work
	Final Remarks

