
Notes on Program Verification

This document provides a quick reference to Floyd-Hoare logic for program verification. The
document lists only a few rules with some examples. It was created for the sole purpose of
teaching the fundamentals of program verification and is meant for the students in C-S 743
- Software Verification and Validation. More on Floyd-Hoare Logic can be found in several
books on program verification and axiomatic semantics. This document uses the syntax and
examples taken from the notes published by Professor Mike Gordon at the University of
Cambridge, UK.

http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf

Assignment rule:

{A[E/V ]} V = E {A}

where A is the assignment statement that tries to assign the value of the expression E to
the variable V . The rule says that “the value of V after the assignment must be equal to
the evaluated value of the expression E”. Formally, if the statement A is true before the
assignment, then the statement obtained by substituting V by the evaluated value of E
must be true after the statement execution. The precondition ensures that the validity of
substitution must be checked before the assignment. One such validation constraint is type
checking.

Example 1: {x == 0 ∧ y == 10} x = y ; {x == 10 ∧ y == 10}

In this example, it asserts that the value of x is changed by the assignment statement
while the value of y remains the same. Types of x and y are the same as indicated by the
pre-condition.

Is the following assignment statement true?
{y == 10} x = y ; {x == 10 ∧ y == 10}
Explain.

Example 2: {x + 1 == n + 1} x = x + 1; {x == n + 1}

In this example, the precondition helps evaluating the value of x before the assignment
and the postcondition asserts what its value will be after the statement execution.

Sequencing rule

{P} S1 {Q}, {Q} S2 {R}
{P} S1; S2 {R}
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Informally, the sequence rule describes that the execution of two consecutive statements can
be combined into one composite statement as long as the postcondition of the first statement
becomes or implies the precondition of the second statement.

Example 6: Swapping two values.
Given the following assignment statements

{x == 10 ∧ y == 5} r = x {x == 10 ∧ y == 5 ∧ r == 10},
{x == 10 ∧ y == 5 ∧ r == 10} x = y {x == 5 ∧ y == 5 ∧ r == 10},
{x == 5 ∧ y == 5 ∧ r == 10} y = r {x == 5 ∧ y == 10 ∧ r == 10}

one can deduce that

{x == 10 ∧ y == 5} r = x ; x = y ; y = r{x == 5 ∧ y == 10 ∧ r == 10}

Derived Sequencing rule

P ⇒ P1,
{P1} S1 {Q1}, Q1 ⇒ P2,
{P2} S2 {Q2}, Q2 ⇒ P3,
. . .
{Pn} Sn {Qn}, Qn ⇒ Q
{P} S1; S2; . . . ; Sn {Q}

The derived sequencing rule is an extension of the sequencing rule and is applicable for a
block of statements. In fact, this rule is used to prove that if the individual statements of a
program are correct, and their sequencing is correct, then the whole program is correct.

Conditional rules

{P ∧ C} S {Q}, P ∧ ¬ C ⇒ Q
{P} if C then S {Q}

{P ∧ C} S1 {Q}, {P ∧ ¬ C} S2 {Q}
{P} if C then S1 else S2 {Q}

In the above rules, C refers to the condition in the if statement.

While rule

A while statement includes a condition C and a body of statements S . In addition, there is
an invariant I (a property expressed like a condition) which must be true (i) before entering
the while loop, (ii) at the end of each iteration of the while loop and (iii) immediately after
the while loop is terminated. A more formal definition of ’while rule’ follows:

{P ∧ I ∧ C} S {I ∧ Q}
{P ∧ I } while C do S {P ∧ I ∧ Q ∧ ¬ C}
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In the above rule, P indicates a precondition to arrive at the while loop, and Q refers
to the post-condition that indicates the consequence of executing the while loop.

Example 8: Consider the following while loop. Assume that r ∈ N ∧ y ∈ N ∧ q ∈ N.

q = 0;
while y ≤ r do
begin

r = r − y ;
q = q + 1;

end

The keywords begin and end were used instead of the curly parentheses (Pascal style as
opposed to C, C++ and Java style) in order to resolve ambiguities in using the parentheses.

For this while loop, one can derive the following:
C ≡ y ≤ r
S ≡ r = r − y ; q = q + 1
P ≡ true since it is not specifically stated
Q ≡ q ∗ y + r = x where x is the initial value of r .

The invariant for this loop is actually the same as the post-condition, namely x == q ∗y +r .
Thus,

P ≡ x == q ∗ y + r
The details of the proof is given in the exercises section.

Finding a suitable invariant is a challenge in the verification of a loop. Once found, it is
used in all the three instances (just before entering into the loop, at the end of each iteration
and at the termination of the loop) to verify the correctness of the loop.
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Switch rule

For simplicity, we assume that the case selector is always an integer. The following structure
for the switch statement is assumed.

switch << INTEGEREXPRESSION >>
BEGIN

CASE << VALUE1 >> : << STATEMENT1 >>;
break;

CASE << VALUE2 >> : << STATEMENT2 >>;
break;

. . .
CASE << VALUEn >> : << STATEMENTn >>;

break;
END

It is required that the value of the case selector must be within the range VALUE1 . .VALUEn ,
both inclusive.

The rule for switch statement follows:

T ≡ e ∈ Z ∧ v1 ∈ Z ∧ v2 ∈ Z ∧ . . . ∧ vn ∈ Z ∧
(e == v1 ∨ e == v2 ∨ . . . e == vn) ∧
(v1 6= v2 6= . . . 6= vn)

{T ∧ P ∧ e == v1}S1{Q}
{T ∧ P ∧ e == v2}S2{Q}
. . .
{T ∧ P ∧ e == vn}Sn{Q}

{P} switch e BEGIN
CASE v1 : S1; break ;
CASE v2 : S2; break ;
. . .
CASE vn : Sn ; break ;

END {Q}

P and Q are the pre- and post-condition respectively for the switch statement.
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Exercises

1. Devise an axiom and/or rule of inference for a statement SKIP that has no effect. Show
that if C then S is regarded as a simplification of if C then S else SKIP ; i.e., the
rule for one-armed conditional statement is derivable from the rule for the two-armed
conditional statement and the axiom/rule for SKIP .

The rule for SKIP follows:

{P} SKIP {P}

This rule asserts that the precondition is the same as the post-condition meaning that
the statement SKIP has no effect.

The rule for if-then statement is given as (already given in the notes)

{P ∧ C} S {Q} P ∧ ¬ C ⇒ Q
{P} if C then S {Q}

and the rule for if-then-else statement is given as (already given in the notes)

{P ∧ C} S1 {Q} {P ∧ ¬ C} S2 {Q}
{P} if C then S1 else S2 {Q}

Substituting S for S1 and SKIP for S2 in the rule for if-then-else, we get

{P ∧ C} S {Q} {P ∧ ¬ C} SKIP {Q}
{P} if C then S else SKIP {Q}

The term {P ∧ ¬ C} SKIP can be rewritten as {P ∧ ¬ C} SKIP{P ∧ ¬ C} using
the rule for SKIP . Thus,

{P ∧ C} S {Q} {P ∧ ¬ C} SKIP {P ∧ ¬ C} {Q}
{P} if C then S else SKIP {Q}

This shows that the conditions P ∧ ¬ C and Q must both be true at the same time
without executing any statement. This is possible only if P ∧ ¬ C ⇒ Q which is
what stated in the rule for if-then. Therefore, it is proved that the one-armed rule for
conditions is derived from its two-armed rule and the rule for the SKIP statement.

2. Show that, using the rules for conditional statements, the following two code fragments
are equivalent:
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Code fragment 1:

if (n >= ’0’ && n <= ’9’) {

print ("n is s digit");

else

print ("n is not a digit");

Code fragment 2:

if (n >= 0) {

if (n <= 9) {

print ("n is digit");

else print ("n is not a digit");

else print ("n is not a digit");

Let
P - the precondition for the fragment of code (same for both)
Q - the post-condition for the fragment of code (same for both)

of the second if block.
C1 - the condition n ≥ 0
C2 - the condition n ≤ 9
S1 - the statement print ("n is digit")

S2 - the statement print ("n is not a digit")

For the first code fragment,
{P ∧ C1 ∧ C2}S1{Q} (1)
{P ∧ ¬ (C1 ∧ C2)}S2{Q} (2)

For the second code fragment,
{P ∧ C1} inner block {Q}
{P ∧ ¬ C1}S2{Q}
which will be expanded as
{P ∧ C1} [{P ∧ C1 ∧ C2}S1{Q}

{P ∧ C1 ∧ ¬ C2}S2{Q}] {Q}
{P ∧ ¬ C1}S2{Q}
After simplification,
{P ∧ C1 ∧ C2}S1{Q} (3)
{P ∧ C1 ∧ ¬ C2}S2{Q} (4)
{P ∧ ¬ C1}S2{Q} (5)

Equations (1) and (3) are equivalent and describe the same situation (same precon-
dition, same statement executed resulting in the same post-condition). We will now
prove that equation (2) is equivalent to the combination of equations (4) and (5).
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Equation (2) has the precondition ¬ (C1 ∧ C2) ≡ ¬ C1 ∨ ¬ C2 DeMorgan’s law.
Since equations (4) and (5) indicate that the same statement is executed and result in
the same post-condition, it becomes obvious that one or both of the preconditions can
be true in order to execute the statement S2. That is,

(C1 ∧ ¬ C2) ∨ ¬ C1

≡ (C1 ∨ ¬ C1) ∧ (¬ C2 ∨ ¬ C1) Distributive law
≡ true ∧ (¬ C2 ∨ ¬ C1)
≡ (¬ C2 ∨ ¬ C1)

Therefore, equation (2) describes the same situation as the combined effects of equa-
tions (4) and (5). Hence, both code fragments are equivalent.

3. Given r ∈ Z, q ∈ Z, and y ∈ Z, and the code

q = 0;

while (y <= r) {

r = r - y;

q = q + 1;

}

prove that x == q ∗ y + r is an invariant for this while loop where x is equal to the
initial value of r .

Let r == r0, y == y0 initially.
At the beginning of the loop (before entering the loop),

x == q0 ∗ y0 + r0
== 0 + r0

Therefore, the invariant is true before entering the loop.

At the end of the first iteration, q == 1, r == r0 − y0.
x == 1 ∗ y0 + (r0 − y0) == r0

Therefore, the invariant is true at the end of the first iteration.

This can be generalized to k iterations as well.
At the end of the k th iteration, q == k , r == r0 − k ∗ y0.

x == k ∗ y0 + (r0 − k ∗ y0) == r0
Hence, the invariant is true at the end of the k th iteration as well.

At the exit of the loop, assume that the loop has been executed N times.
Substitute k == N in the previous step; this will prove that the invariant is
true at the exit of the loop.

Therefore, x == q ∗ y + r is an invariant for this while loop.
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