Outline

Contents

Introduction .. 2

Specifying syntax .. 4
 Regular languages .. 4
 Regular expressions 4
 Finite automata .. 6
 Context-free languages 8

Names and bindings .. 12
 Scope ... 12
 Parameter-passing .. 17
 Heap storage ... 25

Types .. 26

Functional programming and Haskell 28
 Exercises on Haskell basics 28
 Functional datatypes 31
 Parametric polymorphism 48
 Higher-order functions 51
 “Ad-hoc” polymorphism and type classes 59
 Examples of larger Haskell libraries 67

Lambda calculus ... 73
 Syntax .. 73
 Reduction .. 76
 Parameter-passing disciplines 79
 Simply-typed \(\lambda\) 81
 Polymorphism in lambda calculi 83

Object-oriented programming and Scala 83
 Subclasses and what they unlock 83
 Function values ... 86
 Generic patterns involving multiple classes 86
 Type variables and members 87
 Implicits .. 98
 The expression problem redux 109

Logic programming .. 114
 Horn clause programming in Prolog 114
1 Introduction

Why you’ll hate this class

• It’s so tedious!
• I could do this in Java!
• This is so weird!

What this class gives you

• The vocabulary to discuss languages
• Experience now with what may come later
 – Java is a fine teaching language
 – And it’s comfortable for industry uses
 – But remember - it was once the cutting-edge technology
• What will be in the next five programming languages?
 – Career-focused, not first-job-focused

What we’ll do

• Name and compare the ideas behind different languages
• Experience programming languages different to those you’ll see elsewhere in the CS curriculum
 – Functional programming in Haskell
 – Object-oriented programming in Scala
 – Logic programming in Prolog
 – And we will see examples in other languages including Java, Common Lisp and Perl

Assessed work in CS421

• About 8 quizzes
• On-paper homework
 – Bring it to class; sometimes I’ll ask you to turn it in, to be counted as a small quiz
• Programming homework and projects
 – Probably two major projects with one in Haskell, one in Scala
• A final exam

Assessed work in CS521

• Programming projects
 – Probably two with one in Haskell, one in Scala
• Additional reading and assignments on material beyond the undergrad level
• A final exam
Obligatory administration

- There’s a syllabus - read it!
 - There’s a D2L quiz about the syllabus due Monday
 - Note in particular: absences for university travel (inc. sports) due this week if it is to be excused
- There’s a course website — cs.uwlax.edu/~jmaraist/421-fall-18
 - Check it frequently for news, announcements, assignments, schedule, notes etc.
 - D2L for some assignment submission, some quizzes - but not announcements
 - There’s an RSS feed attached to the web site
- There’s a study guide — linked from the web site
 - Contains lecture slides and exercises
 - First several sections available now, others will be announced via course website
- There’s email: jmaraist@uwlax.edu
 - Check it frequently for feedback on assignments, Q&A
 - Expect replies within a (business) day (but typically faster)
 - Administrative stuff always by email
- There are open-door hours
 - On the first slides, on the web page
 - Or by appointment, but email at least a (business) day ahead
 - Always include the questions you’ll want to discuss: So I can be prepared, because advising and paperwork often require no meeting, because every meeting needs an agenda
 - But I am not able to linger after class for extra questions, since I have a class immediately after, usually in another building
- Always silence your gadgets
 - Consider an app to do it for you so you don’t forget
- When you pick your seat, please:
 - Computers and handhelds to the back
 - Latecomers and early-leavers to the aisle

Class materials

The textbook is *Programming Language Pragmatics*, Michael L. Scott

- Get yourself a copy of the book
- Undergraduates: use the textbook rental service
- Graduates:
 - The bookstore will sometimes have used copies; ask at the back desk
 - You can often find cheap copies on Amazon or other online stores
 - In the past, grad students who tried to do without the book (and with an old edition) have complained about the difficulties in getting work done

See the course homepage for information about other resources

- Books on reserve in the library
- Online tutorial sites
- Other references
On class scheduling

• The required 400-level classes — 421, 441 and 442 — are all difficult and time-intensive classes
 – It can be a challenge to manage two of them at once
 – It is rarely a good idea to take all three at once

2 Specifying syntax

2.1 Regular languages

2.2 Regular expressions

What is there to a language?

Syntax

• The form of a program

• Essentially two aspects of syntax:
 – How you spell stuff — specified by a regular expression (regex)
 * Basic strings
 * Concatenation of two or more regexes
 * Choice from alternative regexes
 * Arbitrarily many repetitions of some regex
 – How you put correctly-spelled stuff together — specified by a context-free grammar (CFG), often in Backus-Naur form (BNF)
 * Give a starting symbol, other nonterminal symbols which are not part of the language
 * Rules say how a nonterminal may be rewritten to a string of other nonterminals and terminals

Semantics

• The meaning of a program
 – Most of this class focuses on language semantics

Writing down regular expressions

A language is a just a set of strings

• It can be finite (the first names of the people in this class) or infinite (phrases used to represent natural numbers)

• Any plain character in the language we’re generating is a regular expression by itself

Regular expressions are a notation for writing languages

• The empty string is a regular expression. Write it this way: £

• Write two regular expressions next to each other to represent concatenation

• Separate alternatives with a vertical bar

• Use the Kleene star as a suffix for repetitions

• Use parentheses to make grouping clear

Followup reading: Scott, Ch. 1
Exercise 2.1. Describe the language of strings generated by these regular expressions in the plainest English possible:

1. $11(0|1)^*11(0|1)^*11$
2. $(0|1)^*000(0|1)^*111(0|1)^*$
3. $(10|01)^*111(10|01)^*$
4. $(00|11)^*(000|111)^*(00|11)^*$

Exercise 2.2. Write regular expressions for the following languages:

1. Strings which consist of an even number of "r"s
2. Strings which start with a lower-case letter, and are followed by any alphanumeric characters
3. Strings consisting of a number of even-valued digits with a single "E" before all of them
4. Strings consisting of one or more odd digits with a single "o" in front of them
5. Strings over \{a, b\} where no character appears twice in a row
6. Strings over \{a, b\} with at least two nonoverlapping substrings of two (or more) b’s
7. Strings over \{a, b\} where no occurrence of an a is right next to another occurrence of an a
8. Strings over \{a, b\} with at least one substring of three a’s

Exercise 2.3. Write regular expressions over the alphabet \{0, 1\} for the following languages [Sipser]:

1. Strings which begin with a 1 and end with a 0
2. Strings which contain at least three 1’s (not necessarily in order)
3. Strings which contain the substring 0101
4. Strings which are at least three characters long, and have 0 as their third character
5. Strings which start with 0 and have odd length, or start with 1 and have even length
6. Strings which do not contain the substring 110
7. Strings which are at least five characters long
8. Any string except 11 or 111
9. Strings where every odd position (starting counting from 1) is a 1
10. Strings which contain at least two 0’s and at most one 1
11. Either the empty string or 0
12. Strings which contain an even number of 0’s, or exactly two 1’s
13. All strings except the empty string

Exercise 2.4. Scott, Exercise 2.1.

Exercise 2.5. Write regular expressions for these languages:

1. All strings over \{0, 1, 2\} except for 2 and 10
2. All sequences of lower-case letters except for three strings: file, for and from [Scott, Exercise 2.3]
Exercise 2.6. Describe in English the language generated by the regular expression $a^* (ba^*ba^*)^*$. Your description should be high-level — the simple intuition about the strings, rather than a transliteration of the expression into English. [Scott, Ex. 2.9(a)]

2.3 Finite automata

Regular expressions generate, automata recognize

A finite automaton is a simple, idealized machine which corresponds to a language

- It has a number of states
 - One is initial
 - One is final
- When there is an item of input, the machine transitions from one state to another
 - Each transition is based on a single input item — no peeking ahead!
 - The number of states, transitions and transition labels must be finite
- If a string’s characters give transitions from the initial state to a final state, then the automaton accepts the string as part of its language
 - Otherwise, it rejects the string

Depicting regular expressions

We usually draw an automaton graphically

- States are circles
 - The initial state is marked with an arrow pointing to it
 - The final states are double-circled
- Transitions are arrows from one state to another
 - Labelled with its character
 - An arrow can start and end at the same state
 - To avoid the clutter of multiple arrows, can draw one arrow with multiple labels

Exercise 2.7. Which of these strings does the automata below accept: a, b, c, ab, bb, ba, cb, cba, cab?

![Diagram of automaton](image-url)
Exercise 2.8. Write finite automata (using the circles-and-arrows notation) for each of the languages in Exercise 2.3.

Deterministic or nondeterministic?
A finite automaton is deterministic if for every state and input symbol, there is at most one possible transition
- Otherwise, the automaton is nondeterministic
- A nondeterministic automaton accepts a string if any series of transitions from initial to final state exists
- With nondeterministic automata, it is acceptable to label transitions with the empty string, or with multi-character strings
- It is always possible to write a deterministic finite automaton which corresponds to a nondeterministic automaton
 - But the nondeterminist automaton might be more concise
- It is always possible to write a finite automaton for the language of a regular expression
- But it is not possible to find a finite automaton for every language

Followup reading: Scott, Sec. 2.1-2.2

Exercise 2.9. What specifically does it mean for a nondeterministic finite automata (NFA) to accept a string?

Exercise 2.10. What does nondeterminism mean in the context of finite automata?

Exercise 2.11. Scott, Exercise 2.4

Exercise 2.12. Make sure each of the automata in the Exercise 2.8 are deterministic

Exercise 2.13. Scott, Exercise 2.2

Exercise 2.14. Give a diagram of a deterministic finite automaton for each of the following languages of strings:
- Strings over \{a, b, c\} which contain abc as a substring at any position
- Strings over \{f, g, h\} in which no character is repeated consecutively (but nonconsecutive repetition is fine)
- Strings over \{m, n\} both with an even number of m’s, and in which n appears no more than once consecutively (but nonconsecutive repetition is fine)
- Strings over \{r, s\} in which no character is repeated more than twice times consecutively (but nonconsecutive repetition is fine)

Exercise 2.15. Give a diagram of a finite automaton which accepts exactly each of the following languages. Your automaton may be either deterministic or nondeterministic, but you must state clearly which one it is, and why.
- Strings over \{a, b\} with either an even number of a’s or an odd number of b’s
- Strings over \{f, g, h\} where no instance of g is ever followed by an h
- Strings over \{m, n\} with both an even number of m’s and an odd number of n’s
- Strings over \{r, s, t\} where every instance of s is part of a substring of three or more s’s
2.4 Context-free languages

2.4.1 Context-free grammars

From regular expressions to grammars
Regular expressions are one way define a language

• Context-free grammars written in the Backus-Naur form (BNF) are another

• Grammars generate a language based on rules for rewriting special symbols which are not in the language’s alphabet into other strings
 – The rules should eventually let us rewrite to a string which uses only characters in the language’s alphabet
 – The special symbols are called nonterminals, and the characters in the language’s alphabet are called terminals

Writing down grammars

• There’s a starting nonterminal symbol, with a rule for the form it can have:
 – \(S \rightarrow \text{hello goodbye} \)

• There may be other nonterminals, with rules that refer to each other
 – \(S \rightarrow T \text{goodbye} \)
 \(T \rightarrow \text{hello} \)

• Use a vertical bar to separate alternative choices, or give multiple rules for a nonterminal
 – \(S \rightarrow T \text{goodbye} \)
 \(T \rightarrow \text{bonjour} \mid \text{gruessgott} \mid \text{hola} \)
 – \(S \rightarrow T \text{goodbye} \)
 \(T \rightarrow \text{bonjour} \)
 \(T \rightarrow \text{gruessgott} \)
 \(T \rightarrow \text{hola} \)

• Extended BNF (EBNF) includes the Kleene star and plus notations

Exercise 2.16. Consider this grammar \(G \) with start symbol \(R \) [Sipser]:

\[
\begin{align*}
R & \rightarrow XRX \mid S \\
S & \rightarrow aTb \mid bTa \\
T & \rightarrow XTX \mid X \mid \varepsilon \\
X & \rightarrow a \mid b
\end{align*}
\]

1. Give three examples of strings in \(L(G) \)
2. Give three examples of strings not in \(L(G) \)
3. True or false: can \(T \) rewrite to \(T \)?
4. True or false: can \(T \) rewrite to \(\text{aba} \)?
5. True or false: can \(T \) rewrite to \(\text{abb} \)?
6. True or false: can \(T \) rewrite to \(\text{ababa} \)?
7. True or false: can \(R \) rewrite to \(\text{ababa} \)?
8. True or false: can \(X \) rewrite to \(XX \)?
9. Describe \(L(G) \) in English
Exercise 2.17. Give context-free grammars that generate the following languages over the alphabet \{0, 1\}. [Sipser]

1. Strings which begin with a 1 and end with a 0
2. Strings which contain at least three 1’s (not necessarily in order)
3. Strings which contain the substring 0101
4. Strings which start and end with the same symbol
5. Strings whose length is odd
6. Strings whose length is odd and whose middle symbol is 0
7. Strings which contain the same number of 1’s as 0’s
8. Strings which contain more 1’s than 0’s
9. Strings which are palindromes

Exercise 2.18. Write an unambiguous context-free grammar that generates exactly the same language as the regular expression \(a^* (ba^*ba^*)^*\). [Scott, Ex. 2.9(b)]

Exercise 2.19. Describing a grammar’s language in plain English: Scott, Exercise 2.12(a), 2.15(a)

Regex vs. grammars

- Every language that can be written as a regex can be written as a CFG
- What about the reverse?
- CFGs give a sort of simple memory that a regex does not have
- The same-number-as and palindrome examples cannot be written as a regex
- Although grammars are expressive enough for programming language syntax, there are nonetheless languages which they cannot express...
 - Cliffhanger! To be resolved in CS453/553

Exercise 2.20. What does it mean for a grammar to be left-recursive?

Exercise 2.21. What are terminals and nonterminals of a grammar?

Exercise 2.22. Rewrite your regular expressions from Exercise 2.3 as context-free grammars.

Parse trees

To demonstrate that a string really is generate by a grammar, we produce a parse tree

- Each internal node labelled with a nonterminal
 - Starting symbol at the root
- Each leaf labelled with a terminal
- If there is a rule \(M \rightarrow u_1 u_2 \ldots u_n\), then a node labelled \(M\) could have \(n\) children labelled \(u_1\) through \(u_n\)
Followup reading: Scott, Sec. 2.3 intro (to start of Sec. 2.3.1)

Exercise 2.23. Show that each of the following strings are generated by the corresponding grammar, by writing its step-by-step derivation from the corresponding grammar and starting symbol

- **String** `aacedb`, starting symbol `S`, and grammar

 \[
 S ::= aS | Sb | R
 \]
 \[
 R ::= cR | Rd | Q
 \]
 \[
 Q ::= e
 \]

- **String** `ummmuu`, starting symbol `T`, and grammar

 \[
 T ::= uTu | SuS
 \]
 \[
 S ::= RR | QQ
 \]
 \[
 R ::= mR | m
 \]
 \[
 Q ::= \varepsilon | Qn
 \]

Exercise 2.24. Using the grammar of Exercise 2.16, give parse trees for these strings: `babb`, `babbb`, `aababb`.

Exercise 2.25. Scott, Exercise 2.12(b)

Exercise 2.26. Scott, Exercise 2.13(a)

Exercise 2.27. Scott, Exercise 2.15(b)

2.4.2 Grammar properties

Some properties of operators

Properties

- Fixity: infix, prefix, postfix
- Arity
- Associativity
- Precedence

Examples

- In Java and C, `++` and `–` can be prefix or postfix
- Negation `–` is a prefix operator in most languages
- The arithmetic operators are usually infix
- Negation is *unary*, arithmetic operators are *binary*
 - The `(_ ? _ : _)` operator in C is *tertiary*
- In the standard interpretation of arithmetic expressions, addition, subtraction, etc. are *left-associative*
- In the standard interpretation of arithmetic expressions, multiplication *binds more tightly* than addition
Bad grammar
(Parentheses are literal, bars are metasyntactic)

Expr --> Expr ^ Expr | Expr * Expr | Expr / Expr
| Expr + Expr | Expr - Expr | - Expr
| (Expr) | 0 | 1 | ...

• What’s so bad about this grammar?
• How do we parse 3+4*5?
 – Two ways: it is ambiguous
 – A grammar is ambiguous if it lets us build more than one parse tree for the same string

Exercise 2.28. Review the grammars you wrote in previous exercises. Which are ambiguous?

Better grammar

Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> (Expr) | - Basic | 0 | 1 | ...

• Is it still ambiguous for 3+4*5?
• The additional structure constrains the possible derivations so that they are unique

2.4.3 Top-down parsing

Parsing
Grammars generate, parsers recognize

• Top-down or bottom-up?
• Top-down
 – Conceptually simple
 – More restrictions on the form of grammars which are allowed
 – Efficient
 – Can be implemented directly
• Bottom-up
 – Start with the terminal symbols, reduce them into nonterminals
 – 3+4*5
 – Lookahead
 – Usually implemented indirectly, using a generator, with a pushdown automation details via tables
• Lots of work has been done (and continues) on parsing — to come in CS442/542
Writing a top-down parser

Top-down parsers can be easy to write

- Each rule becomes a separate subroutine
- Each rule’s routine expects a string matching that rule body
 - Match terminals by finding them in the input
 - Match nonterminals by calling the corresponding subroutine

The difficulties:

- **Choice!** When there is a vertical bar |, or multiple rules for the same nonterminal, how does our program know which to pursue?
- **Left-recursion!** When a nonterminal expands to another of itself in the left-hand position

```
Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> ( Expr ) | - Basic | 0 | 1 | ...
```

Removing left-recursion

So a lack of ambiguity is

- **Necessary** for a sensible grammar for a programming language
- But not yet **sufficient**

Must restructure the grammar to get rid of the left-recursion

- The Kleene star/plus operators of EBNF are often key tools
- We look ahead into the input to resolve choice
 - For efficiency, a solution should look only a single unit of input ahead before making each decision!

Followup reading: Scott, Sec. 2.3.1-2.3.2

Exercise 2.29. Rewrite the arithmetic grammar to remove left-recursion, and write a simple parser to evaluate strings representing arithmetic expressions.

```
Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> ( Expr ) | - Basic | 0 | 1 | ...
```

3 Names and bindings

3.1 Scope

3.1.1 Stack model of execution

The stack model of execution

- The standard, basic organization of memory includes a stack and a heap
– The stack grows from one end of memory
– The heap grows from the other end of memory
 * (For now we’re thinking only about the stack, and will discuss the heap later)

• Each call to a subroutine pushes a frame onto a system stack.

• Each frame contains:
 – Storage for local variables
 – Storage for arguments
 – Pointer to top of previous frame

• The frame pointer is a CPU register used to point to the current frame

• This idealized version of the system stack organization gives us a form of operational semantics
 – Explain how we resolve variable references, parameter passing
 – Better than an English description, it’s a formal model

Example
For a program

```
sub f() {
    var z=2
    g(1)
}
sub g(x) {
    var y=3
    ...
}
```

When `f` calls `g`:

```
Top of stack

Frame for g

<table>
<thead>
<tr>
<th>Frame for f</th>
</tr>
</thead>
<tbody>
<tr>
<td>y 3</td>
</tr>
<tr>
<td>x 1</td>
</tr>
<tr>
<td>Prev FP</td>
</tr>
</tbody>
</table>
```

Exercise 3.1. Scott, Exercise 3.4, including Java examples

Exercise 3.2. Scott, Exercise 3.9

How do nonlocal variables work in this model?

```
sub wrapper(x, y) {
    local z = somefn(x,y);
    nested sub inner(w, acc) {
        if (w<1) {
```
return fn2(z, acc);
} else {
 return inner(w-1, fn3(acc));
}
return inner(x, y);

How do we resolve inner's reference to z?

What about when the else branch recurs on inner?

Need an additional entry in the frame for the static pointer

- Points to the frame of the environment which encloses this frame in the source code
Followup reading: Scott, Sec. 3.1-3.2

Exercise 3.3. Scott, Exercise 3.6, in particular 3.6(b)

Exercise 3.4. Scott, Exercise 3.11: assume the P calls Q, and Q calls R.

3.1.2 Static and dynamic scope

What does this program print?

global z = 100;

sub f() {
 print z;
}

sub g(y) {
 val z = y;
 f();
}

main:
 g(10);
 print z;

- If these subroutines act like Java static methods?
- Or if they follow the static pointer as we discussed last time?
 - Then: 100
- But this is just one way of doing things!
 - A particular language could define the scope of name-binding differently

Finding z under a static scope rule

Static scope says that we should use the most closely enclosing binding to a name when accessing that name

global z = 100;

sub f() {
 print z;
}

sub g(y) {
 val z = y;
 f();
}

main:
 g(10);
 print z;

- Know (at compile time) that the in-scope reference for z from f is one enclosing scope outward
- So the code generated for f should refer through the static enclosure once to find the frame with z’s storage
• Print 100 both times

Finding z under a dynamic scope rule

Dynamic scope says that we should use the most recent binding to a name when accessing that name

• Conceptually, this means we should follow the previous frame until we find a frame which stores a value for that name

```plaintext
global $z = 100;

sub $f()$
    print $z;

sub $g(y)\$
    $v = y$;
    $f()$;

main:
    $g(10)$;
    print $z;
```

• Not using the static enclosing-environment pointers

• The most recent binding to z is by g

• But this binding will end when g exits

 – So print 10 then 100
Dynamic scope without search
Implementations of dynamic scope avoid searching the stack by using frames to store hidden, out-of-scope bindings

Then f can read the current (dynamic) value of z from the global frame

Followup reading: Scott, Sec. 3.3

Exercise 3.5. Scott, Exercise 3.5

Exercise 3.6. Scott, Exercise 3.14

Exercise 3.7. Scott, Exercise 3.18

Exercise 3.8. Scott, Exercise 3.19

3.2 Parameter-passing

3.2.1 Call-by-value

Some vocabulary about parameters

```python
def function1(x, y) = {
    return 2*x + 3*y;
}
```

// ...
val z = 10;
print function1(3, z);

- x and y are *formal* parameters
 - When considering function1 by itself, we can make no assumptions about the values of x and y
- 3 and z are *actual* parameters
 - When we call function1, they certainly do have specific values
- What is the relationship between formal and actual parameters?
 - That is, how does a language define that the former should be bound to the latter?

Parameter-passing mechanisms
You may never have considered the matter up for debate

- Java and C seem to have essentially the same behavior for their parameter-passing
- But just like static vs. dynamic scope, the choice of parameter-passing mechanism is a choice made by a language’s designers
Call-by-value
C’s parameter-passing mechanism is named *call-by-value*

- First evaluate the actual parameter (if it is an expression), and then pass that value.
- This is what we assumed in our lecture example for scope.
- Probably the most common, and in many ways the simplest, of the parameter-passing mechanisms we will see.

3.2.2 Call-by-reference

Call-by-reference

The traditional alternative to call-by-value in imperative languages

- Rather than the value itself being stored in the new subroutine’s frame, a *reference* to the location of that value is communicated
- Crucially, assignment to the formal parameter also update the actual parameter, since there is only a single stored value

For example, running `main` in

```python
def f(x) = {
    x=10
}
def main = {
    val b=5
    f(b)
}
gives
```

- Today, most commonly seen in C++
- In most languages with call-by-reference, the actual parameter *must* be a storage location
 - Not (for example) an arithmetic expression
- Orthogonal to many other choices, such as static vs. dynamic scope

Call-by-value and call-by-reference

- Given

```ruby
sub f(int x) {
    print x;
    x=3;
    return;
}
```
• What could happen when we evaluate

```java
int y = 10;
f(y);
print y;
```

3.2.3 Call-by-sharing

How does Java pass parameters?

Scalar types are clearly passed by value, but what about object types?

• In a way, they are passed by value

```java
public void f(Object x) {
    x = new Object();
    // ...
}
```

The assignment does not change a caller’s variable

```java
final Object obj = "Hello";
f(obj);
println(obj); // Still shows Hello
```

• But in a way, they are passed by reference

```java
public void g(MyObj x) {
    x.setVal(x, 1.34);
    // ...
}
```

The assignment does change a caller’s field

```java
final MyObj obj = new MyObj(2.56);
println(obj.getVal()); // Shows 2.56
f(obj);
println(obj.getVal()); // Now shows 1.34
```

Call-by-sharing

We know enough about pointers to realize that what we are passing is a *pointer* to the actual object.

• And moreover that pointers are passed by value

• But the behavior is distinct enough from previous languages that we categorize Java’s mechanism as distinct from call-by-value

 – Named *call-by-sharing*

 – For non-simple types, pass a reference to some shared object

 – Side-effects altering the object are shared

 – But assignments to the formal parameter do not alter the actual parameter in calling routine
3.2.4 Call-by-copy-in/copy-out

Call-by-copy-in/copy-out
Like call-by-reference, concerns storage locations

• Before starting subroutine, evaluate the actual parameter
• Use the result value when starting subroutine
• When finishing subroutine, copy the final value of the formal parameter back to the actual parameter.

Followup reading: (For Sec. 3.2.1-3.2.4) Scott, Sec. 9.3

Exercise 3.10. Scott, Exercise 9.17. This question seems to predate the introduction of variable-length argument lists to Java and its peer languages.

Exercise 3.11. Trace the evaluation of this main routine under both call-by-reference and call-by-copy-in/copy-out parameter-passing semantics.

```perl
int y=10;

sub g() {
    print y;
}

sub f(x) {
    x=3;
    g();
}

sub main() {
    f(y);
}
```

3.2.5 Call-by-name

Call-by-name
The parameter-passing mechanisms so far all start the same way

• “First, evaluate the expression given as the actual parameter”

But as usual, a language designer can choose differently.

Under call-by-name, formal parameters are substituted with the unevaluated actual parameter expression when a subroutine is called.

• So the expression may be evaluated multiple times
• But not until we reach each instance of the formal parameter
• And if the expression has side-effects, the effects may occur multiple times!

Call-by-name probably seems like the oddest of the mechanisms we’ve seen so far
• But it’s not a new idea — it was introduced into programming languages in the late 1950s with ALGOL60
• We’ll see an example from Scala shortly
• (And we’re not finished with parameter-passing mechanisms yet)

Scala example: Complaints!

```scala
object ComplaintCount {
  var num:Int = 0
  def another() = {
    num = num + 1
    num
  }
}

class Complaint {
  println("This is Complaint #" + ComplaintCount.another())
  def sendTo(who:String) =
    println("Hey " + who + ", I have a complaint!")
}

An unsurprising example of complaining

object ComplaintCount {
  var num:Int = 0
  def another() = {
    num = num + 1
    num
  }
}

class Complaint {
  println("This is Complaint #" + ComplaintCount.another())
  def sendTo(who:String) =
    println("Hey " + who + ", I have a complaint!")
}

object SenderBV extends App {
  tellAll(new Complaint())

  def tellAll(c:Complaint) {
    c.sendTo("Tom")
    c.sendTo("Dick")
    c.sendTo("Harry")
  }
}

• Not surprising when we run it: create a complaint, and send it around

  > scala SenderBV
  This is Complaint #1
Hey Tom, I have a complaint!
Hey Dick, I have a complaint!
Hey Harry, I have a complaint!

**Call-by-name complaining**

```scala
object ComplaintCount {
 var num:Int = 0
 def another() = {
 num = num + 1
 num
 }
}

class Complaint {
 println("This is Complaint ", ComplaintCount.another())
 def sendTo(who:String) =
 println("Hey " + who + ", I have a complaint!")
}

object SenderBN extends App {
 tellAll(new Complaint())
 def tellAll(c: => Complaint) {
 c.sendTo("Tom")
 c.sendTo("Dick")
 c.sendTo("Harry")
 }
}
```

- Writing `=>` as a prefix to a method parameter type means that the argument should be passed *call-by-name*
  - Not evaluated when the method is called
  - Evaluated fresh each time the method is used

```
> scala SenderBN
This is Complaint #1
Hey Tom, I have a complaint!
This is Complaint #2
Hey Dick, I have a complaint!
This is Complaint #3
Hey Harry, I have a complaint!
```

**Call-by-name can boil down boilerplate**

If you have used Java’s `HashMap` classes before, you have probably written code like this:

```scala
V result;
if (map.containsKey(k)) {
 result = map.get(k);
} else {
 result = EXPR;
 map.put(k, result);
}
```
Scala’s equivalent to HashMap includes an extra method where the second parameter is call-by-name (indicated by the =>):

```scala
def getOrElse(key: K, default: => V): V
def getOrElseUpdate(key: K, defaultValue: => V): V
```

Call-by-name allows these common patterns to be more directly supported in the language

**Call-by-name without side effect**

What would call-by-name mean in the context of Haskell?

- Remember that Haskell does not have side-effects
- Does this insight let us optimize call-by-name?
- We could:
  1. Wait until a formal parameter is used before we evaluate it
  2. Share the result of the first evaluation among the other duplications of the actual parameter

- This strategy is known as *call-by-need*, or *lazy evaluation*
  - In fact, Haskell is defined to be a lazy language
  - We will see how:
    * Haskell associates laziness with data type constructors as well as with function application
    * Laziness allows much greater expressiveness when programming

3.2.6 Lecture 35 — Macros

**Macros**

- Not all applications of functions to arguments must take place at runtime
- A “function” that generates new source text from arguments is called a *macro*
- Macro facilities are fairly common, but there is great variability in what they can do
  - On one end, the C preprocessor performs simple text substitution
  - At the other end, Common Lisp allows arbitrary Lisp code to be executed at compile time to calculate source code
  - Haskell and Scala also recently added macro systems, which we might try out.
    - Which is at odds with the book’s claim that macros are anachronistic.

**C macros**

Just simple text substitution

```c
#define LINE_LEN 80
#define PI 3.141592651358979323846264338327950L
#define DIVIDES(a,n) (((n) % (a)))
#define SWAP(a,b) {int tmp = (a); (a) = (b); (b) = tmp; }
#define MAX(x,y) (((x)<(y) ? (y) : (x))
```

- Was very useful for global or program constants
- Avoids overhead of function calls
- Note the extra parentheses
- What if a or b contain a reference to t from some surrounding scope?

- What if we call `MAX(++m, ++n)`?
  - Rewrites to `((++m)<(++n) ? (++n) : (++m))`
  - Would it be a surprise when one variable is incremented twice?

Some things to know about Lisp

- Lisp uses prefix notation: all operators are written with the function first:

```
(+ 3 x (* 5 y))
(append (list 1 2 x) y (list z 8 9))
```

- The parentheses are for invocation, not grouping
  - Not optional
  - Extras not allowed
  - If you play with Lisp, make your editor highlight matching parentheses

- Lisp has a `defconstant` form, so we wouldn’t use its macros for `LINE_LEN` or `PI`.

Lisp macros

```
(defmacro divides (a n)
 `(zerop (mod ,n ,a)))
```

- The backtick `\'` quotes a piece of syntax to be inserted by the compiler.
- The comma `,` injects syntax within the quoted expression.

Avoiding name capture

```
(defmacro swap (x y)
 (let ((tmp (gensym)))
 `(let ((,tmp ,x))
 (setf ,x ,y
 ,y ,tmp))))
(defmacro max (x y)
 (let ((xval (gensym))
 (yval (gensym)))
 `(let ((,xval ,x)
 ,yval ,y)
 (if (< ,xval ,yval) ,yval ,xval)))
```

- `gensym` creates and returns a new symbol table entry, guaranteed never to be the same as any other symbol.
- Note that the calls to `gensym` are not part of the quoted and returned syntax
  - Evaluated, and their results used, at compile time

- Single evaluation of forms in `max`
  - C does not have a mechanism for statement-only features like storage allocation with an expression
  - Lisp does not distinguish between statements and expressions
Followup reading: Scott, Sec. 3.7

Exercise 3.12. Scott, Exercise 3.23

3.3 Heap storage

The other end of memory
In the standard organization of memory, the stack grows from one end, the heap grows from the other

• The stack is organized FIFO
• The heap has no such time guarantees
• Allocations in the heap can vary in size, remain relevant for indeterminate periods

Simple heap management
Recall memory usage in the C/C++ family, or assembly language

• Declare specific data structures via `struct`, or a fixed multiple of size for an array
  – Very little in the way extending a data structure once declared
• One call `malloc` to allocate memory, another call `free` to release it
• Be wary of forgetting to free unused space!
• Be wary of keeping pointers into freed space!
• Fast and low overhead, but a high burden of error-prone space management on the individual application and programmer
• Problems of fragmentation — small, isolated free spaces separated by long-lived structures

Automatic garbage collection
In the 90s, automatic garbage collection became common

• Driven by higher-level (functional, object-oriented) academic languages showing feasibility
• Part of a trend of languages coming with larger and larger runtime systems and operating system links

Mark-and-scan garbage collection

• General idea: allocate heap space from the end of memory towards the stack
  – With each allocation, set aside extra bits for `marks`
• When the stack and heap collide (or when the heap hits a certain size), pause from executing program, and run garbage collector
• The garbage collector starts with pointers from registers and from the stack into the heap
• “Walks” the pointers, marking everything it finds as in use
• Then everything else must not still be in use, and can be re-used
Copying garbage collection

• General idea: divide the heap into two halves, allocate from only one half at a time
  – When that half fills, pause the program and run the garbage collector
• Again starting with live pointers from the heap and stack, copy live heap space from one half to the other half
  – Update pointers as they are walked
  – After copying resume the program, continuing to allocate from the half into which we just copied, until it fills and starts garbage collection again
• Can improve locality of reference, virtual memory performance

Generational garbage collection
Motivation: take advantage of the fact that space which has been used longer will probably also stay in use longer.

Divide the heap into generations, each of which is separately collected
• Older generations are collected less frequently
• Often combined with copy-collection — each generation in two parts, copying from one to the other

Reference counting
An appealing idea
• Every allocated chunk of memory has extra space set aside
• Like mark-scan, but space not used for marks
• Keep a count of the number of other places which point to it
• Circular structures can be a problem

Followup reading: RE-read Scott, Sec. 3.2.3-3.2.4

4 Types
Why types?
• Provide context for operations
  – For example, to distinguish integer and floating-point addition
• Detect and prohibit nonsensical operations
• Documentation which is automatically checked for correctness
• Opportunities for the compiler to optimize performance
  – Because we don’t have to check cases at runtime
  – Or for example register allocation in the presence of pointers
Scalar and composite

- **Scalar** types are indivisible
  - Most built-in types: integers, booleans, characters
  - In many languages, enumerated types

- **Composite** types are data structures with several distinct components
  - Some built-in types: `String` in Java, for example
  - Arrays
  - Most user- and library-defined types

When are two types the same?

- Matters when passing parameters, making assignments.
- Two general ways to decide:
  - Decide based on structure
  - Decide based on their name

- Record types

Structural equivalence

- These should be considered the same:

  ```
 type R1 = struct {
 int a, b;
 }
 type R2 = struct {
 int a;
 int b;
 }
  ```

- What if the fields aren’t in the same order?

  ```
 type R3 = struct {
 int a;
 int b;
 }
  ```

  ```
 type R4 = struct {
 int b;
 int a;
 }
  ```

  Many (but not all) languages say that these are structurally equivalent
  - Once again, it is a choice for the language designer

Name equivalence

- If the name is the same, the type is the same
  - Rules out the R1, R2 equivalence of the previous slide.

- What about type aliases?

  ```
 typedef old_type new_type;
  ```

  - Of course they should be interchangeable!

  ```
 typedef unsigned int mode_t;
  ```

  - Of course they should not be interchangeable!

  ```
 typedef double degrees_fahrenheit;
  ```

  ```
 typedef double degrees_celsius;
  ```

  - Sometimes and sometimes not?
5  Functional programming and Haskell

5.1  Exercises on Haskell basics

**Exercise 5.1.** [Hutton Ex. 2.7.2] Correctly parenthesize these numeric expressions:

- $2^3 \times 4$
- $2 \times 3 + 4 \times 5$
- $2 + 3 \times 4^5$

**Exercise 5.2.** Keller and Chakravarty, Sec. 1 (First Steps) Ex. 1-3.

**Exercise 5.3.** [Keller and Chakravarty] Which of the following identifiers can be function or variable names?

- `square_1`
- `1square`
- `Square`
- `square!`
- `=square'=`

**Exercise 5.4.** [Keller and Chakravarty] Define a new function `showResult` that, for example given the number 123, produces a string as follows:

```
showResult 123 ==> "The result is 123"
```

Use the function `show` in the definition of the new function.

**Exercise 5.5.** [Includes items from Hutton] Which of these expressions are well-typed, and what types do those expressions have?

- `[a' , b' , c']`
- `(a' , b' , c')`
- `(a' , b' , c' , a' , b' , c')`
- `[a' , b' , 1]`
- `(a' , b' , 1)`
- `[ False , '0' , '1']`
- `[ (False , '0') , (True , '1')]`
- `[ (False , True) , ('0' , '1')]`
- `[ [False , True] , [ '0' , '1']]`
- `[ [False , '0'] , [True , '1']]`
- `[ tail , init , reverse ]`
Exercise 5.6. Write Haskell definitions which have the following types.

- \[(\text{Int, Int})\]
- \(\text{Int} \to \text{Int} \to \text{Bool} \to \text{Int}\)
- \(\text{Char} \to (\text{Char, Char})\)
- \(\text{Int} \to (\text{Int} \to \text{Int}) \to \text{Int}\)

Exercise 5.7. [Hutton Ex. 3.11.3] What types do these functions have? Try to work them out by hand before checking your answers in GHCI.

- \(\text{second} \ \text{x}\ \text{s} = \text{head} \ (\text{tail} \ \text{x})\)
- \(\text{swap} \ (\text{x}, y) = (y, x)\)
- \(\text{pair} \ \text{x} \ \text{y} = (\text{x}, \text{y})\)
- \(\text{double} \ \text{x} = \text{x} \times 2\)
- \(\text{twice} \ \text{f} \ \text{x} = \text{f} \ (\text{f} \ \text{x})\)

Exercise 5.8. Write a module \text{LesserInt} exporting a single function \text{lesserInt} which takes two integers, and returns the one which is lower in value.

To wrap your function in the module \text{LesserInt}, create a new file called \text{LesserInt.hs} whose first line is \text{module LesserInt where}, with your definition for \text{lesserInt} on its own line below.

Exercise 5.9. [Keller and Chakravarty] Write a function \text{showAreaOfCircle} which, given the radius of a circle, calculates the area of the circle,

\[
\text{showAreaOfCircle} \ 12.3 \\
===> \ "The area of a circle with radius 12.3cm is about 475.2915525615999 cm}^2"
\]

Use the \text{show} function, as well as the predefined value \text{pi} :: \text{Floating a} \Rightarrow \text{a} to write \text{showAreaOfCircle}.

Exercise 5.10. [Keller and Chakravarty] Write a function \text{sort2},

\[
\text{sort2} :: \text{Ord a} \Rightarrow \text{a} \Rightarrow \text{a} \Rightarrow (\text{a}, \text{a})
\]

which accepts two Int values as arguments and returns them as a sorted pair, so that \text{sort2} 5 3 is equal to \(3,5\). How can you define the function using a conditional, how can you do it using guards?

Exercise 5.11. [Keller and Chakravarty] Define a module \text{IsLower} with a single function

\[
\text{isLower} :: \text{Char} \Rightarrow \text{Bool}
\]

which returns \text{True} if a given character is a lower case letter. You can use the fact that characters are ordered, and for all lower case letters \text{ch} we have \(\text{a}' \leq \text{ch} \text{ and } \text{ch} \leq 'z'\). Alternatively, you can use the fact that \('[a'..'z']\) evaluates to a list containing all lower case letters. Write your own version of \text{isLower}; do not use the standard version in \text{Data.Char} (or even import \text{Data.Char}).

Exercise 5.12. [Thompson] Write a module \text{DoubleAll} exporting one function \text{doubleAll} of type \[\text{Int} \to [\text{Int}]\] which doubles each element of a list.

Exercise 5.13. [Thompson] Write a module \text{Capitalize} exporting one function \text{capitalize} which converts all lower-cases letters in its argument to upper-case letters, but leaves the other characters alone. The Haskell \text{Data.Char} library contains functions which will be useful here.
Exercise 5.14. [Thompson] Write a module CapitalizeOnly exporting one function capitalizeOnly which converts all lower-cases letter in its argument to upper-case letters, leaves upper-case letters alone, and removes other characters from the result. The Haskell Data.Char library contains functions which will be useful here.

Exercise 5.15. [Thompson] Write a module Matches exporting one function matches of type Int->[Int]->[Int] which returns all occurrences of the first argument in its second argument. So for example, matches 10 [1,10,2,10,3,10,4] returns [10,10,10], and matches 10 [11,14,17,21] returns [].

Exercise 5.16. [Keller and Chakravarty] Write a module Mangle exporting function mangle, 
mangle :: String -> String
which removes the first letter of a word and attaches it at the end. If the string is empty, mangle should simply return an empty string:
mangle "Hello" ==> "elloH"
mangle "I" ==> "I"
mangle "" ==> 

Exercise 5.17. [Keller and Chakravarty] Write a module Divider with a function dividedBy which implements division on Int, 
dividedBy :: Int -> Int -> Int
by first writing a helper function that returns all the multiples of a given number up to a specific limit, and then using list functions on the resulting list.
dividedBy 5 10 ==> 2
dividedBy 5 8 ==> 1
dividedBy 3 10 ==> 3

Exercise 5.18. [Keller and Chakravarty] Define a module LengthTaker with the function length, 
length :: [a] -> Int
It is quite similar to sum and product in the way it traverses its input list. Since length is also defined in the Haskell standard Prelude, hide it by adding the line
import Prelude hiding (length)
to your module.

Exercise 5.19. [Hutton Ex. 4.8.1, with solution] Use Haskell library functions to define a function halve, 
halve :: [a] -> ([a],[a])

Exercise 5.20. [Hutton Ex. 4.8.2, with solution] Define a module Third exporting a single function third, 
third :: [a] -> a
which returns the third element in a list, a) Using head and tail. b) Using list indexing !!. c) Using pattern matching.

Exercise 5.21. Write a module LastItem exporting the function lastItem, which returns the last item in a list
Exercise 5.22. Write a module LastButOne exporting the function lastButOne, which returns the next-to-last item in a list.

Exercise 5.23. [Keller and Chakravarty] Write a module CountOdds exporting a recursive function countOdds which calculates the number of odd elements in a list of Int values:

```haskell
countOdds [1, 6, 9, 14, 16, 22] = 2
```

Hint: You can use the Prelude function odd :: Int -> Bool, which tests whether a number is odd.

Exercise 5.24. [Keller and Chakravarty] Write a module RemoveOdd exporting a recursive function removeOdd that, given a list of integers, removes all odd numbers from the list, e.g.,

```haskell
removeOdd [1, 4, 5, 7, 10] = [4, 10]
```

Exercise 5.25. Write the function isPalindrome, which checks if a list is a palindrome, the same backwards as forwards.

Exercise 5.26. Write a module NeighborDups exporting a function noNeighborDups, which returns a list with consecutive duplicates removed.

Exercise 5.27. Write a module EncodeDecode which exports the function lengthEncode, for example,

```haskell
lengthEncode "Aaabbccddeeeabb"
 ==>> [(1,'A'), (2,'a'), (3,'b'), (1,'c'),
 (2,'d'), (3,'e'), (1,'a'), (2,'b')]
```

Exercise 5.28. Extend your module EncodeDecode of Exercise 5.27 with the function lengthDecode, opposite of the above.

Exercise 5.29. Write a model ListSplitter exporting the function (splitListAt n xs), which splits a list into two lists, the first one with n elements.

Exercise 5.30. Consider these declarations:

```haskell
infixl 5 'test1'
infixl 7 'test2'
```

Complete the definition of test1 and test2 with two function declarations — it doesn’t matter what they do, just make them distinct enough for you to tell the difference between them as easily as you could tell the difference between other operators like addition and multiplication.

How do test1 and test2 behave differently with respect to each other? In a series of several applications of each?

Vary the declarations to use infixr and infix instead of infixl, and to use various different numbers. How does this change how the operators behave?

5.2 Functional datatypes

5.2.1 Algebraic data types

Algebraic data types

Haskell declares new data types with the data declaration

```haskell
data TYPENAME = CONSTRUCTOR1 ArgType1-1 ... ArgType1-n
 | CONSTRUCTOR2 ArgType2-1 ... ArgType2-m
```
• The List type is the same idea, just with special syntax

**Pattern matching**

All data types can be *pattern-matched* in a function definition or case structure

data Season = Winter | Spring | Summer | Fall
isFall Fall = True
isFall _ = False

• Similarly for lists and for built-in enumerated types like Int

---

**Exercise 5.31.** [Keller and Chakravarty] Write a module *Days* which exports:

• The definition of *Day* from this page. Module *Days* should export both the name of the type, and the names of its constructors.

• A function which, given a day, returns the data constructor representing the following day:

    nextDay :: Day -> Day

**Exercise 5.32.** [Thompson] Write a module *MonthsAndSeasons* which exports a type *Month* as an algebraic type for the twelve months (use the full name of the month as constructors, and export both the type and constructor names), and a function *monthSeason* which maps a month to its member of the type *Season*.

**Exercise 5.33.** [Thompson] Consider a module *Shapes* with this type of geometric shapes,

data Shape = Circle Float
           | Rectangle Float Float

encapsulating a value for the radius of a circle, or the dimensions of a rectangle.

1. Add functions *area* and *perimeter* which take a *Shape* as an argument, and return the value of the respective property of that shape.

2. Add a constructor *Triangle* to *Shape* for triangles. The new constructor should take three *Float* values, the length of the sides of the triangle.

3. Add cases to *area* and *perimeter* for *Triangle*.

**Exercise 5.34.** [Keller and Chakravarty] How would you define a data type to represent the different cards of a deck of poker cards? How would you represent a hand of cards?

Define a function *value21* which, given a hand of cards calculates its values according to the 21- (Blackjack) rules: that is, all the cards from 2 to 10 are worth their face value. Jack, Queen, King count as 10. The Ace card is worth 11, but if this would mean the overall value of the hand exceeds 21, it is valued at 1.
Exercise 5.35. The standard functions head and tail,

\begin{align*}
\text{head} & : [a] \rightarrow a \\
\text{tail} & : [a] \rightarrow [a] \\
\end{align*}

are partial. a) [Keller and Chakravarty] Implement total variants safeHead and safeTail by making use of Maybe in the function results. b) [Hutton Ex. 4.8.3 with solution] Implement safeTail to return an empty list where tail returns an error,

- Using a conditional expression
- Using guarded equation
- Using pattern matching.

Exercise 5.36. [Keller and Chakravarty] Write a function myLength

\begin{align*}
\text{myLength} & : [a] \rightarrow \text{Int} \\
\end{align*}

that, given a list \( l \), returns the same result as \( \text{length } l \). However, implement myLength without any explicit pattern matching on lists; instead, use the function safeTail from the previous exercise to determine whether you reached the end of the list and to get the list tail in case where the end has not been reached yet.

List comprehension notation

Express one list in terms of other lists

\begin{align*}
*\text{Prelude}> & \ [ 2*x \mid x \leftarrow [1,2,3] ] \\
[2,4,6] \\
*\text{Prelude}> & \ [ (x,y) \mid x \leftarrow [1,2,3], \ y \leftarrow ['a', 'b', 'c'] ] \\
[(1,'a'), (1,'b'), (1,'c'), (2,'a'), (2,'b'), \\
(2,'c'), (3,'a'), (3,'b'), (3,'c')] \\
*\text{Prelude}> & \ [ x \mid x \leftarrow [1..10], \ x \mod 3 == 1 ] \\
[1,4,7,10] \\
\end{align*}

Exercise 5.37. Use list comprehension notation to complete this function definition to take a list of integers, and return a list containing only the elements of the argument which are divisible by three:

\begin{align*}
\text{dividesByThree} & : [\text{Int}] \rightarrow [\text{Int}] \\
\text{dividesByThree } xs & = \ [ x \mid x \leftarrow xs \\
\end{align*}

Exercise 5.38. Use list comprehension notation to write the function capVowelsFirst that takes a list of strings, and return a list containing only the elements of the argument which start with a capital vowel.

5.2.2 Leftist heaps

Trees and heaps

Lovely memories from the simpler days of CS340

- A tree is a structure which can either be
  - Empty, or
  - A node, with a value plus subtrees

In a binary tree, every node has two subtrees

- A heap, generally speaking, is a structure used for finding and deleting minimum elements
Often implemented through an array, or as a binary tree

- The value at any node is no larger than the values at either child

Tree rank

The rank of a tree node is the length of its right spine

Exercise 5.39. Write a Haskell data type \texttt{BlackWhiteTree} with two constructors

- \texttt{Black}, which takes two \texttt{BlackWhiteTree} arguments
- \texttt{White}, which takes no arguments

Encode each of the above examples (plus the one below) as \texttt{BlackWhiteTree} values with names \texttt{bw1}, \texttt{bw2}, etc.

Exercise 5.40. For your \texttt{BlackWhiteTree} type of Exercise 5.39 write a function \texttt{bwNodeRank} which returns the rank of the top node of a \texttt{BlackWhiteTree}.

The leftist property

A tree has the leftist property when the rank of any left child is at least as big as the rank of its right sibling

A leftist heap is a heap based on a binary tree with the leftist property

- We will see that leftist heaps support a nice merging behavior

Exercise 5.41. For your \texttt{BlackWhiteTree} type of Exercise 5.39 write a function \texttt{bwHasLeftist} which returns \texttt{True} when given the root node of a tree with the leftist property.
A leftist heap of floating point values

Let’s design a leftist heap LDH for holding floating-point values

The heap should support these operations:

emptyHeap :: LDH
isEmpty :: LDH -> Bool
insert :: Double -> LDH -> LDH
merge :: LDH -> LDH -> LDH
findMin :: LDH -> Double
deleteMin :: LDH -> LDH

The last four functions should all preserve both heap ordering and the leftist property

Standard trick: store the rank

- To speed comparisons, we store the rank in each node
- To better guarantee properties, we restrict access to the constructors

module LeftistDoubleHeap (LDH, emptyHeap, isEmpty,
insert, merge,
findMin, deleteMin) where

data LDH = EmptyLDH | NodeLDH Int Double LDH LDH

Some helper functions

We will need the rank of nodes

leftistRank :: LDH -> Int
leftistRank EmptyLDH = 0
leftistRank (NodeLDH n _ _ _) = n

Assemble a NodeLDH so that we satisfy the leftist property

makeLDH :: Double -> LDH -> LDH -> LDH
makeLDH e h1 h2 = let r1 = leftistRank h1
r2 = leftistRank h2
in if r1 >= r2
then NodeLDH (1+r2) e h1 h2
else NodeLDH (1+r1) e h2 h1

The easy ones

Returning and testing for an empty tree is straightforward

emptyHeap :: LDH
emptyHeap = EmptyLDH

isEmpty :: LDH -> Bool
isEmpty EmptyLDH = True
isEmpty _ = False
Merging two heaps

The main decision in merging two trees is picking the smaller of the two top elements to be the new top element

- We merge the right spines in the same way that we can merge sorted lists
- Since the right spine is never longer than the left spine, we are assured of \(O(\log n)\) merging
- The `makeLDH` helper assures that the leftist property is upheld

```haskell
def merge :: LDH -> LDH -> LDH
merge EmptyLDH h = h
merge h EmptyLDH = h
merge h1@(NodeLDH _ e1 l1 r1) h2@(NodeLDH _ e2 l2 r2) =
 if e1 < e2
 then makeLDH e1 l1 (merge r1 h2)
 else makeLDH e2 l2 (merge h1 r2)
```

Merging example

```haskell
case merge (NodeLDH 3 1.1 aa (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH)))
 (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH))
 of:
 | if 1.1 < 2.0
 | then makeLDH 1.1 aa (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
 | else makeLDH 2.0 dd
 | (merge (NodeLDH 3 1.1 aa (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH)))
 | (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
 | => makeLDH 1.1 aa (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
 | => makeLDH 1.1 aa
 | (if 3.0 < 2.0
 | then makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH)
 | (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
 | else makeLDH 2.0 dd (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | (NodeLDH 1 4.2 ee EmptyLDH)))
 | => makeLDH 1.1 aa (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | (NodeLDH 1 4.2 ee EmptyLDH)))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd
 | (if 3.0 < 4.2
 | then (makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH)
 | (NodeLDH 1 4.2 ee EmptyLDH)))
 | else (makeLDH 4.2 bb (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
 | EmptyLDH)))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd
 | (makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH) (NodeLDH 1 4.2 ee EmptyLDH))))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb
 | (if 5.4 < 4.2
 | then (makeLDH 5.4 cc (merge EmptyLDH (NodeLDH 1 4.2 ee EmptyLDH)))
 | else (makeLDH 4.2 ee (merge (NodeLDH 1 5.4 cc EmptyLDH) EmptyLDH)))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb (makeLDH 4.2 ee
 | (merge (NodeLDH 1 5.4 cc EmptyLDH) EmptyLDH)))
 | => makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb (makeLDH 4.2 ee
 | (NodeLDH 1 5.4 cc EmptyLDH)))
```
**Insertion and deletion can just use heap merging**

```haskell
insert :: Double -> LDH -> LDH
insert e h = merge (NodeLDH 1 e EmptyLDH EmptyLDH) h

findMin :: LDH -> Double
findMin EmptyLDH = error "Reading from empty heap"
findMin (NodeLDH _ e _ _) = e

deleteMin :: LDH -> LDH
deleteMin EmptyLDH = error "Deleting from empty heap"
deleteMin (NodeLDH _ _ h1 h2) = merge h1 h2
```

**Exercise 5.42.** Assemble the module LeftistDoubleHeap, and define several example heaps, extracting information from each.

**References**


### 5.2.3 Red-black trees

**Red-black trees**

A *balanced* tree has the same number of elements and the same depth on the left- and right-sides of every node

- Balanced trees guarantee $O(\log n)$ operations in many cases
- True balance can be expensive to maintain, so a number of algorithms allow us to approximate balance more cheaply
- *Red-black trees* are an approximation to balanced trees
  - Not perfectly balanced, but close enough

Starts with an ordered binary tree

- No duplicate elements, modeling a set

Adds a *color*, red or black, to each node of the tree

- Leaves are considered black

Plus two *invariants* about the structure of the tree:

1. All paths from the root of the tree to an empty leaf must have the same number of black nodes
2. No red node has a red child

**Red-black tree data type**

We’ll design an implementation for red-black trees holding floating-point values

- Could also model the color with a `Bool` field, for example `True` for black and `False` for red

```haskell
module RedBlackDoubleTree (RBDT, emptyTree, isEmpty, member, insert) where

data Color = Red | Black

data RBDT = EmptyRBDT
 | BranchRBDT Color RBDT Double RBDT
```
Exercise 5.43. Write a function \texttt{verifyRBinvariants} which checks that an RBDT value satisfies the invariants

1. Its numbers come in order
2. No red node has a red child
3. Every path from the root to an empty leaf has the same number of black nodes

Make sure that your function traverses the tree only \textit{once}, and does not re-descend to re-count the black nodes at every branch (there is a hint for this last requirement on page 121).

Basic operations

- Empty trees are straightforward

\begin{verbatim}
emptyTree :: RBDT
emptyTree = EmptyRBDT

isEmpty :: RBDT -> Bool
isEmpty EmptyRBDT = True
isEmpty _ = False
\end{verbatim}

- Checking for membership is just as in any ordered binary tree

\begin{verbatim}
member :: Double -> RBDT -> Bool
member _ EmptyRBDT = False
member e (BranchRBDT _ lt e0 rt) =
case compare e e0 of
    LT -> member e lt
    EQ -> True
    GT -> member e rt
\end{verbatim}

Top-level insertion

We will adopt the helpful convention that our trees will always have a black root node, even if top-level manipulations end with a red root

\begin{verbatim}
insert e t =
case helper e t of
    (BranchRBDT _ lt e0 rt) -> BranchRBDT Black lt e0 rt
    _ -> error "Internal error"
    -- Because helper never returns an empty node
\end{verbatim}

Insertion and balancing

- Superficially the \texttt{helper} looks like recursive colorless sorted-tree insert, but does extra work to preserve the invariants

\begin{verbatim}
helper :: Double -> RBDT -> RBDT
\end{verbatim}

- The \texttt{helper} returns a singleton tree when it reaches an empty leaf

\begin{verbatim}
helper e EmptyRBDT = BranchRBDT Red EmptyRBDT e EmptyRBDT
\end{verbatim}
To preserve the number of black nodes on each path, the new node is red

- But this may give us a red node with a red child

\[
\text{helper } e \text{ tt}(\text{BranchRBDT } cl \text{ lt e0 rt}) = \\
\quad \text{if } e < e0 \\
\quad \quad \text{then balance } cl \text{ (helper } e \text{ lt) e0 rt} \\
\quad \text{else if } e > e0 \\
\quad \quad \text{then balance } cl \text{ lt e0 (helper } e \text{ rt)} \\
\quad \text{else tt}
\]

So we apply a separate balance function instead of the BranchRBDT constructor to check for violations of the red-red invariant

When the helper breaks the red-red invariant

\text{helper adds a new bottommost node}

\[
\begin{align*}
\text{balance } \text{Black a x} \\
(BranchRBDT \text{ Red } (BranchRBDT \text{ Red } b \text{ y c}) \text{ z d}) = \\
\quad \text{BranchRBDT Red } (\text{BranchRBDT Black a x b}) \text{ y (BranchRBDT Black c z d)}
\end{align*}
\]

balance must find the bad pattern

- When using a subtree with a red root which has a red child
- Which can only happen if parent node is black
- Rearrange the tree to restore the invariants
- Push the forbidden red-red pair upwards

Four cases which balance must find

balance :: Color -> RBDT -> Double -> RBDT -> RBDT
balance Black (BranchRBDT Red (BranchRBDT Red a x b) y c) z d = \\
\quad \text{BranchRBDT Red } (\text{BranchRBDT Black a x b}) \text{ y (BranchRBDT Black c z d)}
balance Black (BranchRBDT Red a x (BranchRBDT Red b y c)) z d = \\
\quad \text{BranchRBDT Red } (\text{BranchRBDT Black a x b}) \text{ y (BranchRBDT Black c z d)}
balance Black a x (BranchRBDT Red (BranchRBDT Red b y c) z d) = \\
\quad \text{BranchRBDT Red } (\text{BranchRBDT Black a x b}) \text{ y (BranchRBDT Black c z d)}
balance Black a x (BranchRBDT Red b y (BranchRBDT Red c z d)) = \\
\quad \text{BranchRBDT Red } (\text{BranchRBDT Black a x b}) \text{ y (BranchRBDT Black c z d)}
balance color left root right = BranchRBDT color left root right

- Can you see now the two reasons why we always set the color of the final root node to black?
Exercise 5.44. Assemble the module RedBlackDoubleTree, and define several example trees, extracting information from each. Use your function verifyRBinvariants from Exercise 5.43 to make sure it behaves correctly.

Exercise 5.45. We can optimize this code slightly based on the way helper knows whether its recursive call is in the left or right subtree. Replace balance with two functions balanceLeft and balanceRight, which check for a red-red violation only in the left or right subtree, respectively. Then update helper to call the appropriate replacement for balance. Use your function verifyRBinvariants from Exercise 5.43 to make sure it behaves correctly.

References


5.2.4 Huet’s Zipper

Locations within a tree

Sometimes we need to discuss not just a tree (or other structure) but a particular subtree of the overall structure

- For example, to visually navigate a structure
  - Moving left and right, up and down
  - Possibly editing along the way
- We need to separate one subtree from its context
- The zipper is a technique for implementing this shifting view
- Intuitively, the technique peels up part of a structure, as if turning a glove inside-out when removing it from your hand

We will work on a general tree

```haskell
data Tree = Branch [Tree]
 | Leaf Double
```

It is unusual to have no values at branches, but it will simplify the presentation

What is a context?

If we grab on to the link between a branch and one of its child trees, what is the context that we find on the other end from that branch?

- Siblings to its left
- Siblings to its right
  - The siblings are just trees
- More context above
  - Up to the root node
- We can encode the context as a data type

```haskell
data Context = Root
 | Siblings [Tree] Context [Tree]
```

- Then a tree with a particular subtree highlighted is just a pair of this context and the subtree

```haskell
data Location = Loc Context Tree
```
Moving around within a node

What does it mean to "navigate" from a node to one of its siblings?

For example, if we "move right"

- The first sibling to the right becomes the subtree of interest
- The previous subtree of interest becomes a new sibling to the left

```plaintext
goRight (Loc (Siblings ls p (r:rs)) t) = Loc (Siblings (t:ls) p rs) r
goRight _ = error "Cannot go right"
```

And similarly for moving left

```plaintext
goLeft (Loc (Siblings (l:ls) p rs) t) = Loc (Siblings ls p (t:rs)) l
goLeft _ = error "Cannot go left"
```

- Note that the left siblings are stored with the nearest first
  - So reversed from a left-to-right ordering

Moving up

What about moving up in the tree?

- The previous subtree of interest, plus the siblings of the current context, become part of a new branch node of interest
- The context above the old context becomes the new context

```plaintext
goUp (Loc (Siblings ls p rs) t) = Loc p (Branch (pushOnto ls (t:rs)))
 where pushOnto [] xs = xs
 pushOnto (y:ys) xs = pushOnto ys (y:xs)
goUp _ = error "Cannot go up"
```

Descending into a child node

- Its first child becomes the current subtree
- Its other siblings, plus the old context above, become the new context

```plaintext
goDown (Loc p (Branch (t:ts))) = Loc (Siblings [] p ts) t
```

No descending into a leaf, or an empty branch

- We identify with the link between parent and child, and there are no links below a leaf

Adding a subtree

We can make changes to the tree as we navigate it

- Since we reassemble tree and context structure as we go, we do not need to change nonlocal structures

Moving to the left or right is straightforward

```plaintext
insertLeft (Loc (Siblings ls p rs) d) t = Loc (Siblings (t:ls) p rs) d
insertRight (Loc (Siblings ls p rs) d) t = Loc (Siblings ls p (t:rs)) d
```

When we insert into the branch below, the new subtree becomes the current focus

```plaintext
insertBelow (Loc p (Branch sibs)) t = Loc (Siblings [] p sibs) t
```
Removing the current subtree

Removing is a little complicated, because if we remove the current subtree then we also need to move

• We need to pick default directions
• Move right if possible, else try left, else try up

\[
\begin{align*}
\text{prune (Loc (Siblings ls p (r:rs)) _) } &= \text{Loc (Siblings ls p rs) r} \\
\text{prune (Loc (Siblings (l:ls) p []) _) } &= \text{Loc (Siblings ls p []) l} \\
\text{prune (Loc (Siblings [] p []) _) } &= \text{Loc p (Branch [])} \\
\text{prune (Loc Root _) } &= \text{error "Cannot prune root node"}
\end{align*}
\]

Derivatives

How do we think about zippers for arbitrary data types?

• The intuition comes from the derivatives of calculus
• \(d(u+v)=du+dv\)
• \(d(uv)=udv+vdu\)
• Multiplication is analogous to gathering data together in a tuple or with a constructor
• Addition is analogous to the alternative constructors allowed for a data type
• So the context associated with a pair would be \textit{either}
  \begin{itemize}
  \item A regular left element, plus a context to the right; or
  \item A context to the left, and a regular right element
  \end{itemize}
• And if a type can have one of two forms, then contexts over that type will also have one of two forms

Exercise 5.46. Extend the general trees and contexts of this section to have a value associated not just with the leaves, but with branches as well.

Exercise 5.47. Develop a notion of contexts for binary trees.

References


• Connor McBride, "Clowns to the left of me, jokers to the right (pearl): dissecting data structures," Proc. POPL'08, Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, p. 287-295.
5.2.5 Laziness in data structures

Haskell evaluation does as little as possible
What does this function do with its first and third arguments?

secondOfThree _ x _ = x

It is literally true that it does nothing with these arguments — Haskell does not even evaluate them

- You can prove this to yourself with this expression:
  
  secondOfThree (error "Boom") 1 (error "Boom")

- Returns 1 — and does not throw an error
- This is laziness — not evaluating an argument until it is actually needed

And it's finely-grained
Whenever a function doesn’t require some parts of an argument, those parts won’t necessarily be evaluated

- secondOfList (_:_x:_:) = x
  
  If we apply this function to a list with errors, we won’t trigger these errors if the second element of the list doesn’t have errors

secondOfList (error "el" : 3 : error "rest of the list")

This expression returns 3

- Laziness applies not just to function application, but also to data constructors
- Until themselves pattern-matched, data structure components will not be evaluated

Unbounded lists

- We can describe lists which are arbitrarily long
- If we do something that requires the whole list (like displaying it, or foldl), then of course our program will not terminate productively
- But if we use a function like take or takeWhile then we can draw only as much as we need

Specifying an unending list

- Simple cases
  
  onesForever = 1 : onesForever
twoAndUp = [2..]
fromThreeByFives = [3,8..]
byTens = byTens’ 10 where byTens’ x = x : byTens’ (10+x)

Exercise 5.48. Complete the recursive function genFibs in the style of byTens so that we could use genFibs to define a list corresponding to the Fibonacci numbers.

genFibs :: Int -> Int -> [Int]
genFibs n1 n2 = n1 : -- FILL IN HERE

The first argument n1 corresponds to the present "first" element of the list of numbers, and the two arguments to the recursive call should lead to subsequent elements.

Prelude> take 6 (genFibs 10 100)
[10,100,110,210,320,530]
Exercise 5.49. Use \texttt{genFibs} from the previous exercise to define the list \texttt{fibs} of Fibonacci numbers.

\begin{verbatim}
Prelude> take 10 fibs
[0,1,1,2,3,5,8,13,21,34]
\end{verbatim}

Exercises ??-??

Write recursive function \texttt{genFibs} in the style of \texttt{byTens} so that we could use \texttt{genFibs} to define a list corresponding to the Fibonacci numbers, and use it to define the standard list of all Fibonacci numbers starting 0, 1, 1, and so on.

Laziness in data structures

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality

\begin{verbatim}
1  2  3  4  5  6  7  8  9  10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
\end{verbatim}

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out

\begin{verbatim}
4  2  3  4  5  6  7  8  9  10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
\end{verbatim}

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
The Sieve of Eratosthenes

• Write out the numbers we’re interested in testing for primality
• 1 is not a prime, so scratch it out
• Look at the lowest unmarked number — mark it as prime
• But strike out its multiples — they’re definitely not prime

4  2  3  4  5  6  7  8  9  10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

The Sieve of Eratosthenes

• Write out the numbers we’re interested in testing for primality
• 1 is not a prime, so scratch it out
• Look at the lowest unmarked number — mark it as prime
• But strike out its multiples — they’re definitely not prime
• And so on with the new lowest unmarked number

4  2  3  4  5  6  7  8  9  10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

45
The Sieve of Eratosthenes

• Write out the numbers we’re interested in testing for primality

• 1 is not a prime, so scratch it out

• Look at the lowest unmarked number — mark it as prime

• But strike out its multiples — they’re definitely not prime

• And so on with the new lowest unmarked number, and so on

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

The Sieve of Eratosthenes

• Write out the numbers we’re interested in testing for primality

• 1 is not a prime, so scratch it out

• Look at the lowest unmarked number — mark it as prime

• But strike out its multiples — they’re definitely not prime

• And so on with the new lowest unmarked number, and so on, and so on

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

The Sieve of Eratosthenes

• Write out the numbers we’re interested in testing for primality

• 1 is not a prime, so scratch it out

• Look at the lowest unmarked number — mark it as prime

• But strike out its multiples — they’re definitely not prime

• And so on with the new lowest unmarked number, and so on, and so on, and so on
• So let’s code that up

**Fibonacci numbers vs. primes**
In all of the by-tems, Fibonacci numbers and prime numbers examples, we generate the list one element at a time

• Of course — as for any linked list!

• More to the point: we write code responsible for generating only one "next" element, and leave the rest of the elements to subsequent evaluations

• In **byTens**, the next list element was just a function argument
  – Set up future list elements by changing the argument to the recursive call

• In **genFibs**, same idea, just need two arguments

• For prime numbers, the helper function argument is the list of candidates for prime numbers under Eratosthenes’s algorithm
  – On each pass, we recognize the first of the candidates as prime
  – Filter its multiples from the list of candidates passed to the recursive call

**Coding up the sieve**

• One pass of the sieving algorithm:
  – Accept the first element as prime
  – Remove all multiples of the first element from the rest of the list
  – Sieve what’s left

\[
sieve (x:xs) = x : sieve (filter (\z -> z \mod x > 0) xs)
\]

• Then the list of all prime numbers is just

\[
primes = sieve [2..]
\]

• So long as we don’t try to find the last element of the list!

```haskell
*Prelude> take 30 primes
*Prelude> head (filter (> 10000) primes)
10007
```
So how do the various list functions work with nonterminating lists?

- Recall foldl and foldr,

  \[
  \text{foldl } f \ z \ [\] = z \\
  \text{foldl } f \ z \ (x:xs) = \text{foldl } f \ (f \ z \ x) \ x s
  \]

  \[
  \text{foldr } f \ z \ [\] = z \\
  \text{foldr } f \ z \ (x:xs) = f \ x \ (\text{foldr } f \ z \ x s)
  \]

- What if we want to apply a folding function to a list like primes?
  - (Say, with an \( f \) that constructs some other data structure)

- foldl will try to deconstruct the list all the way to the end before returning anything else

- If \( f \) returns some data constructor, then foldr can avoid trying to traverse the whole list

5.3 Parametric polymorphism

5.3.1 Polymorphic functions

What type do these functions have?

- What type does \( f \) have?

  \[
  f :: \text{Int} \rightarrow \text{Int} \\
  f \ x = x
  \]

  - Int->Int, of course

- What type does \( g \) have?

  \[
  g \ x = x
  \]

  - It could have type Int->Int
    
    * But it could have type String->String
    * Or [Int]->[Int]
    * Or Bool->Bool
    * Or Double->Double
    * Or (Double,Int,String)->(Double,Int,String)

  - Is there any type Haskell type \( a \) for which \( g \) could not have type \( a \rightarrow a \)?
    
    * No! Absolutely any \( a \) works

Polymorphic functions

We can write (or Haskell can deduce) polymorphic function types with unspecified parts to them

- Just as Java can have generic methods and classes
  
  - In functional languages, you’ll see the phenomenon referred to as polymorphic more often than generic

- Polymorphic functions

  \[
  a \rightarrow a \\
  (([\text{Char}], a) \rightarrow b) \rightarrow [\text{Char}] \rightarrow (a \rightarrow b)
  \]
• What are these \(a, b, c\)?
  
  – *Type variables*
  
  – Quantified outermost, so \(t \rightarrow t\) means \((\forall t. (t \rightarrow t))\)
  
  – Write type variables with an initial lower-case letter

• What about a function of type \(\text{Int} \rightarrow a\) — could such a function exist?
  
  – Yes, but it is not very interesting
    
    \[
    \text{boring} :: \text{Int} \rightarrow a  \\
    \text{boring} \ z = \text{error} \ "\text{How dull, always an error}"  \\
    \]
  
  – In a certain sense, we cannot expect to get more information ("Any type! Any at all!") from a function than we put in ("Just an \(\text{Int}\), nothing else")

**Benefits of polymorphic types**

• Detect and prohibit *further* nonsensical operations

• *Finer-grained* documentation which is automatically checked for correctness

• Reduce code duplication

• More easily distinguish bugs in using a library from bugs within a library

5.3.2 *Polymorphic data types*

**Data types can be polymorphic too**

• You may already have noticed that functions on lists can be polymorphic

\[
\text{reverse} :: [a] \rightarrow [a]  \\
\text{reverse} \ x = \text{rev'} \ [] \ x  \\
\text{where} \quad \text{rev'} \ \\
\text{acc} \ [x:] = \text{acc}  \\
\text{rev'} \ 	ext{acc} \ (x:x) = \text{rev'} \ (x:\text{acc}) \ x  \\
\]

  – Lists are a *polymorphic type*

  – So what is the type of the empty list (outside of a context which restricts it)?

• Your types can be polymorphic too

\[
\text{data BinaryTree} \ a = \text{Branch} \ (\text{BinaryTree} \ a) \ (\text{BinaryTree} \ a)  \\
| \ \text{Leaf} \ a
\]

\[
\text{binaryTreeMap} \ f \ \text{(Leaf} \ x) = \text{Leaf} \ (f \ x)  \\
\text{binaryTreeMap} \ f \ \text{(Branch} \ t1 \ t2)  \\
= \text{Branch} \ (\text{binaryTreeMap} \ f \ t1) \ (\text{binaryTreeMap} \ f \ t2)
\]

  – Here we distinguish the *type constructor* \(\text{BinaryTree}\) from types like \(\text{BinaryTree} \ \text{Int}, \text{BinaryTree} \ \text{Float}\), or \(\text{BinaryTree} \ a\).

  – By itself, \(\text{BinaryTree}\) is not a type
One second thought
   How does search in this binary tree work?

   data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
   | Leaf a

   binaryTreeMap f (Leaf x) = Leaf (f x)
   binaryTreeMap f (Branch t1 t2)
     = Branch (binaryTreeMap f t1) (binaryTreeMap f t2)

   • With abstracted types like a, we cannot assume things about them, like whether they are an Int or String
   • We also cannot assume that they support comparison!
   • To define binary trees as we would really expect, we will need other tool from Haskell’s toolkit — another day

Collections classes
   In many languages, collections classes are the best-known use case of polymorphic types
   • Set<A>, Map<A,B>, List<A>
   • Avoid casts from versions of the collections library which just use Object as the type of all contents

5.3.3 Further type definitions

   There are two more ways of defining a new type in Haskell
   • One way is a type synonym, keeping equivalence
   • Another way does not preserve interchangeability

Equivalent synonyms via type
   type defines an abbreviation for our convenience
   • The prelude defines String this way:

     type String = [Char]

   We can use String in our our type or instance declarations, but ghci can’t always echo the name back to us
   • We can give type variables for polymorphic types as well:

     type ListOfTuplesWithInt a = [(a,Int)]

     tupWith1 :: ListOfTuplesWithInt Bool
tupWith1 = [(True, 3), (False, 4), (False, 5)]

Distinct synonyms via newtype
   newtype defines a type synonym which is not interchangeable with the original
   • newtype DifferentTuple = DiffTup (Int, String)
   • We use it as if it had been declared with data

     intFromDiffTup (DiffTup (n, _)) = n

   • But there are important differences with data
There can be only one constructor form
That constructor can have only one value associated with it
* Which is why we have a tuple here, and not two separate values
The overhead of distinguishing the different data constructors can be compiled away

- The usual style with newtype is to give the type and constructor the same name

```haskell
newtype DifferentTuple = DifferentTuple (Int, String)
intFromDiffTup (DifferentTuple (n, _)) = n
```

- Optionally, we can also declare an accessor function at the same time

```haskell
newtype DifferentTuple
 = DifferentTuple { getDiffTup :: (Int, String) }
```

- And type variables are allowed

```haskell
newtype ZZ a = ZZ { getZzA :: a }
```

Using newtype for alternative instances
One use of newtype is to associate different instance declarations with a type.

```haskell
newtype WordInt = WI Int

instance Show WordInt where
 show (WI 0) = "zero"
 show (WI 1) = "one"
 show (WI 2) = "two"
 show (WI 3) = "three"
 show (WI 4) = "four"
 show (WI 5) = "five"
 show (WI 6) = "six"
 show (WI 7) = "seven"
 show (WI 8) = "eight"
 show (WI 9) = "nine"
```

Exercise 5.50. Consider the declaration:

```haskell
newtype NewTypeExampleWithInt = { theInt :: Int }
```

What type does Haskell tell you that the function theInt has? Create some NewTypeExampleWithInt values; how do you use them with theInt? What results do you get?

5.4 Higher-order functions
5.4.1 Functions as values
First-class citizens
In Haskell, we say that functions are first-class citizens of the language

What does this mean?
- We can write them as standalone constants without necessarily binding them to a name — just as for any other value
• We can pass them to another function, so that a formal parameter has function type; or bind them to a local name — just as with any other value
• We can return one function from another function — just as any with other value
• We can use anonymous function constants, or names locally bound to a function, in just the same way as names globally bound to a function — just as any with other value

A function is a mapping from arguments to results

We can describe that mapping as a lambda expression

\arg \rightarrow \text{result}

The backslash abbreviates the Greek letter \( \lambda \).

\( \lambda x \rightarrow x+1 \)
\( \lambda ss \rightarrow "Pre" + ss \)

There can be multiple parameters

\( \lambda x \ y \rightarrow 2\times x+y \)

Sometimes called a lambda abstraction

• Abstracting the names over the body of the result

Scope

Functions can refer to names outside the scope of their arguments

\( \lambda a \rightarrow \sin (2\times a + \pi/2) \)

This is valid even for local names

let \( x = 5\pi \) in \( \lambda z \rightarrow \sin (x + z/2) \)

Note that Java has a limited facility for \( \lambda \) abstractions

(\( \text{int} \ x, \ \text{String} \ y \) \( \rightarrow \) \( x + y.\text{length}() \)

• Since Java 8
• Understood by Java as an anonymous class implementing a single-method interface
• Has stricter rules for shadowing, using out-of-scope names

Functions as arguments

We can pass functions as arguments to other functions

callWithThree :: (\( \text{Int} \rightarrow \text{Int} \)) \( \rightarrow \) \( \text{Int} \)
callWithThree \( f \) = \( f \) \( 3 \)
double \( x \) = \( x+x \)
triple \( x \) = \( 3\times x \)

• callWithThree double returns \( 6 \)
• callWithThree triple returns \( 9 \)

The functions can be polymorphic
callWithThree :: (Int->a) -> a
callWithThree f = f 3
howManyZs 0 = ""
howManyZs n = "Z" : howManyZs (n-1)

• callWithThree double still returns 6
• callWithThree triple still returns 9
• callWithThree howManyZs returns "ZZZ"

Functions as results
Functions can also return another function as a result

whichIncrementer :: Bool -> (Int -> Int)
whichIncrementer x = if x then (\x -> x+1) else (\y -> y+2)

• So (whichIncrementer True) 10 returns 11
• (whichIncrementer False) 20 returns 22

How we write types
• Recall how we write the types for multi-argument functions

myFormula :: Int -> Int -> Int
myFormula m n = 20*m + n

• In particular, we do not write the type like this:

(Int, Int) -> Int

• The notation suggests that there are several functions involved
  – There are!
  – Functions in this form are said to be curried

Currying
• Let’s say we need a function of type Int->Int
• We can give myFormula one of its arguments now, and (presumably) others later

myFormula :: Int -> Int -> Int
myFormula m n = 20*m + n
let needsOneInt :: Int -> Int
    needsOneInt = myFormula 100
    in needsOneInt 5
  – Returns 2005
• Since myFormula is curried, we can partially apply it
It's not a cooking reference

Haskell Brooks Curry

- Born 1900 in Massachusetts, majored in mathematics at Harvard, then returned for a master’s in physics
- During his master’s work, learned of the then-ongoing work of Whitehead and Russell to ground mathematics in formal logic
- Returned to mathematics for his Ph.D., focusing on the new combinatory logic of Schoenfinkel
- Spent most of his career at Pennsylvania State College
- Retired 1970, died 1982

Combinatory logic and its impact

- Similar in scope to Church’s lambda calculus
- Wrote and taught extensively about combinatory logic and the logical foundations of mathematics
- Memorialized with the Curry-Howard correspondence, Curry’s paradox, and three programming languages named after him

Operator sectioning

Partial application also allies to binary operators

- In this context, also known as sectioning
- Requires parentheses

\[ gg = (2 +) \]
\[ hh = (* 5) \]
\[ kk = (1.0 /) \]

So

- \( gg \) 10 reduces to 2+10
- \( hh \) 10 reduces to 10*5
- \( kk \) takes the reciprocal if its argument

But note that \(- 1\) is not a function value, it is a number one less than zero

- Use \(-\) 1 to section subtraction
References

- Image of HB Curry by Gleb Svechnikov, licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

5.4.2 Patterns of recursion over lists: filter, map, fold

Finding patterns

\[
\text{sumOneTo} :: \text{Int} \rightarrow \text{Int} \\
\text{sumOneTo} x | x > 0 = x + \text{sumOneTo} (x-1) \\
\text{sumOneTo} _ = 0
\]

\[
\text{prodOneTo} :: \text{Int} \rightarrow \text{Int} \\
\text{prodOneTo} x | x > 0 = x \times \text{prodOneTo} (x-1) \\
\text{prodOneTo} _ = 1
\]

Three patterns of behavior on lists

Filtering  Derive one list from another by selecting some of its arguments

Mapping  Transform one list to another by transforming its individual elements

Folding  Combine the elements of list with each other to produce a result

Filtering

Given a list of integers, return a list of the even integers in the argument list

\[
\text{justEvens} :: [\text{Int}] \rightarrow [\text{Int}] \\
\text{justEvens} [] = [] \\
\text{justEvens} (x:xs) | x \mod 2 == 0 = x : \text{justEvens} xs \\
\text{justEvens} (_:xs) = \text{justEvens} xs
\]

Given a string, return a string of only the lower-case letters in the original string (assuming \textbf{Data.Char} imported for \textbf{isLower})

\[
\text{justLower} :: \text{String} \rightarrow \text{String} \\
\text{justLower} [] = [] \\
\text{justLower} (x:xs) | \text{isLower} x = x : \text{justLower} xs \\
\text{justLower} (_:xs) = \text{justLower} xs
\]

Given a list of lists, return the list containing only the lists of length 2 or more from the argument

\[
\text{justLengthy} :: [[\text{a}]] \rightarrow [[\text{a}]] \\
\text{justLengthy} [] = [] \\
\text{justLengthy} (x:xs) | \text{length} x > 1 = x : \text{justLengthy} xs \\
\text{justLengthy} (_:xs) = \text{justLengthy} xs
\]

These functions operationally differ only in the tested condition

The \textbf{filter} function

We can pass a \textit{predicate} as an extra parameter

\[
\text{filter} :: (\text{a} \rightarrow \text{Bool}) \rightarrow [\text{a}] \rightarrow [\text{a}] \\
\text{filter} _ [] = [] \\
\text{filter} p (x:xs) | p x = x : \text{filter} p xs \\
\text{filter} p (_:xs) = \text{filter} p xs
\]
Exercise 5.51. Define justEvens, justLower and justLengthy using filter instead of explicit recursion.

Mapping one function to another

Given a list of integers, return a list with the argument values multiplied by 11

- elevenfold :: [Int] -> [Int]
elevenfold [] = []
elevenfold (x:xs) = (11*x) : elevenfold xs

Given a string, return that string cast to lower-case (assuming Data.Char imported for toLower)

- allToLower :: String -> String
  allToLower [] = []
  allToLower (x:xs) = toLower x : allToLower xs

Given a list of lists, return the list containing the reverses of the original argument’s lists

- reverseAll :: [[a]] -> [[a]]
  reverseAll [] = []
  reverseAll (x:xs) = reverse x : reverseAll xs

These functions operationally differ only in the operation applied to each element

The filter function

We can pass the transforming function as an extra parameter

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

Exercise 5.52. Define elevenfold, allToLower and reverseAll using map instead of explicit recursion.

Combining the elements of a list together

Given a list of integers, return the result of adding the elements together

- sumTogether :: [Int] -> [Int]
  sumTogether [] = 0
  sumTogether (x:xs) = x + sumTogether xs

Given a list of lists, return the concatenation of all of these lists together (using ++ and not worrying too much about efficiency)

- concatTogether :: [[a]] -> [a]
  concatTogether [] = []
  concatTogether (x:xs) = x ++ concatTogether xs

These functions operationally differ in two places

- The value to which we map the empty list
- The way we combine one element with the result of combining together the rest of the elements
A fold function
We can pass the base value and combining function as two extra parameters

\[
\text{fold} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

\[
fold \_ z \ [] = z
\]

\[
fold \ f \ z \ (x:xs) = f \ x \ (fold \ f \ z \ xs)
\]

- fold is often referred to as reduce

Exercise 5.53. Define sumTogether and concatTogether using fold instead of explicit recursion.

Definitely a trap
Here is one of those simple questions which seems like something out of primary school but which is probably a trap:

What is 10-3-2-1?

Then what is fold (\(-\)) 0 [10, 3, 2, 1]?

- Remember that \((-\) is the sectioned version of subtraction
- It’s 8! It was a trap!

Two folds
The trap is that we implicitly defined a certain associativity in our first try at fold — and it happened to be right-associative

- Often right-associativity is what we need
- But in the big picture, we do need the choice of associativity
- Haskell renames our fold as foldr

\[
\text{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

\[
foldr \_ z \ [] = z
\]

\[
foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs)
\]

- There is also foldl

\[
\text{foldl} :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

\[
foldl \_ z \ [] = z
\]

\[
foldl \ f \ z \ (x:xs) = foldl \ f \ (f \ z \ x) \ xs
\]

- Caveat: these are not the same types that you would see if you asked ghci

:t foldr

so we will revisit these signatures later!
Exercise 5.54. [Keller and Chakravarty] Rewrite the definition of `mapInts`:

```haskell
mapInts :: (Int -> Int) -> [Int] -> [Int]
mapInts f [] = []
mapInts f (x : xs) = f x : map f xs
```
to use case notation. That is, complete the following definition:

```haskell
mapInts :: (Int -> Int) -> [Int] -> [Int]
mapInts f xs = case xs of
 ...
```

Exercise 5.55. [Keller and Chakravarty] The `map` function is just a special case of `foldr`. Can you rewrite the `map` definition in terms of `foldr`? Complete the following definition:

```haskell
map :: (a -> b) -> [a] -> [b]
map f = foldr ...
```

Exercise 5.56. Use a fold function to implement the exclusive-or function `xor` of type `[Bool] -> Bool`, which returns `True` when there is exactly an odd number of `True` values in the list.

Exercise 5.57. Use a fold function to concatenate a list of lists together into a single list,

```
concatAll :: [[t]] -> [t]
```

Exercise 5.58. Use `filter` to write a function that removes the vowels from a string.

Exercise 5.59. Redefine `length` and `reverse` using the fold functions.

Exercise 5.60. For all of the functions with fold, which are more efficient with `foldr`, and which are more efficient with `foldl`?

Exercise 5.61. [Keller and Chakravarty] Rewrite the definition of `map`:

```haskell
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs
```
to use case notation. That is, complete the following definition:

```haskell
map f xs = case xs of
 ...
```

Exercise 5.62. Write `intTreeFoldl` and `intTreeFoldr`, folding functions on integer binary trees,

```
data IntTree = Branch IntTree IntTree
 | Leaf Int
```
The functions should have signatures

```haskell
intTreeFoldl :: (t -> Int -> t) -> t -> IntTree -> t
intTreeFoldr :: (Int -> t -> t) -> t -> IntTree -> t
```
and should apply the operations and default with the given associativity of the values in the leaves. For example,

```
*Main> let t1 = (Branch (Branch (Leaf 10) (Leaf 3))
 (Branch (Leaf 2) (Leaf 1)))
*Main> intTreeFoldl (\x y -> x-y) 0 t1
-16
*Main> intTreeFoldr (\x y -> x-y) 0 t1
8
```
Exercise 5.63. Write `binaryTreeFoldl` and `binaryTreeFoldr`, folding functions on general binary trees,

```haskell
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
 | Leaf a
```

Exercise 5.64. Write `binaryTreeFilter`, of type `(a -> Bool) -> (BinaryTree a) -> Maybe (BinaryTree a)`. It must be `Maybe`, since we have no constructor for an empty tree.

References
The material of this section is standard in functional language textbooks and tutorials. A classic paper which carries the idea (much) further is


And then further still,


5.5 "Ad-hoc" polymorphism and type classes

5.5.1 Type classes

Almost everything
Some functions aspire to be polymorphic, but cannot quite make it

- Many values can be ordered, but how do we compare pairs? Or lists?
- Many values can be tested for equality, but what about functions?
- Many values can be converted to strings for display, but again, what about functions? What about our complicated data types which we simply do not need to represent as a string?

And the types do matter!
In these examples, unlike in the parametric polymorphic functions we saw earlier, the actual quantified type really does matter

- The way we compare two integers really is different than the way we compare two floating-point values
- So the actual type really does matter, all the way down to the machine level

Classes of types
Haskell lets us express these quantifications by using *type classes*

- Operations (the functions for comparison, formatting, etc) are associated with a type class
- Every type which is a member of a class must implement *all* of the operations associated with that class
- Types are *individually* declared to be members of a class
Declaring classes

For example:

class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool

- Must give type signatures, since we’re specifying operations without (necessarily) giving an implementation
- When we ask Haskell what the types of these functions are, it tells us explicitly about the type constraint
  - (==) :: Eq a => a -> a -> Bool
  - The quantification is not universal, but limited to types of the particular class
  - We can write these constraints too, when giving an explicit signature of a function we write

Default implementations of functions

We can give default implementations of some (or all) of the functions associated with a class

class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool
    x == y = not (x /= y)
    x /= y = not (x == y)

- Notice here that we define the two operations in terms of each other!
- So the instance declaration must define at least one of the two operations — otherwise these definitions make no sense

Exercise 5.65. Adapt your module LeftistDoubleHeap from Exercise 5.44 as simply LeftistHeap, with type LH polymorphic in the type of element which it contains. Since merge makes a comparison on elements of the contained type, most of the exported functions will need an Ord a constraint,

emptyHeap :: Ord a => LH a
isEmpty :: LH a -> Bool
insert :: Ord a => a -> LH a -> LH a
merge :: Ord a => LH a -> LH a -> LH a
findMin :: Ord a => LH a -> a
deleteMin :: Ord a => LH a -> LH a

Exercise 5.66. Adapt your module RedBlackDoubleTree from Exercise 5.42 as simply RedBlackTree, with type RBT polymorphic in the type of element which it contains. Since helper and member make a comparison on elements of the contained type, most of the exported functions will need an Ord a constraint,

emptyTree :: Ord a => RBT a
isEmpty :: RBT a -> Bool
member :: Ord a => a -> RBT a -> Bool
insert :: Ord a => a -> RBT a -> RBT a
helper :: Ord a => a -> RBT a -> RBT a
balance :: Color -> RBT a -> a -> RBT a -> RBT a
Exercise 5.67.  [Keller and Chakravarty] Implement a function \texttt{deleteSorted},
\begin{verbatim}
deletedSorted :: Ord a => a -> [a] -> [a]
\end{verbatim}
which removes a value passed as first argument from a sorted list given as the second argument. If the value does not occur in the list, the list is returned unchanged. Exploit the fact that the list is sorted: if an element is not present in the list, stop the search as early as possible.

Exercise 5.68.  Change the declaration of \texttt{instance Show MyComplex} so that the real coefficient is not shown when it is zero and the complex coefficient is non-zero.

Exercise 5.69.  Complete the declaration of \texttt{instance Show WordInt} to print any integer as words.

Another example - complex numbers
There's a built-in class of complex numbers, but let's make our own
\begin{verbatim}
data MyComplex = MyComplex Double Double

instance Show MyComplex where
  show (MyComplex x iy) = case compare iy 0 of
    GT -> show x ++ "+" ++ show iy ++ "i"
    EQ -> show x
    LT -> show x ++ "-" ++ show (-iy) ++ "i"

instance Num MyComplex where
  (MyComplex x iy) + (MyComplex x' iy') = MyComplex (x + x') (iy + iy')
  (MyComplex x iy) - (MyComplex x' iy') = MyComplex (x - x') (iy - iy')
  (MyComplex x iy) * (MyComplex x' iy') = MyComplex (x*x' - iy*iy')
                                  ((x*iy' + x*iy')
  abs (MyComplex x iy) = MyComplex (sqrt (x*x + iy*iy)) 0
  signum (num@(MyComplex x iy)) = let (MyComplex a _) = abs num
                                  in MyComplex (x/a) (iy/a)
  fromInteger n = MyComplex (fromInteger n) 0.0

instance Fractional MyComplex where
  (MyComplex x iy) / (MyComplex x' iy')
  = let denom = x'*x' + iy'*iy'
      in MyComplex ((x*x' + iy*iy')/denom) ((x'*iy - x*iy')/denom)
  recip (MyComplex x' iy')
  = let denom = x'*x' + iy'*iy'
      in MyComplex (x'/denom) (-iy'/denom)
  fromRational n = MyComplex (fromRational n) 0.0

  \bullet  Could define trigonometric etc. operations for Floating.

Instances of a polymorphic datatype
Two ways:
1. Declare the full type to be an instance, possibly with constraints on the type variables
2. Declare the \texttt{type constructor} to be an instance of class on \texttt{higher kinds}
Exercise 5.70. Adapt your module `LeftistHeap` from Exercise 5.65 to separate the functions into a class definition of heaps and heap operations, with type `LH` being one instance of the class. Use the approach of higher-kindled classes so that heaps are polymorphic.

Exercise 5.71. Adapt your module `RedBlackTree` from Exercise 5.66 to separate the functions into a class definition of trees and tree operations, with type `RBT` being one instance of the class. Use the approach of higher-kindled classes so that trees are polymorphic.

Constraints on an instance declaration

```haskell
instance Eq a => Eq (BinaryTree a) where
 (Leaf x) == (Leaf y) = (x==y)
 (Branch xs1 xs2) == (Branch ys1 ys2) =
 xs1 == ys1 && xs2 == ys2
_ == _ = False

instance Show a => Show (BinaryTree a) where
 show (Leaf x) = "(Leaf " ++ show x ++ ")"
 show (Branch xs1 xs2)
 = "(Branch " ++ show xs1 ++ ", " ++ show xs2 ++ ")"
```

- Like constraints on a type signature

5.5.2 Type classes and software architecture

Remember the `Shape` datatype from Exercise 5.33

```haskell
data Shape = Circle Float
 | Rectangle Float Float
```

You added a `Triangle` constructor

- What else did you have to change when you added that constructor?
  - Immediately, the `perimeter` function gave warnings
  - There was now a possible form of `Shape` which the function could not address!

What if we were in deeper than that?

`Shape` was a small example for a learning exercise, but sometimes we must change software which is larger

- New features added to old systems
- A new case introduced under late-revised software requirements
- Impacts of bug reports, shifted priorities, etc.
- A type like `Shape` might be pattern-matched in many functions across many files
- If many function suddenly fail to compile, or even just each generate verbose warnings, further progress can be slow

Type classes offer an alternative structure

- Instead of a `data` type, define a class
- Instead of constructors, define an instance type
Instead of a data type, define a class

From

data Shape = ...  
-- and functions perimeter, area follow

to

class Shape a where  
     perimeter :: a -> Float  
     area :: a -> Float

Instead of constructors, define an instance type

From

data Shape = Circle Float | Rectangle Float Float  
perimeter (Circle radius) = 2 * pi * radius  
area (Circle radius) = pi * radius * radius

to

data Circle = Circle Float  
instance Shape Circle where  
     perimeter (Circle radius) = 2 * pi * radius  
     area (Circle radius) = pi * radius * radius

data Rectangle = Rectangle Float Float  
instance Shape Rectangle where  
     perimeter (Rectangle l w) = 2 * (l + w)  
     area (Rectangle l w) = l * w

Exercise 5.72. Write a type Triangle (specified by the three sides of the triangle, as in Exercise 5.33) which is also in class Shape.

Pros and cons

If we use a type with several constructors

• Adding a new function is straightforward
• But adding a new constructor can be rough

If we use a class with several instance types

• Adding a new function can be rough
• But adding a new constructor is straightforward

This is an instance of the Expression Problem

• An old challenge for language designers, identified in print in 1975
• How can a language support both adding datatype cases and adding functions on the datatype
  – In a type-safe way, and
  – Without recompiling existing code?
• We will look at two other solutions to the Expression Problem when we look at object-oriented languages
References


5.5.3 A class of sorting trees

This tree and that tree

Recall our red-black trees of Section 5.2.3:

```haskell
data Color = Red | Black

data RBDT = EmptyRBDT
 | BranchRBDT Color RBDT Double RBDT

with functions emptyTree, isEmpty, member, insert
```

Plain-old binary trees

It is easy to imagine a library of red-black trees coexisting with other tree implementations, and even just plain-old binary trees:

```haskell
data BinaryTree = EmptyBT | LeafBT BinaryTree Double BinaryTree
```

- Or even a *non-sorted* tree version!

```haskell
data NaiveBinaryTree =
 EmptyNBT | LeafNBT NaiveBinaryTree Double NaiveBinaryTree
```

Again both with functions emptyTree, isEmpty, member, insert

A tree class

We can describe a class of trees to which all of these implementations adhere:

```haskell
class SearchTree t where
 emptyTree :: t
 isEmpty :: t -> Bool
 member :: Double -> t -> Bool
 insert :: Double -> t -> t
```

Simple trees into the class

```haskell
instance SearchTree BinaryTree where
 emptyTree = EmptyBT

 isEmpty EmptyBT = True
 isEmpty (LeafBT _ _ _) = False
```

and so on

- The same functions, just as part of an instance declaration instead of top-level
Red-black trees into the class
And likewise for the red-black trees:

```haskell
instance SearchTree RedBlackTree where
 emptyTree = EmptyRBT
 isEmpty EmptyRBT = True
 isEmpty _ = False
 member _ EmptyRBT = False
 member e (NodeRBT _ lt e0 rt) = case compare e e0 of
 LT -> member e lt
 EQ -> True
 GT -> member e rt
```

What about polymorphism?
What we’d really like is a polymorphic datatype for our trees

• Not just for `Double` values, but for any types (consistently within one tree!)
• This is a little harder to combine with classes
  – We need a type constraint to apply to the `content` type of the tree, but the operations to apply to the tree itself
  – The right solution is to allow classes over `type constructors`, and not just types
  – We will come back to this problem when we look at `kinds`

5.5.4 Automatically deriving instances of the built-in classes

Automatic instances
As part of a `data` definition, we can automate instance declarations for several of the built-in classes

• Often saves us from boilerplate code
• Sacrifices flexibility — we get one kind of instance implementation automatically
  – Sadly, Haskell still cannot read our minds!

Equality

```haskell
data Shape = Circle Float
 | Rectangle Float Float
 deriving (Eq)
```

Two `Shape` values will be equal if

• They have the same constructor
• The respective fields are also equal
• If we want to disregard some fields, we must write our own `instance` declaration!

Ordering

```haskell
data Shape = Circle Float
 | Rectangle Float Float
 deriving (Ord)
```

Imposes a total order on `Shape` values

• All circles are less than all rectangles!
Convertability to text

data Shape = Circle Float
  | Rectangle Float Float
  deriving (Read, Show)

Imposes a total order on Shape values
  • All circles are less than all rectangles!

5.5.5 Higher-kinded class type variables

Kinds in Haskell
Haskell has an explicit notion of kinds
  • Kinds are a more general classification than types, which we can attribute to more things
  • “Type” is just one particular kind
    – Every Haskell type has kind *
    – We can query the kind of entities in the interpreter
      Prelude> :k Int
      Int :: *
      Prelude> :k String
      String :: *
      Prelude> :k [Bool]
      [Bool] :: *
      Prelude> :k (Int -> String -> ([Bool], [Char]))
      (Int -> String -> ([Bool], [Char])) :: *

Higher kinds
Type constructors have higher kinds

Prelude> :k Maybe
Maybe :: * -> *

In the parser library, Parser needs two type arguments to form a type:

Prelude> :k Parser
Parser :: * -> * -> *

Classes for higher kinds
  • We saw several examples of type classes
    – For example
      class Eq a where
      (==) :: a -> a -> Bool
      (/=) :: a -> a -> Bool
      – Here a represents any type which might be a member of class Eq
      – The function signatures show how values of such a type a might be used
  • Haskell also allows classes to concern higher-kinded types
    – If we say that f is a member of such a class, then when we use f in a function signature, we must supply it with type arguments to produce a type of kind *
**Class Functor** — things we can map over

- **Functor** is one such class of higher-kindred types, of type constructors, instead of types
- Generalizes the *map* function on lists
- From standard prelude:

  ```haskell
class Functor f where
 fmap :: (a -> b) -> f a -> f b
  ```

**BinaryTree as a Functor**

Recall our data type `BinaryTree`

```haskell
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
 | Leaf a
```

We can declare `BinaryTree` (not `BinaryTree Int`, etc.) to be a member of `Functor` by showing how `fmap` should work

```haskell
instance Functor BinaryTree where
 fmap f (Leaf x) = Leaf $ f x
 fmap f (Branch xs1 xs2) = Branch (fmap f xs1) (fmap f xs2)
```

- No constraints on `BinaryTree`'s type arguments
  - There are no explicit type arguments to constrain!

**Another type constructor class — Foldable**

- We’ve seen this in the type signature for the fold functions

  ```haskell
 *Main> :t foldr
 foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
 *Main> :t foldl
 foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
  ```

- The list type constructor `[ ]` is a member of `Foldable`

5.6 Examples of larger Haskell libraries

5.6.1 Monadic parser combinators

**Laziness as a design technique**

- There’s more to laziness than the ability to describe and partially evaluate an infinite list
  - (The list of prime numbers *is* in fact infinite, even if we only ever calculate some prefix of it.)
- We can structure a system so that we describe large lists, knowing that we will only calculate as much as we need

**A larger example: a parsing library**

- What, in general, is a parser?
- The parser of most compilers takes a list of lexemes, and returns some abstract representation of the program
  - *Lexeme*: a simple grouping of characters into basic program units, like *identifiers, keywords, constants*, and specific punctuation
  - Typically lexemes are specified by a regular expression and the program itself is specified by a grammar
- So at first glance, a parser might have type `[input] -> output`
Composing parsers

- What we’d really like is a handy way to combine parsers
  - Will let us write parsers which look like grammars
  - Much more maintainable than explicit recursive descent, or certainly a bottom-up parser

- One parser might do some of the work, leaving the rest for another parser

- So the result of a parser must also return the unused input,
  \[ \text{[input]} \rightarrow (\text{result}, \text{[input]}) \]

But what about failure?

- If we combine parsers in alternation (accept either an X or a Y), then we may fully expect one of the two to always to fail
  - An operation might be +, or it might be − — but it can’t be both, so one of those options would fail
  - A basic expression could be a constant, or it could be a variable — but it can’t be both, so one of those options would fail

- How do we handle this?
  - We could do something horrible by throwing exceptions with error and catching them
  - But error is made for genuine errors; this is something we expect routinely
  - Replace failure with a list of successes.

- A parser returns the different possible ways of parsing its input

  \[
  \text{newtype Parser input output}
  \rightarrow \text{Parser (input) \rightarrow \{(output, input)\}}
  \]

  parse (Parser p) = p

Running a parser

- So we’ve reasoned that the right type for a parser should be

  \[
  \text{newtype Parser input output}
  \rightarrow \text{Parser (input) \rightarrow \{(output, input)\}}
  \]

  parse (Parser p) = p

- Whatever failures and multiple parses we find at intermediate points within the grammar, we usually expect the top-level final parser to produce a unique result from all of the input

  \[
  \text{getParse :: Parser i o \rightarrow [i] \rightarrow o}
  \]

  getParse parser input =
  case parse parser input of
  [(result,[])] \rightarrow result
  [] \rightarrow error "No parse"
  [(result,_) \rightarrow error "Input not consumed"
  _ \rightarrow error "Parse is not unique"

- Or maybe we won’t care about the uniqueness, and we relax that restriction
Building blocks

- How do we build a parser?
- What are our starting points?
- The most basic possible parsers will either return some result without consuming input, or return no result

\[
\text{accept} :: \text{result} \rightarrow \text{Parser} \text{ input} \rightarrow \text{result}
\]
\[
\text{accept res} = \text{Parser} \ (\text{\textbackslash inp} \rightarrow [(\text{res}, \text{inp})])
\]

\[
\text{reject} :: \text{Parser} \text{ input} \rightarrow \text{result}
\]
\[
\text{reject} = \text{Parser} \ (\text{\textbackslash inp} \rightarrow [])
\]

- For example:

  > \text{parse} \ (\text{accept} \ 'x') \ "abc123"
  > ['x',"abc123"]
  > \text{parse reject} \ "abc123"
  > []

Considering the input

- The most basic parsers are a little surprising, since they do not actually look at their input!
- Here’s a simple parser which expects an exact piece of input

\[
\text{literal} :: \text{Eq a} \Rightarrow \text{a} \rightarrow \text{Parser} \text{ a} \rightarrow \text{a}
\]
\[
\text{literal} \ s = \text{Parser} \ \text{\textbackslash inp} \rightarrow ((\text{\textbackslash inp} \\ x:xs) \mid x == s = [(x,xs)] \\
\text{\textbackslash inp} \rightarrow [])
\]

- For example:

  > :t letterA
  \text{letterA} :: \text{Parser} \text{ Char} \rightarrow \text{Char}
  > \text{parse letterA} \ "Asdf"
  > ['A','sdf']
  > \text{parse letterA} \ "asdf"
  > []
  > \text{parse letterA} \ "1234"
  > []

General criteria for input

- More generally, we can define \text{literal} as a special case of a parser that takes a predicate for an acceptable piece of input

\[
\text{satisfy} :: (\text{a} \rightarrow \text{Bool}) \rightarrow \text{Parser} \text{ a} \rightarrow \text{a}
\]
\[
\text{satisfy} f = \text{Parser} \ (\text{\textbackslash inp} \rightarrow \text{case inp of} \ (x:xs) \mid f \ x \rightarrow [(x,xs)] \\
\text{\textbackslash inp} \rightarrow [])
\]

\[
\text{literal} :: \text{Eq a} \Rightarrow \text{a} \rightarrow \text{Parser} \text{ a} \rightarrow \text{a}
\]
\[
\text{literal} \ s = \text{satisfy} \ (== s)
\]
• For example:

```haskell
> import Data.Char
> :t isUpper
 isUpper :: Char -> Bool
> let upperLetter = satisfy isUpper
> :t upperLetter
 upperLetter :: Parser Char Char
> parse upperLetter "ASDF"
 [('A','SDF')]
> parse upperLetter "asdf"
 []
```

**Need more useful results**

With `satisfy` and `literal`, the result of a parser is just one piece of its input

• But usually we think of a parser as transforming its input in some way

• We can transform the result by applying a function

```
input
 p
 result
 f
 transformed result
 remaining input
```

• We want to take this combination itself as one of our composable parsers

**The transformer**

```
infixl 6 'using'
 using :: Parser inp res -> (res -> res') -> Parser inp res'
 (Parser p) 'using' f
 = Parser (\inp -> [(f res, inp') | (res,inp') <- p inp])
```

• For example:

```haskell
> let upDown = upperLetter 'using' toLower
> :t upDown
 upDown :: Parser Char Char
> parse upDown "ASDF"
 [('a','SDF')]
> parse upDown "asdf"
 []
```

**Combining parsers — choice**

• The `alt` combinator combines two parsers as alternatives

```
infixl 4 'alt'
 alt :: Parser inp res -> Parser inp res -> Parser inp res
 p1 'alt' p2 = Parser (\input -> parse p1 input ++ parse p2 input)
```

• For example:
What should it mean to combine two parsers in sequence?
Certainly a key idea is that the second parser should operate on the input remaining from the first parser

But what do we do with two results?

Let the first result produce the next parser
The solution: use the first result to produce the second parser

- Instead of combining a Parser in out1 with a Parser in out2,
- Combine a Parser in out1 with a function of type out1 -> Parser in out2

Combining parsers — sequence

- The ‘thn’ combinator combines two parsers sequentially

```
infixr 5 'thn'

thn :: Parser inp res1 -> (res1 -> Parser inp res2)
 -> Parser inp res2

p1 'thn' fp2 = Parser \inp -> [(res2, inp’’) |
 (res1,inp’) <- parse p1 inp,
 (res2,inp’’) <- parse (fp2 res1) inp’)]
```

- For example:

```
> let parseSecondAorZ c1 = lowerAorZ 'thn' \c2 -> accept (c1,c2)
> let parseTwoAorZ = lowerAorZ 'thn' parseSecondAorZ
> :t parseTwoAorZ
parseTwoAorZ :: Parser Char (Char, Char)
```
The Kleene star

- What does it mean to apply a parser zero or more times?
  - As a result, we would expect to get a list of that parser’s result type
  - We could apply it once, and then apply it some more — that’s alt
  - Or we could do something else — that’s alt
  - The something else is nothing — which accept gives us

- Translating to Haskell:

  \[
  \text{many} :: \text{Parser} \ \text{inp} \ \text{res} \to \text{Parser} \ \text{inp} \ [\text{res}]
  \]
  \[
  \text{many} \ p = (p \ '\ \text{thn}' \ \text{\first} \to \text
  \]
  \[
  \text{many} \ p \ '\ \text{thn}' \ \text{\rest} \to \text
  \]
  \[
  \text{accept} \ (\text{first} : \text{rest})
  \]
  \[
  \text{\'alt\'} \ \text{accept} \ []
  \]

- For example:

  \[
  \text{let lowerAorZs} = \text{many lowerAorZ}
  \]
  \[
  \text{let lowerAorZs} = \text{Parser} \ \text{Char} \ [\text{Char}]
  \]
  \[
  \text{parse lowerAorZs} \ "azaz\text{sdcfv}\"
  \]
  \[
  [("azaz","sdcfv"),("aza","azsdcdfv"),("az","azsdcdfv"),
  ("a","azsdcdfv"),("","azsdcdfv")]
  \]

The Kleene plus

- We remove the option to do nothing

  \[
  \text{some} :: \text{Parser} \ \text{inp} \ \text{res} \to \text{Parser} \ \text{inp} \ [\text{res}]
  \]
  \[
  \text{some} \ p = p \ '\ \text{thn}' \ \text{\first} \to \text
  \]
  \[
  \text{many} \ p \ '\ \text{thn}' \ \text{\rest} \to \text
  \]
  \[
  \text{accept} \ (\text{first} : \text{rest})
  \]

- For example:

  \[
  \text{let lowerAorZs1} = \text{some lowerAorZ}
  \]
  \[
  \text{let lowerAorZs1} = \text{"azaz\text{sdcfv}\"}
  \]
  \[
  [("azaz","sdcfv"),("aza","azsdcdfv"),
  ("az","azsdcdfv"),("a","azsdcdfv"),("","azsdcdfv")]
  \]

Multiple results

- The multiple results let us account for the fact that we do not know what subsequent parsers may demand

  \[
  \text{let lowerAorZs} \ "azaz\text{sdcfv}\"
  \]
  \[
  [("azaz","sdcfv"),("aza","azsdcdfv"),("az","azsdcdfv"),
  ("a","azsdcdfv"),("","azsdcdfv")]
  \]
— We may demand that a single \( z \) must follow the lower\( AorZs \)

\[
\begin{align*}
> & \text{let } p2 = \text{lowerAorZs} \ '\text{thn}' \ \&xs -> \\
> & \quad \text{lowerZ} \ '\text{thn}' \ \_ -> \\
> & \quad \text{accept} \ (xs,x) \\
> & :t \ p2 \\
> & p2 :: \text{Parser Char} \ ([\text{Char}], \text{Char}) \\
> & \text{parse} \ p2 \ "azazsxdcfv" \\
> & \quad [(("aza","z"),"sxdcfv"),(("a","z"),"azsxdcfv")]
\end{align*}
\]

— Is it inefficient to produce all of these parses?

* No — *Laziness will only generate the possibilities which are necessary!*

— We may demand a single \( z \), and then a single \( s \), as followers

\[
\begin{align*}
> & \text{let } p3 = \text{lowerAorZs} \ '\text{thn}' \ \&xs -> \\
> & \quad \text{lowerZ} \ '\text{thn}' \ _ -> \\
> & \quad \text{literal} \ 's' \ '\text{thn}' \ _ -> \\
> & \quad \text{accept} \ xs \\
> & \text{parse} \ p3 \ "azazsxdcfv" \\
> & \quad ["aza","xdcfv"]
\end{align*}
\]

6 Lambda calculus

6.1 Syntax

Untyped lambda calculus

• A *calculus* is a way of writing expressions, plus a way of relating one expression to another

• The *lambda calculus* lets us discuss many programming language features in a very minimal language

• Terms \( M, N, M' \) etc.:

  — Variables \( x, x', y, z_0, z_1, \ldots \)
  — Abstractions \( \lambda x.M \)
  — Applications \( MN \)

• Use parentheses to disambiguate

  — Abstractions include as much as possible to the right: \( \lambda x.MN \) means \( \lambda x.(MN) \), not \( (\lambda x.M)N \)
  — Function application is left-associative: \( LMN \) means \( (LM)N \), not \( L(MN) \)

**Exercise 6.1.** Remove all possible parentheses from these expressions so as not to change the interpretation of each.

1. \( ((\lambda x.((\lambda y.((x)y))))((\lambda z.(z)))) \)
2. \( (xy)(xz) \)
3. \( (\lambda x.((\lambda y.((\lambda z.(z))))y) \)
4. \( (\lambda z.((\lambda u.((x)y))))((\lambda u.\ u) \)

Answers to the first two items are on p. [121](#)
Exercise 6.2. Which of the following expressions are the same as \((\lambda x.\lambda y.z\ x\ z\ w)\) \(z\ w\)?

- \(\lambda x.\lambda y.z\ x\ z\ w\)
- \(((\lambda x. (\lambda y.z\ x))\ z)\ w\)
- \((\lambda x.\lambda y.\ (z\ x))\ (z\ w)\)
- \(((\lambda x.\lambda y.(z\ x))\ z)\ w\)

Exercise 6.3. Which of the following expressions are the same as \(z\ \lambda y.x\ z\ \lambda v.v\ y\)?

- \(z\ (\lambda y.\ (z\ \lambda v.v\ y)))\)
- \(z\ (\lambda y.\ (z\ \lambda v.v\ y))\ y\)
- \(z\ (\lambda y.\ (z\ \lambda v.v\ y)))\)
- \((z\ (\lambda y.x\ z))\ \lambda v.v\ y\)
- \(z\ ((\lambda y.\ (z\ \lambda v.v\ y)))\)

Exercise 6.4. Which variables occur free in the expression \((z\ (\lambda y.x\ z))\ \lambda v.v\ y\)?

- None
- \(\{v\}\)
- \(\{y\}\)
- \(\{v,\ y\}\)
- \(\{v,\ x,\ z\}\)
- \(\{x,\ y,\ z\}\)
- \(\{v,\ x,\ y,\ z\}\)

Exercise 6.5. Which variables occur bound in the expression \((z\ (\lambda y.x\ z))\ \lambda v.v\ y\)?

- None
- \(\{v\}\)
- \(\{y\}\)
- \(\{v,\ y\}\)
- \(\{v,\ x,\ z\}\)
- \(\{x,\ y,\ z\}\)
- \(\{v,\ x,\ y,\ z\}\)

Properties of terms

- Free and bound variables
  - A lambda abstraction \(\lambda x.M\) binds occurrences of \(x\) in \(M\)
  - Static scope for parameters
  - A variable with a corresponding abstraction is said to be free

- Formulas for the variables which occur free and bound in a term:

  \[
  \begin{align*}
  \text{fv}(x) &= \{x\} \\
  \text{fv}(MN) &= \text{fv}(M) \cup \text{fv}(N) \\
  \text{fv}(\lambda x.M) &= \text{fv}(M) \setminus \{x\} \\
  \text{bv}(x) &= \{\} \\
  \text{bv}(MN) &= \text{bv}(M) \cup \text{bv}(N) \\
  \text{bv}(\lambda x.M) &= \text{bv}(M) \cup \{x\}
  \end{align*}
  \]

- If \(\text{fv}(M) = \{\}\), then \(M\) is closed. Otherwise, \(M\) is open.
• **Values** represent the forms of expression which (informally) we take to be end products of a computation.
  
  – Abstractions are values
  – Applications are non-values
  – Variables are negotiable!
    
    * Sometime we take them to be values
    * Sometimes not
    * It depends on the technical details of the particular system we will consider

• **Syntactic identity** ≡

**Exercise 6.6.** Write out the sets of free variables and of bound variables for each of the following expressions.

- \((\lambda x. (\lambda y. zxy))(\lambda z. xzw)\)
- \(\lambda x. xy(xz)\)
- \((\lambda x. (\lambda y. y)(\lambda z. z))y\)

**Substitution**

A basic operation is *substituting* a term \(N\) for a variable \(x\) in some other term \(M\)

- Written \(M \left[ \frac{N}{x} \right]\)
- Specifically:

\[
\begin{align*}
x \left[ \frac{N}{x} \right] & \equiv N \\
x \left[ \frac{N}{y} \right] & \equiv x & (x \neq y) \\
(LM) \left[ \frac{N}{x} \right] & = (L \left[ \frac{N}{x} \right])(M \left[ \frac{N}{x} \right]) \\
(\lambda x. M) \left[ \frac{N}{x} \right] & = \lambda x. M \\
(\lambda x. M) \left[ \frac{N}{y} \right] & = \lambda x. (M \left[ \frac{N}{y} \right]) & (x \notin \text{fv}(N)) \\
(\lambda x. M) \left[ \frac{N}{y} \right] & = \lambda z. (M \left[ \frac{z}{x} \frac{N}{y} \right]) & (x \in \text{fv}(N), z \notin M, N)
\end{align*}
\]

**Exercise 6.7.** Simplify each of the following expressions, writing them as plain lambda terms without substitutions.

- \((\lambda x. (\lambda y. zxy))(\lambda z. xzw)) \left[ \frac{\lambda k.kk}{x} \right]\)
- \((\lambda x. (\lambda y. zxy))((\lambda z. xzw)) \left[ \frac{\lambda k.kk}{x} \right]\)
- \((\lambda x. xy(xz)) \left[ \frac{\lambda x.zx}{y} \right]\)
Exercise 6.8. [Barendregt, Sec. 2.2] In combinatory logic one considers a small number of closed terms rather than general lambda expressions. One common system uses three terms, $\text{I} \equiv \lambda x.x$, $\text{S} \equiv \lambda x.\lambda y.\lambda z.x(z(yz))$, $\text{K} \equiv \lambda x.\lambda y.x$. Show that

- $\text{I} = \text{S} \text{K} \text{K}$
- $\lambda x.M = \text{K} M$ if $x \not\in \text{fv}(M)$
- $\lambda x.M N = \text{S}(\lambda x.M)(\lambda y.N)$

What are the normal forms of these terms:

- $(\lambda y.\text{yy})(\lambda a.\lambda b.a)(\text{I}(\text{S} \text{S}))$
- $\text{S} \text{S} \text{S} \text{S} \text{S} \text{S} \text{S}$

6.2 Reduction

Relating terms by reduction

Three reduction rules:

$$(\alpha) \quad \lambda x.M \rightarrow \lambda y.M[y/x] \quad \text{if } x \not\equiv y, y \not\in \text{fv}(M)$$

$$(\beta) \quad (\lambda x.M)N \rightarrow M[N/x]$$

$$(\eta) \quad \lambda x.Mx \rightarrow M \quad \text{if } x \not\in \text{fv}(M)$$

- In modern presentations of the lambda calculus for computer science, we do not consider $\alpha$ reduction to be "interesting" computational work
  - So when we write a term, we mean to denote the equivalence class of terms modulo $\alpha$ reduction
- Barendregt’s hygiene condition
- A term with no redexes is said to be in normal form
  - Can also discuss $\beta$-normal or $\eta$-normal form
- From reduction to equality

Exercise 6.9. Identify all of the redexes in the following terms.

- $(\lambda x.\lambda y.x)(\lambda y.(\lambda z.wz)y)$
- $z(\lambda z.(\lambda x.x)(\lambda y.zxy))$

Exercise 6.10. Which of the following is equivalent (modulo $\alpha$) to $(\lambda z.\lambda y.x y z) \frac{(\lambda y.y) z}{x}$?

- $\lambda z.\lambda y.x y z$
- $\lambda u.\lambda y.z y u$
- $\lambda z.\lambda y.(\lambda y.y) z y z$
- $\lambda z.\lambda y.(\lambda y.y) z y z$
- $\lambda u.\lambda y.(\lambda y.y) z y u$
Exercise 6.11. Which of the following is equivalent (modulo $\alpha$) to \((\lambda z. z)(\lambda y. \lambda z. x y z)\)?

- \((\lambda z.z) (\lambda y. \lambda z. (\lambda x. x) y z)\)
- \((\lambda z.z) (\lambda y. \lambda z. x y z)\)
- \((\lambda y. \lambda z. y z)\)
- \((\lambda y. \lambda z. z y (\lambda x.x)) (\lambda z.z)\)

Exercise 6.12. Which of the following terms are in $\beta$-normal form?

- \(x (\lambda y.y)\)
- \((\lambda y.y) x\)
- \((\lambda y.y)(\lambda x.x)\)

Exercise 6.13. For which of the terms $N$ below is it true that \((\lambda x.x x)((\lambda y.y) w)((\lambda z.w z)(\lambda y.y)) \rightarrow^2 N\)?

- \(((\lambda z.w z)(\lambda y.y))((\lambda y.y) w)(\lambda x.x x)\)
- \((\lambda x.x x)((\lambda y.y) w)((\lambda z.w z)(\lambda y.y))\)
- \((\lambda x.x x)w(w (\lambda y.y))\)
- \(w w w(\lambda y.y)\)
- \(w w w\)

Exercise 6.14. Apply the hygene condition to each of the expressions in Exercises \[6.6 \ 6.7 \ 6.9\]

Exercise 6.15. Reduce each of the expressions in Exercises \[6.7 \ 6.9\]

- To $\beta$ normal form
- To $\eta$ normal form
- To $\beta, \eta$ normal form
- To each of the possible ways of contracting one single redex in each term

Properties of reduction

Uniqueness of normal forms

- If $M \rightarrow M_1$, $M \rightarrow M_2$, and both $M_1$ and $M_2$ are normal forms
  - Then $M_1 \equiv M_2$ (modulo $\alpha$)
- However, it is not guaranteed that every term will have a normal form!

Confluence (aka the Church-Rosser property, aka the diamond property)

- If $M \rightarrow M_1$ and $M \rightarrow M_2$
  - Then there is some $N$ such that both $M_1 \rightarrow N$ and $M_2 \rightarrow N$

Church encodings

- Booleans
true \equiv \lambda m.\lambda n.m
false \equiv \lambda m.\lambda n.n
if \equiv \lambda p.\lambda m.\lambda n.pmn

• Pairs
mkpair \equiv \lambda x.\lambda y.\lambda f.fxy
fst \equiv \lambda x.\lambda y.x
snd \equiv \lambda x.\lambda y.y

• Numbers
0 \equiv \lambda f.\lambda x.x
1 \equiv \lambda f.\lambda x.fx
2 \equiv \lambda f.\lambda x.f(fx)
3 \equiv \lambda f.\lambda x.f(f(fx)) \text{ and so on}
isZero \equiv \lambda n.\lambda (x.\text{false})\text{true}
succ \equiv \lambda n.\lambda f.\lambda x.f(nfx)
plus \equiv \lambda n_1.\lambda n_2.\lambda f.\lambda x.n_1(f(n_2f)x)
times \equiv \lambda n_1.\lambda n_2.\lambda f.\lambda x.n_1(n_2f)x

- Subtraction, division more complicated but possible
- Then negative numbers, rationals, reals, etc.

Exercise 6.16. Define a closed lambda term and so that
• and true true \rightarrow_\beta \text{true}
• and true false \rightarrow_\beta \text{false}
and so on. Write out the details of each of the four relationships.
Do the same for or, not and xor.

Exercise 6.17. Define a partial signum operator, which returns 0 for 0, and 1 for any positive number.

Exercise 6.18. Write out the step-by-step details of the following reductions:
• fst (mkpair 2 3) \rightarrow_\beta 2
• snd (fst (mkpair (mkpair 3 4) false))) \rightarrow_\beta 4
• succ 4 \rightarrow_\beta 5
• succ (succ 2) \rightarrow_\beta 4
• plus (plus 2 3) 1 \rightarrow_\beta 6
• iszero 0 \rightarrow_\beta \text{true}
• iszero (succ 1) \rightarrow_\beta \text{false}
• times 2 (plus 1 2) \rightarrow_\beta 6

Exercise 6.19. Define the following functions. Write out reduction sequences to show that each is defined correctly on 1, 2 and 4.
• factorial
• sumOneUp x = \sum_{i=1}^{x} i
Delta reduction

- The Church encodings show how to represent various concepts as plain lambda expressions
  - It’s interesting that it’s possible
  - In fact, every computable function can be represented in \(\lambda\)
- But we can also extend the language of terms
  - Extend lambda terms to include various other symbols
  - Specify a function \(\delta\) mapping strings of these symbols to one symbol
  - Then \(\delta\) reduction rewrites applications across a string:
    * If \(\delta(s_1 \cdots s_n) = s_0\)
    * Then \((\cdots ((s_1 s_2) s_3) \cdots) s_n \rightarrow_{\delta} s_0\)

6.3 Parameter-passing disciplines

Two parameter-passing mechanisms

- Call-by-value has a simple explanation in the stack-frame model
- Call-by-name. . . not so much

So we will use the \(\lambda\) calculus to build a simple (but rigorous!) comparison of the two

- Distinguish them by the answer to the question
  - How do we pick the next \(\beta\)-redex?
- Here we specifically mean \(\beta\)-redexes — we are interested in runtime computation

Picking the next redex

We have already seen some aspect of a strategy for picking a redex

Consider \((\lambda x.x)(\lambda y. (\lambda z. z) y)(\lambda m. \lambda n. n m m)\)

- At the top level, this is an application
  - \((\lambda x.x)(\lambda y. (\lambda z. z) y)\) on the left side
  - \((\lambda m. \lambda n. n m m)\) on the right side
- This whole term is not itself a \(\beta\)-redex
  - We would need an abstraction on the left
  - There is work to do on the left side before it becomes an abstraction
  - So in this situation we have usually looked for our first redex on the left side

A first rule for finding the next redex

- When looking for a redex with an abstraction
  - If the term on the left is not an abstraction
  - Then look for the next redex on the left

So then what?

If there is an abstraction on the left, do we then reduce the application?

Maybe.

- If call-by-value, no — in call-by-value languages, we expect a value for an actual parameter
- If call-by-name, yes — we are happy to use unevaluated expressions as actual parameters
Call-by-name and call-by-value in words

Can we do better than an informal English description??

Call-by-name

- If a term is an abstraction, we have a value
- If a term is a variable, we are stuck
- If a term is an application of an abstraction, reduce this term
- If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Call-by-value

- If a term is an abstraction, we have a value
- If a term is a variable, we are stuck
- If a term is an application of an abstraction to a value, reduce this term
- If a term is an application of an abstraction to a non-value, look for the next redex on the right side of the application
- If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Contexts

A context is just a term with a hole

\[ C ::= [] | M C | C M | \lambda x. C \]

We can break up any term into a context, plus the expression in its hole

For example, \((\lambda x.x)(\lambda y. (\lambda z.z) y)(\lambda m.\lambda n.n m m)\) is

- The context \([\ ] (\lambda m.\lambda n.n m m)\)
- With \((\lambda x.x)(\lambda y. (\lambda z.z) y)\)

It is also

- The context \((\lambda x.x)[\ ] (\lambda m.\lambda n.n m m)\)
- With \(\lambda y. (\lambda z.z) y\)

But we are mostly interesting in seeing a \(\beta\)-redex in the hole!

We can describe \(\beta\) reduction in any position as:

\[ C[M] \rightarrow C[N] \quad \text{if} \quad M \rightarrow N \]

Using contexts to describe finding the next redex

We describe the position of the next redex by giving a subset of contexts, called evaluation contexts

- One grammar for call-by-name, one for call-by-value

Call-by-name informally

- If a term is an abstraction, we have a value
- If a term is a variable, we are stuck
- If a term is an application of an abstraction, reduce this term
• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

**Call-by-name evaluation contexts**
\[ E ::= [] | E \cdot M \]

**Call-by-value informally**
• If a term is an abstraction, we have a value
• If a term is a variable, we are stuck
• If a term is an application of an abstraction to a value, reduce this term
• If a term is an application of an abstraction to a non-value, look for the next redex on the right side of the application
• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

**Call-by-value evaluation contexts**
\[ E ::= [] | E \cdot M | (\lambda x. M) \cdot E \]

Also for call-by-value
Restrict \( \beta \) reduction to value arguments
\[
(\beta_V) \quad (\lambda x. M)V \rightarrow M \left[ \frac{V}{x} \right]
\]

### 6.4 Simply-typed \( \lambda \)

**Simply-typed lambda calculus**

• Environments and judgments
  – An *environment* is a set of assumptions about how free variables are typed
    * For example: \( x: \text{Int}, f: \text{Int} \rightarrow \text{Int} \)
    * Use upper-case Greek letters for environments: \( \Gamma \)
    * Also called *contexts*
  – A *judgment* is a statement that we have proven an expression to be of a particular type
    * Environment \( \vdash \) term : type

• Simply-typed lambda calculus (with integers)

\[
\begin{align*}
\text{Var} & \quad \Gamma, x : A \vdash x : A \\
\text{Const} & \quad \Gamma \vdash \text{Int} \vdash \text{Int} \vdash \text{Int} \\
\text{Abstr} & \quad \Gamma, x : A \vdash M : B \\
\text{Apply} & \quad \Gamma \vdash M : A \rightarrow B, \quad \Gamma \vdash N : A \\
\end{align*}
\]

• Important properties
  – *Progress:* If \( \Gamma \vdash M : A \), then either \( M \rightarrow N \), or \( M \) is a value
  – *Preservation:* If \( \Gamma \vdash M : A \), and \( M \rightarrow N \), then \( \Gamma \vdash N : A \)
  – *Normalizing:* If \( \Gamma \vdash M : A \), then \( M \) reduces to a normal form in a finite number of steps

81
Exercise 6.20. For each of the closed terms in Exercises 6.1 through 6.9, determine which are simply-typable (and their types), and which are not. For each of the open terms, which are simply-typable under a suitable environment? In both, write out the typing trees (and environments) for each which is typable; explain why not for the ones which are not.

Exercise 6.21. Identify which of the typing proofs below are incorrect, and explain their flaw(s)

\[
\begin{align*}
\text{VAR} : & x : A \rightarrow A, y : B \vdash x : A \rightarrow A \\
\text{абст} : & \vdash \lambda x.x : (A \rightarrow A) \rightarrow A \rightarrow A \\
\text{пред} : & \vdash (\lambda x.x)(\lambda y.y) : A \rightarrow A \\
\text{VAR} : & y : A \vdash y : A \\
\text{абст} : & \vdash \lambda y.y : A \rightarrow A \\
\end{align*}
\]

\[
\begin{align*}
\text{VAR} : & z : A, x : A, y : \text{Int} \vdash x : A \\
\text{абст} : & \vdash z : A, x : A \vdash \lambda y.x : \text{Int} \rightarrow A \\
\text{пред} : & \vdash z : A \vdash (\lambda x.\lambda y.x) z : \text{Int} \rightarrow A \\
\text{пред} : & \vdash z : A \vdash (\lambda x.\lambda y.x) z 57 : A & \text{конст} : & \vdash z : A \vdash 57 : \text{Int} \\
\text{пред} : & \vdash z : A \vdash \lambda x.\lambda y.x \vdash z : A \vdash (\lambda x.\lambda y.x) z 57 : A \\
\text{пред} : & \vdash z : A \vdash (\lambda x.\lambda y.x) z 57 : A \\
\end{align*}
\]

\[
\begin{align*}
\text{VAR} : & f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash f \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
\text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash \lambda x.\lambda y.x : \text{Int} \rightarrow A \\
\text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash \lambda x.\lambda y.x \vdash f : \text{Int} \rightarrow A \\
\text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash 1 : \text{Int} & \text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash 1 : \text{Int} \\
\text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash f 1 : \text{Int} \\
\text{пред} : & \vdash f : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \vdash f 1 : \text{Int} \\
\end{align*}
\]

Pair and sum types

- Pairs

\[
\begin{align*}
\times_1 & \Gamma \vdash M : A \\
\times_2 & \Gamma \vdash N : B \\
\times_1 & \Gamma \vdash (M, N) : A \times B \\
\times_2 & \\
\text{пред} & \Gamma \vdash \text{fst} M : A \\
\text{пред} & \Gamma \vdash \text{snd} M : B \\
\text{пред} & \Gamma \vdash \text{fst}(M, N) : A \\
\text{пред} & \Gamma \vdash \text{snd}(M, N) : B \\
\end{align*}
\]

- Sums

\[
\begin{align*}
\text{пред} & \Gamma \vdash L : A + B \\
\text{пред} & \Gamma, x : A \vdash M : C \\
\text{пред} & \Gamma, y : B \vdash N : C \\
\text{пред} & \Gamma \vdash \text{case} \left( \text{left} M | \text{right} N : C \right) \\
\end{align*}
\]

\[
\begin{align*}
\text{пред} & \Gamma \vdash M \left[ \frac{L}{x} \right] \\
\text{пред} & \Gamma \vdash N \left[ \frac{L}{y} \right] \\
\end{align*}
\]

Exercise 6.22. What are appropriate reduction rules for expressions with \( \times \) and \( + \) types?
6.5 Polymorphism in lambda calculi

A simple version of polymorphism

• Extend types: could also be a type variable \( \alpha \), or a quantification \( \forall \alpha. T \)

• Rules:

\[
\forall \Gamma \vdash M : A \\
\Gamma \vdash M : \forall \alpha.A \text{ if } \alpha \not\in \text{fv}(\Gamma)
\]

\[
\forall E \Gamma \vdash M : \forall \alpha.A \\
\Gamma \vdash M : A [T]\text{ for any type } T
\]

• More polymorphism than practical
  – Most languages restrict where type variables can be abstracted
  – In Java/Scala, at class/method declarations

Exercise 6.23. Work out closed polymorphic types for each of the Church-encoded terms above. There may be several possible types for each, with quantifiers placed in different positions. Give types with:

• The quantifiers placed as deeply within the type as possible

• All quantifiers to the far outer left of the type

7 Object-oriented programming and Scala

7.1 Subclasses and what they unlock

Extending classes

You have probably been writing subclasses since your first course in Java

```scala
class A {
 def f(x:Int):Int = x+10
 // ...other definitions...
}
class B extends A {
 override def f(x:Int):Int = 2
 def g(s:String) = f(s.length())
}
```

• The subclass is a foundational aspect of object-oriented programming
  – Class B "inherits everything" from class A except for having its own recipe for method \( f \)
  – Class B has a method \( g \) not present in class A

• Adding this mechanism to a language opens up many interesting semantic questions
  – As usual, not every language makes the same decisions as Java
First questions

class A { // 1
    def f(x:Int):Int = x+10 // 2
    // ...other definitions... // 3
}
class B extends A { // 5
    override def f(x:Int):Int = 2 // 6
    def g(s:String) = f(s.length()) // 7
}

What do these lines print?

val b:B = new B()
println(b.f(5))

• No particular surprise: 2

What about these lines?

val a:A = new B()
println(a.f(5))

• For a few minutes, we’ll ignore the question of why it’s OK create a B and assign it to a storage location declared to hold an A
• If we’re working with Java or Scala, then the output is the same: 2
• But again we have found a feature which is a decision made by the language designer, and which differs in other languages

Dispatch

• The association of a method call with code to be run is called dispatch
• What determines how we dispatch the call to a.f(5) ?

class A {
    def f(x:Int):Int = x+10
    // ...other definitions...
}
class B extends A {
    override def f(x:Int):Int = 2
    def g(s:String) = f(s.length())
}

object AB {
    def main(args:Array[String]):Unit = {
        val a:A = new B()
        println(a.f(5))
    }
}

• Java and Scala use dynamic dispatch
    – The instantiated type B determines the dispatched method
– The type of the storage location for a subsequent assignment or method call does not matter
– The type at instantiation determines the dispatch of all method calls

• Some other languages, notably C++ by default, use static dispatch
  – The declared type A determines the dispatched method
  – The actual type of the object itself is not consulted
  – This dispatch is determined at compile-time
    • Whereas the instantiation type of objects is a runtime property

Subtypes

Subtyping is another key idea in object-oriented languages

If A is a subtype of B, then we should be able to use an instance of A in any context which calls for a B

• Might seem to be contrary to the idea of static typing, since one type can be provided where a different type is called for
  – But in fact, static typing is absolutely possible with subtyping — Java has used it for years!
• So with classes A and B, it is the principle of subtyping which justifies allowing the assignment

val a:A = new B()

– Since any operation which might be demanded of an A can be provided by a B
– It does not matter that the implementation of the methods in B may be different
– It does not matter that there may be additional methods in B, since if a context expects an A it would never invoke them

• This relationship is not symmetric:

scala> val b:B = new A()
<console>:9: error: type mismatch; found : A
    required: B
    val b:B = new A()

Subtypes and subclasses

Subtypes and subclasses are not the same idea!

• It is true that if A is a subclass of B (which we write A <: B), then A is a subtype of B
• But there are also other ways to judge that one type should be taken as a subtype of another
  – In particular, there are interesting interactions between generics and subtyping, and between function types and subtyping
  – Will look in more detail at this relationship in the next few lectures
7.2 Function values

Like Haskell, Scala has anonymous functions
Functions are first-class values in Scala as well as in Haskell

In the Scala interpreter:

```scala
scala> val f = { (x:Int) => x+10 }
f: Int => Int = <function1>

scala> f(3)
res0: Int = 13
```

- Syntax for an anonymous function: `{ (x:Int) => x+10 }
  - The curly braces are optional, but make it much clearer

- We can bind functions to names, and call them
  - The parentheses are not optional: it’s f(3), not f 3

- There are function types
  - f has type Int => Int
  - Unlike Java, there actually is a separate function type!
  - Not an abbreviation for a single-member interface

- Functions are not printable, so instead it prints <function1>

7.3 Generic patterns involving multiple classes

Multiclass genericity

```
toLeft
toRight
```

Defining related generic classes

```java
public interface LeftSide< A extends LeftSide<A,B>,
 B extends RightSide<A,B> > {
 public B toRight();
}

public interface RightSide< A extends LeftSide<A,B>,
 B extends RightSide<A,B> > {
 public A toLeft();
}

public class MyLeft implements LeftSide<MyLeft, MyRight> {
 public MyLeft(int leftVal) { this.leftVal = leftVal; }
 private int leftVal;
 public MyRight toRight() {
 return new MyRight(Integer.toString(leftVal));
 }
}
```
public class MyRight implements RightSide<MyLeft, MyRight> {
    public MyRight(String rightVal) { this.rightVal = rightVal; }
    private String rightVal;
    public MyLeft toLeft() { return new MyLeft(rightVal.length()); }
}

7.4 Type variables and members
7.4.1 Scala generics and variance

Generics
Scala’s system for generic types (that is, parametric polymorphism) resembles Java in simpler cases

class Buffer[X](private var contents:X) {
    def get():X = contents
    def set(x:X):Unit = {
        contents = x
    }
}

Generics and methods
Individual methods can also be generic

class GenMethod {
    def stringLen[A](a:A):Int = a.toString().length()
}

• Note order of parameter lists
• Straightforward for resolving scoping of variables

class ElementGrabber {
    def firstOf[A](z:List[A]):A = z match {
        case (x :: xs) => x
        case _ => throw new RuntimeException("Empty")
    }
}

Generics and subtyping

class G[X] {
}

• If B is a subtype of A, then is:
  – G[B] a subtype of G[A]?
  – G[A] a subtype of G[B]?
  – Or neither?
• By default there’s no relation
Covariant subtyping

We can declare a covariant relationship between G and its type argument

class G[+X] {
}

• Then G[B] is a subtype of G[A]

scala> val gA : G[A] = new G[B]()
gA: G[A] = G@327514f
scala> val gB : G[B] = new G[A]()
<console>:10: error: type mismatch;
    found   : G[B]
    required: G[A]

Contravariant subtyping

The opposite relationship is contravariant subtyping

class G[-X] {
}

• Then G[A] is a subtype of G[B]

scala> val gB : G[B] = new G[A]()
gB: G[B] = G@3e6ef8ad
scala> val gA : G[A] = new G[B]()
<console>:10: error: type mismatch;
    found   : G[B]
    required: G[A]

Another use of covariance: method result types

• Overriding g is allowed because of covariance for method result types

class Cov1 {
    def g():A = new A()
}
class Cov2 extends Cov1 {
    override def g():B = new B()
}

• Why is this allowed?
  – Consider any use of the result of a call to g on a Cov1
val c:Cov1 = getMeACov1(...)
val a:A = c.g()

- Any B instance can be assigned to a, since B is a subtype of A
- So if g were actually to return a B, the assignment is still valid
- So an override such as Cov2's is always OK
- (This works in Java, too)

**Covariance and contravariance apply to function types too**

- Another background class

```scala
class E() {

}
```

- Think about function types

```scala
scala> val fEA: E => A = { x:E => new A() }
fEA: E => A = <function1>
scala> val fEB : E => B = { x:E => new B() }
fEB: E => B = <function1>
```

- What is the relationship between E => A and E => B?

  - E => B is a subtype of E => A
    ```scala
 scala> val fE : E => A = fEB
 fE: E => A = <function1>

 - So the function type is covariant in the result type

- But is there a relationship between A => E and B => E?

How can contravariance be a thing?

- Again two functions

```scala
scala> val fAE : A => E = { x:A => new E() }
fAE: A => E = <function1>
scala> val fBE : B => E = { x:B => new E() }
fBE: B => E = <function1>
```

- What is their relationship?

- Not covariant — A => E is not a subtype of B => E

  ```scala
  scala> val gE : A => E = fBE
  <console>:11: error: type mismatch;
  found   : B => E
  required: A => E
  
  But it is contravariant in the argument position —
  ```scala
 scala> val gE : B => E = fAE
gE: B => E = <function1>

- Why is this right?

 - If a value x can be supplied for a type A, it must be able to do everything we expect of an A
 - If we know that it can’t do certain of those things, than it’s not acceptable at that type
 - If we can say this is systematically of all elements of another type B, then B must not be a subtype of A.

89
Capabilities example

class A() {
}
class B() extends A() {
}
class C() extends A() {
}
class E() {
}

- A function of type \(A \Rightarrow E \) should be able to take an argument of type \(A \), \(B \) or \(C \)
 - If we assert this typing, then we are committed to this capability
 - If we provide a function of type \(B \Rightarrow E \), then we fall short of this commitment

- A function of type \(B \Rightarrow E \) should be able to take an argument of type \(B \)
 - But not necessarily an argument of type \(A \) or \(C \)
 - A function of type \(A \Rightarrow E \) delivers on the commitment made by an assertion of the type \(B \Rightarrow E \)
 - So \(A \Rightarrow E \) is a subtype of \(B \Rightarrow E \), even though (because!) \(B \) is a subtype of \(A \)

A sample class

- \(A \) and \(B \) as last time

 class A {
 }
 class B extends A {
 }

- \(G \) with a method that uses its type variable

 class G[T](maker: Int=>T) {
 def mthd(x: Int): T = maker(x)
 }

- What variance can we imagine for \(T \)?

Does covariance make sense?

For a value \(g \) of type \(G[A] \), could we provide something of type \(G[B] \)?

- The context might call \(g.mthd(i) \), and expect to get a value of type \(A \)
- That call on an object of type \(G[B] \) would return a \(B \)
- But \(B \) is a subtype of \(A \), so it’s OK
 - That’s also written \(B < : A \)
- So it’s reasonable to consider \(G[B] \) a subtype of \(G[A] \)
- And we could declare

 class G[+T](maker: Int=>T) {
 def mthd(x: Int): T = maker(x)
 }
A sample class

- A and B as yesterday

```scala
class A { }
class B extends A { }
```

- G with a method that uses its type variable

```scala
class G[T](maker: Int=>T) {
  def mthd(x: Int): T = maker(x)
}
```

- What variance can we imagine for T?

Does contravariance make sense?

For a value g of type G[B], could we provide something of type G[A]?

- The context might call g.mthd(i), and expect to get a value of type B
- That call on an object of type G[A] would return a A
- A is not a subtype of B, so that’s a type mismatch
- So it’s not reasonable to consider G[A] a subtype of G[B]

Another sample class

```scala
class A { }
class B extends A { }

class H[T]() {
  def mthd(x: T) = 99
}
```

- What variance can we imagine for T?

Does covariance make sense?

For a value h of type H[A], could we provide something of type H[B]?

- The context might call h.mthd(new A())
- mthd on an object of type H[B] would require an argument of type B
- But new A() cannot be used where a B is required, because A is not a subtype of B — it’s the other way around
 - So that’s a type mismatch
- So it’s not reasonable to consider H[B] a subtype of H[A]
Another sample class

class A { }
class B extends A { }

class H[T]() {
 def mthd(x: T) = 99
}

• What variance can we imagine for T?

Does contravariance make sense?
For a value g of type H[B], could we provide something of type H[A]?

• The context might call h.mthd(new B())
• mthd on an object of type H[A] would require an argument of type A
• new B() can be used where type A is required, because B <: A
• So it’s reasonable to consider H[A] a subtype of H[B], and we could declare

class H[-T]() {
 def mthd(x: T) = 99
}

Limits on using variance declarations

• The use of [+T] and [-T] variance declarations is limited by how T is used in the class
• Scala tracks which type variables are used in covariant positions, and which are used in contravariant positions
• We are never required to use a variance declaration
 – But we are forbidden from making a declaration opposite to actual usage
 – Which means that in some cases, we can make neither a covariant nor a contravariant declaration

7.4.2 Type members

Type members

• We have seen that traits and classes may have both methods and fields as members of the class
• Scala also allows types to be members of a trait or class
 – In a (concrete) class, type members are essentially abbreviations
 class Doubler {
 type IntPair = (Int, Int)
 def doubler(x: Int): IntPair = (x, 2*x)
 }
 – But in a trait or abstract class, type members are much more interesting!
Abstract type members
Like methods and fields, type members can be abstract

```scala
trait Encoder {
  type Holder
  var contents: Holder
  def encode(s: String): Holder
  def decode(h: Holder): String

  final def hold(s: String): Unit = { contents = encode(s) }
  final def give(): String = { decode(contents) }
}
```

Then different concrete classes can provide different concrete types

```scala
class Enc1 extends Encoder {
  type Holder = Int
  override var contents: Int = 1
  override def encode(s: String): Int = s.length()
  override def decode(h: Int): String = "Z" * h
}

class Enc2 extends Encoder {
  type Holder = Char
  override var contents: Char = 'z'
  override def encode(s: String): Char = s.length() match {
    case 0 => 'z'
    case _ => s.charAt(0)
  }
  override def decode(h: Char): String = h.toString * 3
}
```

Universal vs. existential
What is the difference between a type parameter and a type member?

- A type parameter is a universal construction

  ```scala
  trait Tiny[A] {
    def getOne(): A
  }
  ```

 - We can provide any type to Tiny
 - In a real sense, Tiny is not itself a type, but a mapping from one type to another

- A type member is an existential construction

 - The programmer instantiating a class extending Encoder does not necessarily get to choose the type for Holder
 - However, such a type must exist
 - Useful in traits in frameworks for implementations, organizing common structure
7.4.3 Higher-kindled type variables

Higher kinds
In Scala, what does `List` mean?

- `List[Int]` and `List[String]` and `List[List[(Boolean,(Int)=>String)]]` are types
- But `List`, by itself and without a type argument, cannot be used in the usual ways for a type:

```
def f(x: List): Unit = { }
```

does not compile

- The type constructor `List` is *higher-kindled*
 - A sort of map from one type to another
 - There are many such types in the standard Scala libraries: `Option`, `Set`, `Queue`
 - They can also take two arguments (`Map`) or more

Higher-kindled type variables
We are used to seeing type variables, and including them in subroutine signatures, in (at least) Java, Haskell and Scala

- Scala also allows type variables to represent higher-kindled entities

```
def f[X[_], A](u: A, g: (A)=>X[A]): X[A] = g(u)
```

- Then we can apply `f`

```
f[List,Int](30, { (x: Int) => x :: Nil })
```

 - In fact the type arguments to `f` are optional, since Scala can infer them

```
f(30, { (x: Int) => x :: Nil })
```

Higher-kindled type variables in the standard libraries
Higher-kindled type variables are used in Scala's standard libraries for conversion between different collection classes

- All collections in the libraries have a method `to` for converting them into a different collection type
- `to` takes a single higher-kindled type parameter, the constructor of the collection type to be created

```
val xs: Set[String] = ...
val zs = xs.to[List]
```

- Implemented with an implicit argument
 - Passes a builder for the particular collection types
 - The standard imports include builders for all of the standard collections
7.4.4 Dependent types and the lambda cube

Assigning fields
This code is not controversial

```scala
trait WithAnInt {
  var contents: Int
  // ...
}

def fieldCopier(WithAnInt w1, 
              WithAnInt w2) = {
  // ...
  w1.contents = w2.contents
  // ...
}
```

Assigning fields again
But what if we tried that with our `Encoder` class?

```scala
trait Encoder {
  type Holder
  var contents: Holder
  def encode(s: String): Holder
  def decode(h: Holder): String

  final def hold(s:String):Unit = { contents = encode(s) }
  final def give():String = { decode(contents) }
}
class Enc1 extends Encoder {
  type Holder = Int
  override var contents: Int = 1
  override def encode(s: String): Int = s.length()
  override def decode(h: Int): String = "Z" * h
}
class Enc2 extends Encoder {
  type Holder = Char
  override var contents: Char = 'z'
  override def encode(s: String): Char = s.length() match {
    case 0 => 'z'
    case _ => s.charAt(0)
  }
  override def decode(h: Char): String = h.toString * 3
}
```

A similar use as the previous slide

```scala
def fieldCopier(e1:Encoder, e2:Encoder) = {
  // ...
  e1.contents = e2.contents
  // ...
}
```

This call might be OK
val encA:Encoder = new Enc1
val encB:Encoder = new Enc1
encA.encode("puppies")
fieldCopier(encA, encB)

This call is definitely not OK
val encA:Encoder = new Enc1
val encB:Encoder = new Enc2
encA.encode("puppies")
fieldCopier(encA, encB)

How do we tell the difference?

What type does the observer see?

trait Encoder {
 type Holder
 var contents: Holder
 def encode(s: String): Holder
 def decode(h: Holder): String

 final def hold(s:String):Unit = { contents = encode(s) }
 final def give():String = { decode(contents) }
}

class Enc1 extends Encoder {
 type Holder = Int
 override var contents: Int = 1
 override def encode(s: String): Int = s.length()
 override def decode(h: Int): String = "Z" * h
}

class Enc2 extends Encoder {
 type Holder = Char
 override var contents: Char = 'z'
 override def encode(s: String): Char = s.length() match {
 case 0 => 'z'
 case _ => s.charAt(0)
 }
 override def decode(h: Char): String = h.toString * 3
}

When we use an Encoder
val e1:Encoder = // ...
val e1Contents = e1.contents

What type do we have for e1Contents?
val e1:Encoder = // ...
val e1Contents = e1.contents
val e2:Encoder = // ...
val e2Contents = e2.contents

What is the relationship between the types of e1Contents and e2Contents?
Exporting the field from the object

trait Encoder {
 type Holder
 var contents: Holder
 // ...
}

• When we introduced Encoder, we did not consider using contents outside of the methods of Encoder
• We thought of it as part of the internal implementation of Encoder
• We described the type as existential as opposed to universal
 – In implementations of existential record types, the existential type is not allowed to "escape" its container
 – This corresponds to the use in logic of the existential quantifier \exists
 – Haskell has existential type extensions, as did some of its precursors
• With an understanding of this field’s type as existential, we can reject the assignment in

 def fieldCopier(e1:Encoder, e2:Encoder) = {
 // ...
 e1.contents = e2.contents
 // ...
 }

as ill-typed
 – All we know about the type of field contents in some object implementing Encoder is that the type actually does exist
 – We cannot make the assumption that the field type is the same from instance to instance
 – So the assignment is not type-safe, and would be rejected by the Scala compiler
• But there is more going on here
 – Scala does allow references to fields like contents!
 – So what is its type, and how can Scala tell type-safe uses of the contents field from unsafe uses of the field?

Dependent types

trait Encoder {
 type Holder
 var contents: Holder
 def encode(s: String): Holder
 def decode(h: Holder): String

 final def hold(s:String):Unit = { contents = encode(s) }
 final def give():String = { decode(contents) }
}

class Enc1 extends Encoder {
 type Holder = Int
 override var contents: Int = 1
 override def encode(s: String): Int = s.length()
 override def decode(h: Int): String = "Z" * h
}
class Enc2 extends Encoder {
 type Holder = Char
 override var contents: Char = 'z'
 override def encode(s: String): Char = s.length() match {
 case 0 => 'z'
 case _ => s.charAt(0)
 }
 override def decode(h: Char): String = h.toString * 3
}

A dependent type for reading from the field

val e: Encoder = // ...
val c = e.contents

The type of c depends on the value of e, and in particular its field Holder

• And that’s all we can know!
• So that’s how we describe the type of c:

val e: Encoder = // ...
val c: e.Holder = e.contents

• The contents field can be assigned across instances only when Scala can prove that the assignment definitely is safe
 – If both instances are of type Enc1 — that is, are of the same concrete type — then the assignment would be safe
 val eA: Enc2 = new Enc2
 val eB: Enc2 = new Enc2
 // ...
 eA.contents = eB.contents

Terms, types, and dependencies
We have seen several different ways in which terms (values) and types may depend on each other in languages

• Terms depend on other terms in subroutines (functions, methods, etc.)
• Terms depend on types in polymorphic functions (generic methods)
• Types depend on other types with type constructors
• And now we see types depending on terms

7.5 Implicits
7.5.1 Implicits methods and implicit values

Implicit information
Parameter-passing has normally been an explicit action for us

• Spell out all arguments, every time we call a method
• Only the object context is implicit, sort of
But sometimes making all of the parameters explicit is a burden

• Different reference or and wrapper objects passed in every method call
• Lots of duplication of parameter lists, plumbing code
• Many parameters not used in many methods (except for plumbing)
• Global variables are one solution, but lead to brittle code

Scala’s solution: reduce boiler plate by allowing some parameters to be *implicit*

What can be defined implicitly?

• Some of the formal parameters of a method, so that the caller does not need to repeat them every time
• Certain ways to convert values of one type into another type

What provides the implicit values?

• Fields or local variables can be marked as a source of implicit formal parameters
• Methods can be marked as an implicit converter from one type to another

A bad program

```scala
object ImplicitsExample extends App {
  def echo(num:Int) = { println(num) }
  echo(true)
}
```

• Clearly bad; it’s a mismatch in any typed language

```
implicit.scala:3: error: type mismatch;
  found   : Boolean(true)
  required: Int
  echo(true)
  ^
  one error found
```

• If we are working in a context where it will often be convenient to take a boolean value as an integer, we can define an implicit method to perform this conversion for us

Methods providing implicit conversions

```scala
object ImplicitsExample extends App {
  implicit def boolToInt(b:Boolean) = if b then 1 else 0
  def echo(num:Int) = { println(num) }
  echo(true)
}
```

• Now this compiles

```
> scalac implicit.scala
> scala ImplicitsExample
 1
```
Ambiguity is a dealbreaker

object ImplicitsExample extends App {
 implicit def boolToInt(b:Boolean) = if (b) 1 else 0
 implicit def anotherBoolToInt(b:Boolean) = if (b) 10 else 0
 def echo(num:Int) = { println(num) }
 echo(true)
}

• This won’t compile because Scala can’t work out which one to use

implicit.scala:4: error: type mismatch;
 found : Boolean(true)
 required: Int
Note that implicit conversions are not applicable because
they are ambiguous: both method boolToInt in object
ImplicitsExample of type (b: Boolean)Int
and method anotherBoolToInt in object ImplicitsExample
of type (b: Boolean)Int are possible conversion functions
from Boolean(true) to Int
 echo(true)
^
one error found

Although ambiguity is only an error if it is actually relevant

object ImplicitsExample extends App {
 implicit def boolToInt(b:Boolean) = if (b) 1 else 0
 implicit def anotherBoolToInt(b:Boolean) = if (b) 10 else 0
 def echo(num:Int) = { println(num) }
 echo(4)
}

• This compiles and runs, since we never try to implicitly apply the conversion

> scalac implicit.scala
> scala ImplicitsExample
4

A more useful use case
I find WINGS can get in the way of seeing the big picture in simple cases

• So for advising, I generate paper checklists for my advisees

• Output looks like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Units earned</th>
<th>CS major</th>
<th>Math minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barney T. Dinsmore</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS major course planner — Spring 2019

<table>
<thead>
<tr>
<th>Course</th>
<th>Gen Ed. and CS major requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 110</td>
<td>GL & Msc Std, Humanities</td>
</tr>
<tr>
<td>CST 110</td>
<td>Lab sci. (1/2), Arts (1/2)</td>
</tr>
<tr>
<td>MCWS</td>
<td>Lab sci. (2/2), Arts (2/2)</td>
</tr>
<tr>
<td>World History</td>
<td>Soft & Society, Hist</td>
</tr>
</tbody>
</table>

CS major course requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 307</td>
<td>3</td>
</tr>
<tr>
<td>MTH 310</td>
<td>3</td>
</tr>
<tr>
<td>CS 320</td>
<td>3</td>
</tr>
<tr>
<td>CS 330</td>
<td>3</td>
</tr>
<tr>
<td>CS 411</td>
<td>3</td>
</tr>
<tr>
<td>CS 440</td>
<td>3</td>
</tr>
<tr>
<td>CS 441</td>
<td>3</td>
</tr>
</tbody>
</table>

CS electives — check progress on WINGS
• Model program requirements, advisee progress as small Scala programs

class CS(units:Int, num:Int, short:String,
 long:String, pre:List[Requirement])
extends Course(units, "CS", num, short, long, pre) {
 def this(units:Int, num:Int, name:String,
 preqs:Requirement*) =
 this(units, num, name, name, preqs.to[List])
 // ...
}

// --

object CS120 extends CS(4, 120, "Software Design I", MTH151)
object CS202 extends CS(3, 202, "Intro. Web Design",
 OneOf(CS120, CT100))
object CS220 extends CS(4, 220, "Software Design II", CS120)

object CSmajor2018 extends Program(
 "CS major", "CS major (general)",
 MTH207, MTH208, CS120, CS220, OneOf(CS225, MTH225),
 CS270, CS340, CS341, CS370, CS421, CS441, CS442,
 // ...
)

// --

Referring to requirements

Key classes and methods

• Person objects
 – Have their degree requirements, lists of current classes, previously passed classes
 – Method here uses those fields to generate the advising report with the progress all filled in

• Course objects

• Requirement objects
 – Sometimes a requirement one specific class
 – Sometimes it has more complicated structure
 * One out of two different classes (CS225 or MTH225)
 * Four electives from a set of choices
 – Easy enough to have different subclasses of Requirement

• Program objects collect several Requirement objects under one name
 – But when we model a program’s requirements, it would be repetitive and distracting to write something like

 object CSmajor2018 extends Program(
 "CS major", "CS major (general)",
 new SingleClassRequirement(MTH207), new SingleClassRequirement(MTH208),
 new SingleClassRequirement(CS120), new SingleClassRequirement(CS220),
 OneOf(CS225, MTH225),
 new SingleClassRequirement(CS270), new SingleClassRequirement(CS340),
 // ...
)
 * The solution — allow Course objects to be implicitly converted to Requirement objects
Implicit conversion to requirements

To allow implicit conversion, we add a method which Scala can apply to make the types work out

```scala
class Course(val units:Int, val prefix:String, val number:Int,
             val shortName:String, val longName:String,
             val prerequisites:List[Requirement])
extends Step {

  implicit def requiredCourse(course:Course):Requirement =
    new SingleClassRequirement(course)

  // ...

  • Tagged implicit
  • Part of Course, so can be found wherever a Course is used
  • The constructor for Program expects Requirement arguments
    – When it get a Course, use requiredCourse to convert

Another scenario: local configuration

How the advising handout package is deployed:

• In some repository store the model of our curriculum
  – Probably someplace public like GitHub
  * So anyone can use the basic framework
  * Since our course requirements are not secret
  – Shared by all of the CS advisors who decide to use it

• Then each advisor stores their advisees’ information locally
  – Definitely not public

The top-level class which each advisor extends is Advisees

object Portfolio extends Advisees(
  Person("255555555", "Dinosaur", "Barney T.",
       "dinosau.barne@uwlax.edu",
       List(GenEd2018, CSmajor2018, MathMinor2018),
       List(CS370, CS419ml, CS421, MTH309), // now
       List(CS120, CS202, CS220, CS225, CS270, // past
            // ...
          )
  ,
  // One Person instance per advisee
  ) {
    reportDirectory = "reports" // set a property field
  }

  • Also includes other local configuration information

  • This information needs to be passed down to the more deeply nested routines that e.g. generate the pictures
```
An implicit parameter for the set of advisees
Each checklist is written by the method writeChecklist in class Person

• Takes an implicit parameter of the Advisees configuration object

```scala
def writeHandout(doc:LaTeXdoc)(implicit advisees:Advisees)
```

• When writeHandout is called, if an implicit field or variable of the right type is in scope, then the implicit parameter can be omitted

• Called from a method on Advisees

```scala
abstract class Advisees(people:Person*) {
  implicit def cohort:Advisees = this
  var reportDirectory:String
  var photoDirectory:String

  def reports():Unit = {
    for (person <- people) {
      val doc = new LaTeXdoc(reportDirectory + "\/"
                      + getHandoutFileRoot(person))
      person.writeHandout(doc)
      doc.close()
    }
  }
}
```

• Can retrieve an implicit value from an arbitrary point in a method But the dependencies are a little less visible to the programmer this way

How are implicits communicated?
Basic rule: Implicits apply when they are visible within the static scope in which they are recalled

• They are not global

• The previous examples show that they are visible from within the same class

• They can also be imported

```scala
class ImplicitsExample2 {
  def echo(num:Int) = { println(num) }
}
object ImplicitsExample2 extends App {
  import ImplicitsExample.boolToInt
  new ImplicitsExample2().echo(true)
}
```

How are implicits communicated?

• In the companion object of the type at either end of a conversion, or of the type of an implicit value reference

```scala
class Something(i:Int) {
  def get() = i
}
object Something {
```scala
implicit def unwrap(s:Something) = s.get()
}
object ImplicitsExample extends App {
 def echo(num:Int) = println(num)
 echo(new Something(10))
}

or

class Something(i:Int) {
 def get() = i
}
object Something {
 implicit def wrap(i:Int):Something = new Something(i)
}
object ImplicitsExample extends App {
 def echo(s:Something) = println(s.get())
 echo(10)
}

• In the companion object of the type used as the argument to the type constructor of the required implicit value

Implicit value via the companion object

case class B(i:Int)
object B { implicit val defaultB = B(100) }
object ImplicitsExample extends App {
 def tenPlus(i:Int)(implicit b:B) =
 b match { case B(x) => 10 + i + x }
 println(tenPlus(4))
}

• Then running

 > scala ImplicitsExample
 114

• We can call up an implicit value in any scope with implicitly

 scala> implicitly[B]
 res0: B = B(100)

Another case for explicit flagging of feature use

import scala.language.implicitConversions

• Because implicit conversion can have surprising effects — use with caution!

7.5.2 Emulating type classes

Implicit parameters for Scala’s version of type classes

• In Haskell:
 – Declare a type to be an instance of a class, and provide the associated operations
```
Then that type can be allowed in constraints for that class

- In Java:
  - Methods like `Collections.sort` take a `Comparator` object

- In Scala:
  - The equivalent of the `Comparator` object can be implicit
  - An implicit parameter can be always be explicitly provided

Numbers as words

Sometimes we want to represent numbers as words: twenty-three, five hundred seventeen, etc.

```scala
trait AsWords {
 def asWords(num: Int): String
}
```

Then we can create objects which represent words for integers in a particular way

```scala
val intAsWords: AsWords = new AsWords {
 override def asWords(num: Int): String = {
 if (num == 0) {
 "zero"
 } else if (num < 0) {
 "minus " + asWords(-num)
 } else {
 var sb = new StringBuilder
 asWords(num, sb)
 sb.toString()
 }
 }
}
```

And perhaps others for numerals in German, French, etc.

```scala
private case class Thousand(value: Int, name: String)

private val thousands =
 Seq(Thousand(1000000000, "billion"),
 Thousand(1000000, "million"),
 Thousand(1000, "thousand"))

def asWords(n: Int, sb: StringBuilder): Unit = {
 var sep = ","
 var num = n
 for(Thousand(value, name)
 <- thousands) {
 val inPlace = num/value
 // and so on
 }
}
Making it implicit

We then make `intAsWords` implicit, and not need to explicitly pass it to every method which uses an `AsWords`

```scala
object AsWords {
  implicit val intAsWords: AsWords = new AsWords {
    override def asWords(num: Int): String = {
      // ...
    }
  }
}
```

```scala
object TryWords extends App {
  recite(10, 22)
  def recite(x: Int, y: Int)(implicit aw: AsWords) = {
    println(aw.asWords(x) + " plus " + aw.asWords(y) + " equals " + aw.asWords(x+y))
  }
}
```

• Since `intAsWords` is in the companion object for `AsWords`, it will be in scope wherever `AsWords` is in scope

Convert many things to words

If we make `AsWords` polymorphic, we can convert other types to words

```scala
trait AsWords[A] {
  def asWords(a: A): String
}
```

```scala
object AsWords {
  implicit val boolAsWords: AsWords[Boolean] = new AsWords[Boolean] {
    override def asWords(b: Boolean): String = {
      if (b) "true" else "false"
    }
  }
  implicit val intAsWords: AsWords[Int] = new AsWords[Int] {
    override def asWords(num: Int): String = {
      // ...
    }
  }
}
```

```scala
object TryWords extends App {
  repeat(true)
  repeat(10)
  def repeat[A](a: A)(implicit aw: AsWords[A]) = {
    println("Given " + aw.asWords(a))
  }
}
```

Other classes as words

We will not always have access to all of the code in a project

• Because management says some things are off-limits
• Because we do not have the source code, just compiled JARs
• So when we write a new class (let’s call it `Bubble`), we may not be able to simply add a new `implicit val` of type `AsWords[Bubble]` into object `AsWords`
case class Bubble(val b:String)

- This situation motivates that last rule for where Scala will look for implicits: in the companion object of a type parameter

```scala
object Bubble {
  implicit val bubbleAsWords: AsWords[Bubble] =
  new AsWords[Bubble] {
    override def asWords(bub: Bubble): String = {
      "a bubble saying \"" + bub.b + \"\"
    }
  }
}
```

Scala’s rendition of type classes

Compare with Haskell’s type classes

- Define a type class `AsWords`, where any type in the class supports a function `asWords`
- Give an instance declaration for any type which is in the class
- Define a polymorphic trait `AsWords` with a method `asWords`
- For any class `C` convertable to words, place an implicit val with type `AsWords[C]` in the companion object of either `AsWords` or `C`

7.5.3 Constraints on types

Let’s pretend that two types are the same

```scala
class SameType[A,B] { 
}
```

(In Scala you can omit the empty curly braces here, if you like)

- Does this really guarantee that `A` and `B` are the same type whenever we use `SameType`?
- No, of course not! `SameType` is just a name

```scala
val x = new SameType[Int,String]
```

- Fun fact: we can pretend that `SameName` is a binary operator on types, and write `Int SameType String` instead of `SameType[Int,String]`
 - Scala is perfectly happy with this
 - But sometime we have to use parentheses
    ```scala
    val y = new (Int SameType String) {
    }
    ```
- Of course we can choose an application to similar types

```scala
val z = new (Int SameType Int) {
}
```

An function on a type

Now let’s write a simple polymorphic function on one type:

```scala
def sameSame[A]: A SameType A = new (A SameType A)
```

We can see a result of `sameSame` as evidence that the two type arguments to `SameType` were the same type.
Nothing but sameSame

What if `sameSame` were the *only* way to make an instance of `SameType`?

- We can make constructors `private`, so that it can be called only from within the class and companion object

```scala
class SameType[A,B] private () {
}
object SameType {
  def sameSame[A] = new SameType[A,A]
}
```

And one last implicit

One last tweak: we mark the method as implicit

```scala
class SameType[A,B] private () {
}
object SameType {
  implicit def sameSame[A] = new SameType[A,A]
}
```

- So we can discuss `SameType` with any arguments

```scala
def useless(x: SameType[Int,String]): Int = 2
```

- But we can only *instantiate an actual instance* if the two types are the same

Haskell interlude: the `flatten` function

It's a standard function on lists of lists

```scala
flatten :: [[a]] -> [a]
flatten [] = []
flatten (xs:xss) = flatten' xs xss
  where flatten' [] xss = flatten xss
        flatten' (x:xs) xss = x : flatten' xs xss
```

So where should a `flatten` method live in Scala?

It would be nice to put it in `List`:

```scala
val xss: List[List[Int]] = // ...
val xs: List[Int] = xss.flatten
```

but remember that `List` and its methods are defined for *any* type argument, not only other lists

- How can `flatten` be a method of `List` when it is so restrictive on the type of the contents?

From SameType to flatten

Let's revisit `SameType` and make a few changes

- Make it a trait, not a class
- Add two abstract methods for converting back and forth between the `A` and `B`

```scala
sealed trait SameType[A,B] {
  def toA(b: B): A
  def toB(a: A): B
}
```
• In the companion object, we must add method bodies
 – But it’s easy when they actually are the same type

```scala
object SameType {
  implicit def sameSame[A] = new SameType[A,A] {
    def toA(a: A): A = a
    def toB(a: A): A = a
  }
}
```

Defining flatten

The `flatten` method expects evidence that its argument actually is a list type

```scala
def flatten[B](implicit ev: (SameType List[B])): List[B] = {
  // Initialize result list
  for(xs <- this) {
    val bs: List[B] = ev.toB(xs)
  }
  // Return result list
}
```

• There is a similar structure built-in Scala

• Called `::`

• There are also `<:<<` and `<<:<<`

7.6 The expression problem redux

Recall the *expression problem* from Sec. [177] p. 63

How have we fallen short so far?

In *functional languages* we define algebraic data types, and write functions over them

• Easy to introduce a new function
 – And can do so without recompiling all the old functions

• But adding a new form to a type is hard
 – Edit and recompile the type definition
 – Extend and recompile every existing function

In *object-oriented languages* we define a hierarchy of class, adding methods at various points

• Easy to introduce a new subclass
 – And can do so without recompiling all the old classes

• But adding a new method to an existing class is hard
 – Edit and recompile the class introducing the method
 – Might need to recompile its subclasses (depends on the language)
 – Extend and recompile where the method is overridden
Design patterns
One idea from the world of design patterns

• Emerged from the C++ community in the 90s
• An effort to standardize how we describe ways of programming
• Patterns are bigger than individual statements, but generally much smaller than the whole program
• May involve more than one class, when it explains how the classes interact

The Visitor pattern
An old and well-known pattern

• Given a (shallow) hierarchy of several classes all extending one trait
• A visitor on that trait is a class (separate from the hierarchy) with one method per each class in the hierarchy
 – The parameters of each method align with the key fields of the corresponding class
 – Each class has a visit method which takes a visitor instance, and calls the method for that class
• We can use a visitor instance as a sort of case statement over all of the possible forms which an instance might be
 – A Haskell-style case statement in languages which might not otherwise support them

Visitor example
A hierarchy with three classes under one trait

Without a visitor

trait Thing
class IsInt(val x: Int) extends Thing
class IsBool(val b: Boolean) extends Thing
class IsString(val s: String) extends Thing

Extend to allow visitors

trait Thing {
 def visit[R](visitor: ThingVisitor[R]): R
}
trait ThingVisitor[R] {
 def ifInt(i: Int): R
 def ifBool(j: Boolean): R
 def ifString(k: String): R
}
class IsInt(val x: Int) extends Thing {
 def visit[R](vis: ThingVisitor[R]): R = vis.ifInt(x)
}
class IsBool(val b: Boolean) extends Thing {
 def visit[R](vis: ThingVisitor[R]): R = vis.ifBool(b)
}
class IsString(val s: String) extends Thing {
 def visit[R](vis: ThingVisitor[R]): R = vis.ifString(s)
}

Use the visitor
object WordyVisitor
extends ThingVisitor[String] {
 def ifInt(i: Int): String = {
 // Covert 22 to "twenty-two"
 }
 def ifBool(j: Boolean): String = {
 j match {
 case true => "oh yeah"
 case false => "no way"
 }
 }
 def isString(k: String): String = "The string \" + k + "\\"
}

Is Visitor a solution to the Expression Problem?

- Visitor makes it easy to add a new functionality to a related set of classes
- So now in an object-oriented language we actually can add both new functionality and new forms
- But we cannot easily add both
 - What if we already have visitors in various places in the code, and then add a new subclass?
 - We would still need to update and recompile these uses upon adding a new form

An approach with encapsulation and type members

- The trait T and its implementing classes will be defined inside a wrapping trait W
 - That is, they will be an inner trait and inner classes within W
 - To use them in some other class C, C should just extend the wrapping trait W
 - When adding functions or forms, the extensions are wrapped in another trait $W2$ extends the old wrapper W
 - W also has a type member, which represents the subtrait of T which may include extensions

Starting off

trait Base {
 type Actual <: Thing
 trait Thing { def fn(z: Int): Int }

 class IsInt(val x: Int) extends Thing {
 def fn(z: Int): Int = x+z
 }

 class IsTwoMore(val thing1: Actual, val thing2: Actual) extends Thing {
 def fn(z: Int): Int = thing1.fn(z) * thing2.fn(z)
 }
}

- Base is the wrapper
- Thing is the inner trait which is at the top of the hierarchy we may want to extend

111
• IsInt and IsTwoMore are two initial forms of Thing
 – Note that IsTwoMore refers to Actual, not Thing

Using the trait and classes

object UseBase
 extends App with Base {
 override type Actual = Thing
 val e: Actual = new IsInt(40)
 println(e.fn(100))
 }

 • In this use we choose not to add either new forms of Thing, nor additional methods to the hierarchy members
 – So we give a concrete definition for the previously abstract Actual
 • Prints 140

Adding a new form of Thing

First, we add a new form of Thing

trait AddingBool extends Base {
 class IsBool(val y: Boolean) extends Thing {
 def fn(z: Int): Int = y match {
 case true => z
 case false => -z
 }
 }
}

 • Since the new wrapper trait extends the old wrapper trait, it inherits Thing and its other two classes as well

Using the new form

object UseBasePlusBool
 extends App with AddingBool {
 override type Actual = Thing
 val e: Actual = new IsInt(40)
 println(e.fn(100))
 val e: Actual = new IsBool(true)
 println(e.fn(100))
 }

 • Prints 140 and 100

Adding a new method

Adding a new method is more complicated

trait AddingOp extends Base {
 override type Actual <: Thing
 trait Thing extends super.Thing {
 def gn(s: String): String
 }

 class IsInt(x: Int) extends super.IsInt(x) with Thing {

 }

 class IsBool(x: Boolean) extends super.IsBool(x) with Thing {

 }

 class IsIntTwoMore(x: Int) extends super.IsIntTwoMore(x) with Thing {

 }

 class IsTwoMore(x: Boolean) extends super.IsTwoMore(x) with Thing {

 }

 object UseBasePlusOp
 extends App with AddingOp {
 override type Actual = Thing
 val e: Actual = new IsInt(40)
 println(e.fn(100))
 val e: Actual = new IsBool(true)
 println(e.fn(100))
 }

 • Prints 140 and 100
```scala
def gn(s: String): String = s * x

class IsTwoMore[thing1: Actual, thing2: Actual] extends super.IsTwoMore[thing1, thing2] with Thing {
  def gn(s: String): String =
    thing1.gn(s) + thing2.gn(s)
}
```

- Note that we are *shadowing* the superclass’s versions of `Thing`, `IsInt` and `IsTwoMore`
 - We refer to them explicitly via `super`
- Updated constraint on `Actual`, bounding it by our redefined `Thing`
- Since we are adding a method, we must define it for the previously-defined classes

Using the new method

```scala
object UseAddingOp extends App with AddingOp {
  override type Actual = Thing
  val d: Actual = new IsInt(4)
  println(d.gn("hello"))
}
```

- **Thing** means the extension in `AddingOp`, not the original in `Base`
- **Prints** `hellohellohellohello`

Adding both a form and a method

We can combine the `AddingBool` and `AddingOp` traits *without recompiling either one*

```scala
trait AddingBaseAndOp extends AddingBool with AddingOp {
  class IsBool(y: Boolean) extends super.IsBool(y) with Thing {
    def gn(s: String): String = y match {
      case true => "affirmative"
      case false => "just " + s
    }
  }
}
```

- We do not need to repeat either the new form, or the inherited implementations of the new method
- But we do need to tie the two extensions together
 - By making sure the redefined `IsBool` re-extends the version of `Thing` from `AddingOp`
 - By adding the new method to `IsBool` — which `AddingOp` cannot do

Using the extension
object UseAddingBaseAndOp
extends App with AddingBaseAndOp {
 override type Actual = Thing
 val d: Actual = new IsInt(4)
 println(d.gn("hello"))
 val c: Actual = new IsBool(false)
 println(c.gn("hello"))
}

• Here, Thing is the extension from AddingOp
• Prints hellohellohellohello and just hello

Is this a solution to the Expression Problem?
It is!
• It allows both new forms and new methods
• It does not require recompilation of prior code
• It is type-safe
• But it is fussy
 – And the fussiness scales up with gradually adding more operations

References
About the expression problem:

The "Gang of Four" book, a classic reference on design patterns:
• Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,

8 Logic programming
8.1 Horn clause programming in Prolog
Recall the Curry-Howard correspondence
• In functional languages based on \(\lambda \)
 – Types correspond to logical formulas
 – Terms correspond to proofs of a formula
 – Reduction corresponds to simplification of a proof
• Logic programming languages like Prolog make a different alignment between computation and logic
 – Terms correspond to logical formulas
 – Program execution corresponds to searching for a proof of a formula
Predicate logic

- Functional language types are in correspondence with *propositional* types
 - Atomic formulas, and more complicated formulas built from them
- Prolog is built on *predicate* logic
 - Predicates are basic formulas consisting of a symbol plus zero or more values
 - Prolog is untyped — the values are just that, with no distinction between numbers, names, structures, etc.

A simple first Prolog program

```prolog
has(alice,marker).
has(bob,notebook).
has(carol,ruler).
portable(marker).
portable(notebook).
portable(ruler).
```

- A Haskell program defines the functions which exist in a program's world
- A Prolog program sets forth the axioms which exist in a program's world

The most simple uses answer yes/no questions

```
(506) gprolog
GNU Prolog 1.3.0
By Daniel Diaz
Copyright (C) 1999-2007 Daniel Diaz
| ?- [basic].
compiling /home/jmaraist/421/code/basic.pl for byte code...
/home/jmaraist/421/code/basic.pl compiled, 5 lines read - 679 bytes
written, 8 ms

yes
| ?- portable(brickwall).

no
| ?- has(bob,palace).

no
| ?- has(bob,notebook).

yes
| ?- portable(apple).

no
| ?-
```

Logical variables specify blanks to be filled in

- Lower case for predicates and values, upper-case for logic variables
- Searching for one value
- Cannot be used to search for predicates
- First-order logic, not second-order logic

?- has(Who, rules).

Who = carol

yes

?-

- Searching for something we won’t find

?- has(doug, X).

no

?-

- Searching for several things at a time

?- has(Who, What).

What = marker
Who = alice ? ;

What = notebook
Who = bob ? ;

What = ruler
Who = carol

yes

?-

Horn clauses

- The general form of Prolog axioms is the *Horn clause*

 HeadTerm ← BodyTerm1, ..., BodyTermN

 The HeadTerm can be inferred from the BodyTerms

- The facts of our first program were Horn clauses with zero BodyTerms.

Horn clauses for our program

located_at(alice, palace).
located_at(bob, palace).
located_at(carol, meadow).

contained_in(Thing, Place) :- has(Person, Thing), located_at(Person, Place).

- We can make queries as before
| ?- contained_in(notebook, meadow).
 no
| ?- contained_in(ruler, meadow).
 yes
| ?- contained_in(What, palace).

 What = marker ? ;
 What = notebook ? ;
 no
| ?-

Multiple Horn clauses for one head

located_at(alice, palace).
located_at(bob, palace).
located_at(carol, meadow).

contained_in(Thing, Place) :- has(Person, Thing), located_at(Person, Place).
contained_in(Person, Place) :- located_at(Person, Place).

• Either clause can be used as a justification

| ?- contained_in(What, palace).

 What = marker ? ;
 What = notebook ? ;
 What = alice ? ;
 What = bob ? ;
 no
| ?- ;

Lists

Prolog has lists as a built-in data structure

• Like Haskell, they are internally linked lists
• We can match to either a cons cell, or to the whole list

Matching list structure

 With the clause

three_list([_,_,_]).

We have queries

| ?- three_list(i_am_not_a_list).

 no
| ?- three_list([1]).
no
| ?- three_list([1,2,3]).
yes
| ?- three_list([1,2,3,4]).
no
| ?-

Matching list elements
With the clause
list_head([Head | _], Head).
We have queries
| ?- list_head([a,b,c], d).
no
| ?- list_head([a,b,c], a).
yes
| ?- list_head([a,b,c], What).
What = a
yes
| ?- list_head(What, a).
What = [a|_]
yes
| ?-

Comparing list elements
With the clause
all_same([]).
all_same([_]).
all_same([Head, Head | Tail]) :- all_same([Head | Tail]).
We have queries
| ?- all_same(i_am_not_a_list).
no
| ?- all_same([bob,bob]).
true ?
yes
| ?- all_same([alice,bob]).
all_same([alice,bob]).
no
| ?- all_same([alice,alice,alice,alice,alice])
all_same([alice,alice,alice,alice,alice])

true ?
yes
| ?-

Unifiers
Given a program

has(alice,marker).
has(bob,notebook).
has(carol,ruler).

located_at(alice,palace).
located_at(bob,palace).
located_at(carol,meadow).

contained_in(Thing,Place) :- has(Person,Thing), located_at(Person,Place).
contained_in(Person,Place) :- located_at(Person,Place).

What happens when we make a query?

• Try to build a unifier — a substitution for each logic variable that makes the goal provable
 – Makes the least commitments possible
 – If unification reaches a dead end, backtrack to a point where decisions can be made differently

• An easy query

 contained_in(What,palace)

 – Try the first clause of contained_in
 – Unify What with Thing, and Place with palace
 * No conflicts, so add these bindings to the unifier
 – Try to prove has(Person,What)
 * Try the first clause of has
 * Unify Person with alice, and What with marker
 * No conflict, so add these bindings to the unifier
 – Try to prove located_at(alice,palace)
 * Try the first clause of located_at
 * Unify alice with alice, and palace with palace
 * No conflict, and no new bindings
 – We’ve reached the end of the clause, so we’ve finished

Backtracking
Given a program
has(alice,marker).
has(bob,notebook).
has(carol,ruler).

located_at(alice,palace).
located_at(bob,palace).
located_at(carol,meadow).

contained_in(Thing,Place) :- has(Person,Thing), located_at(Person,Place).
contained_in(Person,Place) :- located_at(Person,Place).

What if we query contained_in(What,meadow) ?

• Try first clause of contained_in, bind What and Thing, and Place to palace
• Prove has(Person,What)
• Try first clause of has, bind Person to alice and What to marker
• Prove located_at(alice,meadow)
 – Try each of the clauses of located_at, but none of them unify
 – So we fail, and backtrack to the previous decision
• Try second clause of has, bind Person to bob and What to notebook
 – But proving located_at(bob,meadow) fails, and so we backtrack to here again
• Try third clause of has, bind Person to carol and What to ruler
• Prove located_at(carol,meadow), try clauses of located_at until succeeding

Cutting away alternatives
Prolog has an extralogical term ! (pronounced "cut")
• It always succeeds
• But it disallows backtracking for the goal being proven by the current clause
• So we might make contains more efficient as

contains([X|Y], X) :- !.
contains([_|Y], X) :- contains(Y,X).

• So the general form of if-then-else in Prolog is

goal :- condition, !, then.
goal :- else.

• But what if we want to query contains([1,2,3], X) ?
 – We lose the ability to enumerate from the list
 – Prolog allows testing on a variable to see if they have yet been bound to a ground term, or if they are still a variable
Failing

The predicate fail always fails

- For expressing a negative condition

   ```prolog
does_not_contain([], _).
does_not_contain([X|_], X) :- !, fail.
does_not_contain([_|Y], X) :- does_not_contain(Y, X).
```

- For looping!

   ```prolog
printList(L) :- contains(L, X), write(X), nl, fail.
printList(L).
```

9 Further topics

Time allowing, we will study additional topics at the end of the semester. Any additional notes and exercises will be distributed separately.

10 Hints and answers for selected exercises

Exercise 5.43 (p. 38) Use a helper function which performs the actual recursion. The helper can return both whether the invariants are satisfied, and the sum of the black nodes in the subtree.

Exercise 6.1 (p. 73) 1. \((\lambda x.(\lambda y.xy))\lambda z.z\)
2. \(xy(xz)\)

Exercise 6.2 (p. 74) \(((\lambda x.\lambda y.zz)z)w\)

Exercise 6.4 (p. 74) \(\{x, y, z\}\)

Exercise 6.10 (p. 76) \(\lambda u.\lambda y.(\lambda y.y)zuy\)

Exercise 6.12 (p. 77) \(x(\lambda y.y)\)