Object-Oriented Design Document for a
Personal Address and Phone Book

Part 2: Detailed Design

Prepared for C-S 341: Software Engineering

By group #: 3
Group Members:

Kasi Periyasamy

Tom Gendreau
Dave Riley

November 03, 2003

1.

About this document

This document describes a detailed object-oriented design for a personal address and
phone book. The architectural design for the phone book is given in [4] and the
requirements are given in [1,2,3]. The object-oriented design is described using a
collection of class definitions where each class definition includes structural and
behavioral properties. This document describes only those classes corresponding to the
functional behavior and do not describe the classes corresponding to the graphical user
interface. By keeping the two sets of classes separated, a designer has the freedom to
change the GUI without affecting the functional behavior.

2. Design Decisions

The following decisions are made during the design process:

1.

Phone numbers may be entered/retrieved in only one of the following formats;
any phone number not entered in one of these formats will be flagged as an
error:

7 digits — for local phone numbers

10 digits — for long distance phone numbers

15 digits — for international phone numbers; if an international number is less
than 15 digits long, zeroes will be padded at the front of the phone number
while entering the number; however, these zeroes will not show up when the
number is retrieved or displayed.

Both last name and first name are represented as strings; the number of
characters in first name and in last name are limited to 80 characters.

An address will be stored and retrieved as one string (maximum 256 characters)
per line.

Date will be chosen from the system and will be entered, stored and retrieved in
the MM/DD/YYYY format.

Each appointment will be entered and retrieved as one string (maximum 256
characters).

3. Format of a Class Definition

Each class definition is given in the following format:

Class name: must be unique within the entire design.

Attributes or instance variables:

each variable is given in following format:
<visibility> <type> <name>
where <visibility> is “public” or “private”.

Unless otherwise indicated, there will be a getX() method and a setX() method
for each private attribute X.

Methods
Each method will be classified as “public” or “private”.
Each method is given in the following structural format:

Name of the method — must be unique within the class

Synopsis of the method — calling syntax for the method

Purpose of the method — a short description of the functionality
implemented by this method

Visibility — public or private

Input parameters — a set of parameters in <type><name> format

Output parameter — in <type><name> format

Local variables — a set of variables used in describing the pseudocode
(given next) for this method

Pseudocode — an algorithmic (structured) description of the method

Exceptions — a set of exceptions that might arise in executing this
method and their corresponding corrective actions

Remarks — additional information about this method and hints for the
programmers; typically, it may include the design decisions taken
and choices of implementation that the programmer may
consider

4. Class definitions

Classname: PhoneNumber
Attributes:
private Integer number
private Boolean type /* “true” indicates phone number

“false” indicates fax number */
/** There are no setX() methods for the two private variables listed above.
However, there are implicit getX() methods for the variables. **/

Methods
Name: CreatePhoneNumber
Synopsis: ph € CreatePhoneNumber (num, numType, phoneOrFax)
Purpose: To create a new phone number.
Visibility: public
Input parameters: Integer num

Integer numType

Boolean phoneOrFax
Output parameters: PhoneNumber ph
Local variables: None

Pseudocode:
/* verify the format of ‘num’ */
if (numType =1)
if (numberOfDigits(num) # 7) /* local */
throw PhoneNumberFormatException;
if (numType = 2)
if (numberOfDigits(num) # 10) /* long distance */
throw PhoneNumberFormatException;
if (numType = 3)
if (numberOfDigits(num) < 11 OR
numberOfDigits(num) > 15) /* international */
throw PhoneNumberFormatException;
if (numType < 1 OR numType > 3)
throw PhoneNumberFormatException;
ph.number € num;
ph.type € phoneOrFax;
Exceptions:
PhoneNumberFormatException — display the error message and ask the user
to enter the phone number again.

Remarks: None
k k %
Name: ChangePhoneNumber
Synopsis: ChangePhoneNumber (newNumber)
Purpose: To change the number portion of the phone number
Visibility: public
Input parameters: Integer newNumber
Output parameters: None
Local variables: None
Pseudocode:

/* new number must belong to the same category as the old number */
if (numberOfDigits (number) = 7 AND numberOfDigits (newNumber) # 7)
throw PhoneNumberFormatException;
else if (numberOfDigits(number) = 10 AND
numberOfDigits (newNumber) # 10)
throw PhoneNumberFormatException,;
else if (11 <= numberOfDigits (number) <= 15 AND
NOT (11 <= numberOfDigits (number) <= 15)
throw PhoneNumberFormatException;
/* number of digits in new number may be different from that in the old
number, but both must be in the same range. */
number € newNumber;

Exceptions:
PhoneNumberFormatException — display the error message and ask the user
to enter the phone number again.

Remarks: None
* * %
Name: numberOfDigits
Synopsis: count € numberOfDigits (num)
Purpose: To return the number of digits in an integer
Visibility: private
Input parameters: Integer num
Output parameters: Integer count
Local variables: None
Pseudocode:
count €< 0;
if (num # 0) count € 1 + numberOfDigits (num / 10);
Exception: ~ None
Remarks: None
* * *
Class name: PhoneEntry
Attributes:
private String lastname, firstname
private Array [1..L] of String address /* L lines of address */
private Array [1..N] of PhoneNumber numbers /* N phone numbers */

/* ‘L’ and ‘N’ must be chosen by the implementer */
/** There are no setX() methods for any of the three private variables above.
But there are implicit getX() methods for all the three variables **/

Methods:

Name: CreatePhoneEntry

Synopsis: phEntry € CreatePhoneEntry (last, first, adr, nums)

Purpose: To create a new phone entry.

Visibility: public

Input parameters: String last, first
Array [1..K] of String adr
Array [1..M] of PhoneNumber nums

Output parameters: PhoneEntry phEntry

Local variables: Integer i

Pseudocode:

/* verify the length restrictions for names and address */
if (Iength(last) > 80) throw NameLengthException;

if (length(first) > 80) throw NameLengthException;

if (K > L) throw AddressLineLimitException;

if (M > N) throw PhoneNumberLimitException;

fori=1toK
if (length(adr[i]) > 256) throw AddressLineLengthException;
phEntry.lastname € last;
phEntry.firstname < first;
fori=1to K phEntry.address[i] €< adr[i];
fori=1toM phEntry.numbers[i] € numsJ[i];
Exceptions:
NameLengthException — ask the user to re-enter the name again.
AddressLineLengthException — ask the user to re-enter the address again
AddressLineLimitException — warn the user that the lines after the limit
will not be included in the phone book
PhoneNumberLimitException — warn the user that the extra phone numbers
will not be included in the phone book
Remarks: This method assumes that the individual phone numbers in the array
‘nums’ have been created already and hence their format has been validated.

* * *
Name: IsPhoneNumberPresent
Synopsis: answer € IsPhoneNumberPresent (phNumber)
Purpose: To check whether or not a given phone number exists in the
this phone entry.

Visibility: public
Input parameters: PhoneNumber phNumber
Output parameters: Boolean answer
Local variables: Integer 1
Pseudocode:

answer < false;

1€ 1;

while (NOT (answer) AND (i <= length (numbers)) {
if (numbers[i] = phNumber) answer €< true;

1€it+1;
}
Exceptions: None
Remarks: This method assumes that the array ‘numbers’ is not sorted.
* * *
Name: AddPhoneNumber
Synopsis: AddPhoneNumber (phNumber)
Purpose: To add a phone number to the phone entry.
Visibility: public
Input parameters: PhoneNumber phNumber
Output parameters: None
Local variables: Integer i
Pseudocode:

/* Ensure that the phone number does not exist in this entry */

if (isPhoneNumberPresent (phNumber))
throw PhoneNumberExistsException;
/* the ‘if” condition above checks for equality of number and type;
if the numbers are same but the types are different, this condition
will consider them as two different numbers */
if (length (numbers) = N) throw PhoneNumberLimitException;
numbers € numbers + phNumber; /* ‘+’ here indicates adding an entry
into an array. */
Exception:
PhoneNumberExistsException — display the appropriate error message.
PhoneNumberLimitException — warn the user that the limit for maximum
number of phone numbers has exceeded and so the new number
will not be included in the phone book.
Remarks: The pseudocode uses ‘“+’ to add an item to an array. The
implementer can choose to add at the end of the array, or at the beginning
of the array or sort the array and insert the new number at appropriate place.

% % %
Name: DeletePhoneNumber
Synopsis: DeletePhoneNumber (phNumber)
Purpose: To delete a phone number from this entry
Visibility: public
Input parameters: PhoneNumber phNumber;
Output parameters: None
Local variables: Integer i
Pseudocode:

if (NOT(isPhoneNumberPresent(phNumber)))
throw PhoneNumberNotExistException;
numbers € numbers — phNumber; /* ‘-’ here indicates removing an
element from the array; may require to find
the index of the element to be removed */
Exceptions:
PhoneNumberNotExistException — display the appropriate error message.
Remarks:
The pseudocode uses the ‘- sign to remove an element from the array.
Similar to ‘+’, the implementer is responsible for writing the code to find
the index of the element to be removed and update the array.

b % %

Class name: PhoneDiary

Attributes:
private Array [1..N] of PhoneEntry entries;

/* Implementer must choose ‘N’ */
/** There are no implicit setX() or getX() methods for this attribute. **/

Methods:
Name: InitializePhoneDiary
Synopsis: InitializePhoneDiary()
Purpose: To initialize the entries of the phone diary with null.
Visibility: public
Input parameters: None
Output parameters: None
Local variables: Integer 1
Pseudocode:

fori=1to N entries[i] € null;
Exceptions: None

Remarks: “null” must be defined by the implementer.
* * %
Name: AddEntry
Synopsis: AddEntry (Iname, fhame, adr, phones)
Purpose: To add an entry in the phone diary.
Visibility: public
Input parameters: String Iname, fname
Array [1..K] of String adr
Array [1..M] of PhoneNumber phones
Output parameters: None
Local variables: PhoneEntry phEntry;
Pseudocode:
phEntry € phEntry.createPhoneNumber (Iname, sname, adr,
phones);

entries € entries + phEntry; /* ‘+” denotes adding into an array */
Exceptions: None
Remarks: The ‘+’ sign in the pseudocode indicates insertion of a
member into an array; the implementer may choose the right
spot to insert the member.

* * *
Name: SearchEntry
Synopsis: phEntry € SearchEntry (Iname)
Purpose: To retrieve an entry based on last name.
Visibility: public
Input parameters: String Iname
Output parameters: PhoneEntry phEntry
Local variables: Boolean flag

Integer 1

Pseudocode:

flag < false;

1€ 1;

while (NOT flag AND (i <= length(entries)) {
flag € entries[i].getLastname() = Iname;

1€i+1;

}

if (1 <= length(entries)) phEntry € entries][i];

else phEntry € null;
Exceptions: None
Remarks: None

% % %

Name: DeleteEntry
Synopsis: DeleteEntry (Iname)
Purpose: To delete an entry; last name is provided
Visibility: public
Input parameters: String Iname
Output parameters: None
Local variables: None
Pseudocode:

if (SearchEntry (Iname) = null) throw NameNotExistException;
else entries € entries — SearchEntry (Iname);

Exception:
NameNotExistException — display the error message and terminate
the method
Remarks: The negative sign in the pseudocode indicates that the

member is removed from the array. Implementer may choose to
find the index of the corresponding entry and then update the array
% % %

Name: ModifyEntry
Synopsis: ModifyEntry (Iname, adr, phones)
Purpose: To modify an entry by overwriting the address and phone
numbers
Visibility: public
Input parameters: String Iname
String adr
Array [1..P] of PhoneNumber phones
Output parameters: None
Local variables: PhoneEntry phEntry
Integer 1
Pseudocode:
if (SearchEntry (Iname) = null) throw NameNotExistExceptions;
else {

phEntry € SearchEntry (Iname);
entries €< entries — SearchEntry (Iname);

10

phEntry.adr € adr;
fori=1to P PhEntry.AddPhoneNumber (phones[i]);
entries € entries + phEntry;

}
Exceptions:
NameNotExistException — display the error message and terminate
the method
Remarks: The size of the array ‘P’ must be decided by the user.
The ‘- sign in the pseudocode indicates deleting an element from an
array.
* * *
Name: ListEntries
Synopsis: ListEntries (phone)
Purpose: To list all the entries which have the phone number that is

passed as the input parameter
Visibility: public

Input parameters: PhoneNumber phone
Output parameters: Array [1..K] of PhoneEntry outEntries;
Local variables: Integer count, i
Pseudocode:
count € 0;

for i =1 to length (entries) {
if (entries[1].isPhoneNumberPresent (phone)) {
count € count + 1;
outEntries[count] € entries|[i];

h
}
Exceptions: None
Remarks: The output may be displayed by another method separately.
% % k
Name: AddPhoneNumber
Synopsis: AddPhoneNumber (Iname, phone)
Purpose: To add a phone number to a particular entry
Visibility: public
Input parameters: String Iname
PhoneNumber phone
Output parameters: None
Local variables: PhoneEntry phEntry
Pseudocode:
if (SearchEntry(Iname) = null) throw NameNotExistException;
else {

phEntry € SearchEntry (Iname);
entries € entries — SearchEntry (Iname);
phEntry. AddPhoneNumber (phone);

11

entries € entries + phEntry;

}
Exceptions:
NameNotExistException — display the error message and terminate
the method
Remarks: The ‘+’ sign (and the -‘ sign) in the pseudocode indicates

adding (deleting) an element to (from) an array.
* % &

Name: DeletePhoneNumber
Synopsis: DeletePhoneNumber (Iname, phone)
Purpose: To remove a phone number from a particular entry
Visibility: public
Input parameters: String Iname
PhoneNumber phone
Output parameters: None
Local variables: PhoneEntry phEntry
Pseudocode:
if (SearchEntry(Iname) = null) throw NameNotExistException;
else {
phEntry € SearchEntry (Iname);
entries € entries — SearchEntry (Iname);
phEntry.DeletePhoneNumber (phone);
entries € entries + phEntry;

}
Exceptions:
NameNotExistException — display the error message and terminate
the method
Remarks: The ‘+’ sign (and the ‘-* sign) in the pseudocode indicates

adding (deleting) an element to (from) an array.
* k *

Class name:

Attributes:
private
private
private
private

/* The class ‘Date’ will use the date class from the system.
The class ‘Hour’ is a rename of ‘Integer’. The implementer may choose to add more
constraints to this class, if desired.

Appointment

Date when

Hour from, to
String appointment
String lastname

12

All the three attributes have implicit getX() methods, but there are no setX()
methods for any of the three attributes. The getX() methods will not be included
in the design document.

*/
Methods:
Name: CreateAppointment
Synopsis: CreateAppointment (date, start, end, appt,Iname)
Purpose: To create a new appointment
Visibility: public
Input parameters: Date date
Hour start, end
String appt
String Iname
Output parameters: Appointment appoint
Local variables: None
Pseudocode:

If (NOT(validateDate (date)) throw InvalidDateException;

If (NOT(validateTime (start, end)) throw InvalidTimeException;

if (length(appt) > 256) throw AppointmentLengthLimitException;

if (Iname # null)
if (length(Iname) > 80) throw NameLengthLimitException;

appoint.when < date;

appoint.from € start;

appoint.to € end,

appoint.appointment € appt;

appoint.lastname € Iname;

Exceptions:

InvalidDateException — display the error message and ask the user to re-
enter the date.

InvalidTimeException — display the error message and ask the user to
re-enter the time.

AppointmentLengthLimitException — display a warning message to the
user and ignore the information after 256 characters.

NameLengthLimitException — display a warning message to the user and
Ignore the portion of the name beyond 80 characters.

Remarks: Last name is optional. If not specified in the input, a “null” value will

be stored instead.

* * *
Name: ChangeAppointment
Synopsis: ChangeAppointment (newAppt)
Purpose: To change the appointment string

Visibility: public
Input parameters: String newAppt

13

Output parameters: None
Local variables: None
Pseudocode:
appointment € newAppt;
Exceptions: None
Remarks: None
k % %

Class name: AppointmentCalendar

Attributes:

private Array [1..N] of Appointment entries
/* ‘N’ must be chosen at the implementation time. */

Methods:

Name: Initialize AppointmentCalendar
Synopsis: Initialize AppointmentCalendar()
Purpose: To initialize the appointment calendar
Visibility: public

Input parameters: None

Output parameters: None

Local variable: Integer i

Pseudocode:

fori=1 to N entries[i] < null;
Exceptions: None

Remarks: Implementer must choose representation of “null”.
% * %
Name: SearchAppointment
Synopsis: SearchAppointment (date, start, end)
Purpose: To search for an appointment in the calendar
Visibility: public
Input parameters: Date date
Hour start, end
Output parameters: Appointment appt
Local variables: Integer i
Boolean flag
Pseudocode:

if (NOT(validateDate (date)) throw InvalidDateException;
if (NOT(validateTime (start, end)) throw InvalidTimeException;

14

flag < false;

1€ 0;

appt € null;

while (NOT flag and (i <= length(entries)) {
if (entries[i].when = date AND entries[i].from = start AND

entries[i].to = end) appt € entries[i].appointment;

1€i+1;

}

Exceptions:

InvalidDateException — display the error message and ask the user to
re-enter the date.

InvalidTimeException — display the error message and ask the user to
re-enter the time

Remarks: None
* * *

Name: AddAppointment
Synopsis: AddAppointment (date, start, end, appt, Iname)
Purpose: To add a new appointment to the calendar
Visibility: public
Input parameters: Date date

Hour start, end

String appt

String Iname
Output parameters: None
Local variables: Appointment appoint

Integer i
Pseudocode:

if (NOT(validateDate (date)) throw InvalidDateException;
if (NOT(validateTime (start, end)) throw InvalidTimeException;
if (SearchAppointment (date, start, end) # null) throw
AppointmentAlreadyExistException;
appoint € appoint.Create Appointment (date, start, end, appt,Iname);
entries € entries + appoint;
Exceptions:
InvalidDateException — display the error message and ask the user to
re-enter the date.
InvalidTimeException — display the error message and ask the user to
re-enter the time
AppointmentAlreadyExistException — display the error message and
terminate the method.
Remarks: The ‘+’ sign in the pseudocode indicates adding an element to n

array.
* * *

15

Name: DeleteAppointment
Synopsis: DeleteAppointment (date, start, end)
Purpose: To delete an appointment in the calendar
Visibility: public
Input parameters: Date date
Hour start, end
Output parameters: None
Local variables: Integer i
Pseudocode:

if (NOT(validateDate (date)) throw InvalidDateException;

if (NOT(validateTime (start, end)) throw InvalidTimeException;

if (SearchAppointment (date, start, end) = null) throw
AppointmentNotExistException;

entries € entries - SearchAppointment (date, start, end);

Exceptions:

InvalidDateException — display the error message and ask the user to
re-enter the date.

InvalidTimeException — display the error message and ask the user to
re-enter the time

AppointmentNotExistException —display the error message and terminate

the method
Remarks: The °-° sign in the pseudocode indicates deleting an entry from an
array.
% % %
Name: MoveAppointment
Synopsis: MoveAppointment (oldDate, oldStart, oldEnd, newDate, newStart,
newEnd)
Purpose: Move the appointment at (oldDate, oldStart, oldEnd) to the place

(newDate, newStart, newEnd)
Visibility: public

Input parameters: Date oldDate, newDate
Hour oldStart, oldEnd, newStart, newEnd
Output parameters: None
Local variables: None
Pseudocode:

if (NOT(validateDate (oldDate)) throw InvalidDateException;

if (NOT(validateTime (oldStart, oldEnd)) throw InvalidTimeException;

if (SearchAppointment (oldDate, oldStart, oldEnd) = null) throw
AppointmentNotExistException;

if (NOT(validateDate (newDate)) throw InvalidDateException;

if (NOT(validateTime (newStart, newEnd)) throw InvalidTimeException;

if (SearchAppointment (newDate, newStart, newEnd) # null) throw
AppointmentAlreadyExistException;

16

AddAppointment (newDate, newStart, newEnd,
SearchAppointment (oldDate, oldStart, oldEnd));

DeleteAppointment (oldDate, oldStart, oldEnd);

Exceptions:

InvalidDateException — display the error message and ask the user to
re-enter the date.

InvalidTimeException — display the error message and ask the user to
re-enter the time

AppointmentNotExistException —display the error message and terminate
the method

AppointmentAlreadyExistException —display the error message and
terminate the method

Remarks: None
k k %
Name: validateDate
Synopsis: validateDate (date)
Purpose: To check whether the input date is beyond the current date
Visibility private
Input parameters: Date date
Output parameters: Boolean answer
Local variables: None
Pseudocode:

Answer €< (date >= currentDate());
Exceptions: None
Remarks: ‘date’ is chosen from the system and hence its format need not be
verified.
currentDate() is a system function that returns the date from the

system clock at the time of invocation.
% % %

Name: validateTime

Synopsis: validateTime (start, end)

Purpose: To check the validity of time and the relationship between the two
Parameters

Visibility: private

Input parameters: Hour start, end

Output parameters: Boolean answer

Local variables: None

Pseudocode:

Answer € (0 <= start <=23) AND (0 <= end <= 23) AND (start < end);
Exceptions: None

Remarks: None
ES ES ES

17

Class name:

Attributes:
public
public

PhoneBook
PhoneDiary phoneDiary
AppointmentCalendar apptCalendar

/** There are no setX() or getX() methods for any of these attributes */

Methods
Name: InitializePhoneBook
Synopsis: InitializePhoneBook()
Purpose: To initialize the phone diary and the appointment calendar
Visibility: public
Input parameters: None
Output parameters: None
Local variables: None
Pseudocode:

phoneDiary.InitializePhoneDiary();
apptCalendar.Initialize AppointmentCalendar();

Exceptions: None
Remarks: None

% % %
Name: SelectPhoneDiary
Synopsis: SelectPhoneDiary(phoneFilename)
Purpose: To read values of phone diary entries from file
Visibility: public
Input parameters: File phoneFilename
Output parameters: None
Local variables: Integer i
Pseudocode:

if (openfile(phoneFilename) = null) throw FileNotFoundException;

1€ 1;

while (NOT endOfFile (phoneFilename) AND (i <= N) {
phoneDiary.entries[i] € readRecord (phoneFilename);
1€it+1;

}

close (phoneFilename);

Exceptions:

FileNotFoundException — display the error message to the user and
Terminate the method.

Remarks:

‘N’ denotes the maximum number of entries the phone diary can hold;
must be chosen by the implementer.

18

‘readRecord’ method assumes that the records stored in the file are in the
same format as that of the entries in the phone diary. If there is a mismatch,
the ‘readRecord’ method will display appropriate error messages; it will be
left to the file handling mechanism of the chosen language and hence is the
choice left to the implementer.

* k %
Name: SelectAppointmentCalendar
Synopsis: SelectAppointmentCalendar(calendarFilename)
Purpose: To read values of appointment calendar entries from file
Visibility: public
Input parameters: File calendarFilename
Output parameters: None
Local variables: Integer 1
Pseudocode:
if (openfile(calendarFilename) = null) throw FileNotFoundException;
1€ 1;

while (NOT endOfFile (calendarFilename) AND (i <= N) {
apptCalendar.entries[i] € readRecord (calendarFilename);

1€i+1;
}
close (calendarFilename);
Exceptions:

FileNotFoundException — display the error message to the user and
Terminate the method.

Remarks:
‘N’ denotes the maximum number of entries the appointment calendar can
hold; must be chosen by the implementer.
‘readRecord’ method assumes that the records stored in the file are in the
same format as that of the entries in the appointment calendar. If there is a
mismatch, the ‘readRecord’ method will display appropriate error messages;
it will be left to the file handling mechanism of the chosen language and
hence is the choice left to the implementer.

* * *

Name: WritePhoneDiary
Synopsis: WritePhoneDiary(phoneFilename)
Purpose: To write the phone diary back onto the file
Visibility: public
Input parameters: File phoneFilename
Output parameters: None
Local variables: Integer i
Pseudocode:

openfile (phoneFilename, write); /* open for writing */

for i =1 to length(phoneDiary.entries)
writeRecord (phoneFilename, phoneDiary.entries[i]);

19

close (phoneFilename);
Exceptions: None
Remarks:
‘opnefile (filename, write)” will open a file for writing; it will re-initialize
the file if it already exists.
‘writeRecord’ will write the entries in the same format as they exist in

phoneDiary.
* * *

Name: WriteAppointmentCalendar
Synopsis: WriteAppointmentCalendar(calendarFilename)
Purpose: To write the appointment calendar back onto the file
Visibility: public
Input parameters: File calendarFilename
Output parameters: None
Local variables: Integer i
Pseudocode:

openfile (calendarFilename, write); /* open for writing */
for 1 =1 to length(calendarDiary.entries)
writeRecord (calendarFilename, apptCalendar.entries[i]);
close (calendarFilename);
Exceptions: None
Remarks:
‘opnefile (filename, write)’ will open a file for writing; it will re-initialize
the file if it already exists.
‘writeRecord’ will write the entries in the same format as they exist in
appointment calendar.

k k k
Name: RetrievePhoneEntry
Synopsis: RetrievePhoneEntry (date, start, end)
Purpose: To retrieve the phone diary entry corresponding to a name which is

stored in one of the entries in the appointment calendar
Visibility: public

Input parameters: Date date

Hour start, end
Output parameters: PhoneEntry phEntry
Local variables: String name
Pseudocode:

if (apptCalendar.SearchEntry (date, start, end) = null) throw
AppointmentNotExistException;

name €< (apptCalendar.SearchEntry (date, start, end)).lastname;

if (name = null) throw NameFieldEmptyException;

phEntry € phoneDiary.SearchEntry (name);

20

Exceptions:
AppointmentNotExistException — display the error message to the user and
terminate the method
NameFieldEmptyException — display the error message to the user and
terminate the method

Remarks: None
* * %

References:

1.

Kasi Periyasamy, Tom Gendreau and Dave Riley, “Software Requirements
Document for a Personal address and phone book - Part 1: Product Overview and
Assumptions”, September 2003.

Kasi Periyasamy, Tom Gendreau and Dave Riley, “Software Requirements
Document for a Personal address and phone book - Part 2: Functional
Requirements”, October 2003.

Kasi Periyasamy, Tom Gendreau and Dave Riley, “Software Requirements
Document for a Personal address and phone book - Part 3: GUI Requirements”,
October 2003.

Kasi Periyasamy, Tom Gendreau and Dave Riley, “Object-Oriented Design
Document for a Personal address and phone book - Part 1: Architectural Design”,

November 2003.

	Prepared for C-S 341: Software Engineering
	By group #: 3
	
	
	
	
	
	
	
	November 03, 2003

	Class name:PhoneEntry
	Methods

