CS 461/561: Introduction to Data Science

Prof. Jason Sauppe | Spring 2020

This page contains a course schedule for CS 461/561. Rows in gray are tentative and will be updated as the course progresses. Other course content can be found on Canvas.

Content Week Day Date In-Class Reading Assignments
Intro 01 Mon. 01/27 Syllabus
Wed. 01/29 1.1, 1.2
Fri. 01/31 1.3, 1.4
Review of
Probability &
Random Variables
02 Mon. 02/03 2.1 Assignment 0 available
Wed. 02/05 5.1
Fri. 02/07 2.2
Review of Statistics
& Data Collection
03 Mon. 02/10 2.3
Wed. 02/12 3.1, 3.2 Assignment 0 due
Fri. 02/14 3.2.2
Intro to Pandas
& Data Cleaning
04 Mon. 02/17
Wed. 02/19 3.3 Assignment 01 available
Fri. 02/21
Data Visualization 05 Mon. 02/24 6.1, 6.2, 6.4
Wed. 02/26 6.3
Fri. 02/28 Visualization Lab
Linear Regression
& Linear Algebra
06 Mon. 03/02 Work Day
Wed. 03/04 9.1
Fri. 03/06 8.1, 8.2 Assignment 01 due
Linear Regression 07 Mon. 03/09 9.4 Project available
Wed. 03/11 9.2
Fri. 03/13 7.1-7.3, 7.4.4
Spring Break Mon. 03/16 No Class
Wed. 03/18 No Class
Fri. 03/20 No Class
Spring Break 2 08 Mon. 03/23 Class Cancelled
Wed. 03/25 Class Cancelled
Fri. 03/27 Class Cancelled
Regularization &
Cross-Validation
09 Mon. 03/30 9.5
Wed. 04/01 7.5
Fri. 04/03 Regression Lab Project proposal due; Assignment 02 available
Logistic Regression
& Classification
10 Mon. 04/06 Bias & Variance Lab
Wed. 04/08 9.6
Fri. 04/10 9.7
Evaluating Classifiers
& k-Nearest Neighbors
11 Mon. 04/13 7.4 Tutorial proposal due
Wed. 04/15 10.1, 10.2
Fri. 04/17 Work Day Progress report due
Clustering &
Dimensionality
Reduction
12 Mon. 04/20 10.5 Assignment 02 due
Wed. 04/22
Fri. 04/24 8.3-8.5
Machine Learning 13 Mon. 04/27 11 (intro), 11.5
Wed. 04/29 11.1
Fri. 05/01 11.2, 11.3
Machine Learning
& Big Data
14 Mon. 05/04 11.4
Wed. 05/06 11.6
Fri. 05/08 12.1-12.6 Tutorial and Final project due
Finals Week 15 Fri. 05/15 Tutorial evaluations due