CS421 — Programming Language Concepts

J Maraist

Study Guide — Fall 2018

Outline

Contents

Introduction 2

Specifying syntax 4
 Regular expressions .. 4
 Finite automata .. 5
 Grammars and parsing .. 7

Names and bindings 11
 Scope .. 11
 Parameter-passing ... 16
 Heap storage .. 24

Types 25

Functional programming and Haskell 27
 Exercises on Haskell basics .. 27
 Functional datatypes ... 30
 Parametric polymorphism ... 47
 Higher-order functions .. 50
 "Ad-hoc" polymorphism and type classes 58
 Examples of larger Haskell libraries .. 66

Lambda calculus 72
 Syntax .. 72
 Reduction ... 74
 Parameter-passing disciplines ... 76
 Simply-typed \(\lambda \) ... 79
 Polymorphism in lambda calculus ... 80

Object-oriented programming and Scala 81
 Subclasses and what they unlock .. 81
 Function values ... 83
 Generic patterns involving multiple classes 83
 Type variables and members .. 84
 Implicits ... 93
 The expression problem redux ... 102

Further topics 102

Hints and answers for selected exercises 102
1 Introduction

Why you’ll hate this class

• It’s so tedious!
• I could do this in Java!
• This is so weird!

What this class gives you

• The vocabulary to discuss languages
• Experience now with what may come later
 – Java is a fine teaching language
 – And it’s comfortable for industry uses
 – But remember - it was once the cutting-edge technology
• What will be in the next five programming languages?
 – Career-focused, not first-job-focused

What we’ll do

• Name and compare the ideas behind different languages
• Experience programming languages different to those you’ll see elsewhere in the CS curriculum
 – Functional programming in Haskell
 – Object-oriented programming in Scala
 – Logic programming in Prolog
 – And we will see examples in other languages including Java, Common Lisp and Perl

Assessed work in CS421

• About 8 quizzes
• On-paper homework
 – Bring it to class; sometimes I’ll ask you to turn it in, to be counted as a small quiz
• Programming homework and projects
 – Probably two major projects with one in Haskell, one in Scala
• A final exam

Assessed work in CS521

• Programming projects
 – Probably two with one in Haskell, one in Scala
• Additional reading and assignments on material beyond the undergrad level
• A final exam
Obligatory administration

- There’s a syllabus - read it!
 - There’s a D2L quiz about the syllabus due Monday
 - Note in particular: absences for university travel (inc. sports) due this week if it is to be excused
- There’s a course website — cs.uwlax.edu/~jmaraist/421-fall-18
 - Check it frequently for news, announcements, assignments, schedule, notes etc.
 - D2L for some assignment submission, some quizzes - but not announcements
 - There’s an RSS feed attached to the web site
- There’s a study guide — linked from the web site
 - Contains lecture slides and exercises
 - First several sections available now, others will be announced via course website
- There’s email: jmaraist@uwlax.edu
 - Check it frequently for feedback on assignments, Q&A
 - Expect replies within a (business) day (but typically faster)
 - Administrative stuff always by email
- There are open-door hours
 - On the first slides, on the web page
 - Or by appointment, but email at least a (business) day ahead
 * Always include the questions you’ll want to discuss: So I can be prepared, because advising and paperwork often require no meeting, because every meeting needs an agenda
 - But I am not able to linger after class for extra questions, since I have a class immediately after, usually in another building
- Always silence your gadgets
 - Consider an app to do it for you so you don’t forget
- When you pick your seat, please:
 - Computers and handhelds to the back
 - Latecomers and early-leavers to the aisle

Class materials

The textbook is Programming Language Pragmatics, Michael L. Scott

- Get yourself a copy of the book
- Undergraduates: use the textbook rental service
- Graduates:
 - The bookstore will sometimes have used copies; ask at the back desk
 - You can often find cheap copies on Amazon or other online stores
 - In the past, grad students who tried to do without the book (and with an old edition) have complained about the difficulties in getting work done

See the course homepage for information about other resources

- Books on reserve in the library
- Online tutorial sites
- Other references
On class scheduling

• The required 400-level classes — 421, 441 and 442 — are all difficult and time-intensive classes
 – It can be a challenge to manage two of them at once
 – It is rarely a good idea to take all three at once

2 Specifying syntax

2.1 Regular expressions

What is there to a language?

Syntax

• The form of a program

• Essentially two aspects of syntax:
 – How you spell stuff — specified by a regular expression (regex)
 * Basic strings
 * Concatenation of two or more regexes
 * Choice from alternative regexes
 * Arbitrarily many repetitions of some regex
 – How you put correctly-spelled stuff together — specified by a context-free grammar (CFG), often in Backus-Naur form (BNF)
 * Give a starting symbol, other nonterminal symbols which are not part of the language
 * Rules say how a nonterminal may be rewritten to a string of other nonterminals and terminals

Semantics

• The meaning of a program
 – Most of this class focuses on language semantics

Writing down regular expressions

A language is a just a set of strings

• It can be finite (the first names of the people in this class) or infinite (phrases used to represent natural numbers)

• Any plain character in the language we’re generating is a regular expression by itself

Regular expressions are a notation for writing languages

• The empty string is a regular expression. Write it this way: \(\varepsilon\)

• Write two regular expressions next to each other to represent concatenation

• Separate alternatives with a vertical bar

• Use the Kleene star as a suffix for repetitions

• Use parentheses to make grouping clear

Followup reading: Scott, Ch. 1
Exercise 2.1. Write regular expressions for the following languages:

1. Strings which consist of an even number of "r"s
2. Strings which start with a lower-case letter, and are followed by any alphanumeric characters
3. Strings consisting of a number of even-valued digits with a single "E" before all of them
4. Strings consisting of one or more odd digits with a single "o" in front of them

Exercise 2.2. Write regular expressions over the alphabet \{0, 1\} for the following languages [Sipser]:

1. Strings which begin with a 1 and end with a 0
2. Strings which contain at least three 1's (not necessarily in order)
3. Strings which contain the substring 0101
4. Strings which are at least three characters long, and have 0 as their third character
5. Strings which start with 0 and have odd length, or start with 1 and have even length
6. Strings which do not contain the substring 110
7. Strings which are at least five characters long
8. Any string except 11 or 111
9. Strings where every odd position (starting counting from 1) is a 1
10. Strings which contain at least two 0’s and at most one 1
11. Either the empty string or 0
12. Strings which contain an even number of 0’s, or exactly two 1’s
13. All strings except the empty string

Exercise 2.3. Scott, Exercise 2.1.

Exercise 2.4. Write regular expressions for these languages:

1. All strings over \{0, 1, 2\} except for 2 and 10
2. All sequences of lower-case letters except for three strings: file, for and from [Scott, Exercise 2.3]

Exercise 2.5. Describe in English the language generated by the regular expression a*(ba*ba*)*. Your description should be high-level — the simple intuition about the strings, rather than a transliteration of the expression into English. [Scott, Ex. 2.9(a)]

2.2 Finite automata

Regular expressions generate, automata recognize

A finite automaton is a simple, idealized machine which corresponds to a language

- It has a number of states
 - One is initial
 - One is final
• When there is an item of input, the machine transitions from one state to another
 – Each transition is based on a single input item — no peeking ahead!
 – The number of states, transitions and transition labels must be finite

• If a string’s characters give transitions from the initial state to a final state, then the automaton accepts the string as part of its language
 – Otherwise, it rejects the string

Depicting regular expressions
We usually draw an automaton graphically
• States are circles
 – The initial state is marked with an arrow pointing to it
 – The final states are double-circled
• Transitions are arrows from one state to another
 – Labelled with its character
 – An arrow can start and end at the same state
 – To avoid the clutter of multiple arrows, can draw one arrow with multiple labels

Exercise 2.6. Which of these strings does the automata below accept: a, b, c, ab, bb, ba, cb, cba, cab?

Exercise 2.7. Write finite automata (using the circles-and-arrows notation) for each of the languages in Exercise 2.2.

Deterministic or nondeterministic?
A finite automaton is deterministic if for every state and input symbol, there is at most one possible transition
• Otherwise, the automaton is nondeterministic

• A nondeterministic automaton accepts a string if any series of transitions from initial to final state exists
• With nondeterministic automata, it is acceptable to label transitions with the empty string, or with multi-character strings
• It is always possible to write a deterministic finite automaton which corresponds to a nondeterministic automaton
 – But the nondeterminist automaton might be more concise

• It is always possible to write a finite automaton for the language of a regular expression

• But it is not possible to find a finite automaton for every language

Followup reading: Scott, Sec. 2.1-2.2

Exercise 2.8. Scott, Exercise 2.4

Exercise 2.9. Make sure each of the automata in the Exercise 2.7 are deterministic

Exercise 2.10. Scott, Exercise 2.2

2.3 Grammars and parsing

2.3.1 Context-free grammars

From regular expressions to grammars
Regular expressions are one way define a language
• Context-free grammars written in the Backus-Naur form (BNF) are another
• Grammars generate a language based on rules for rewriting special symbols which are not in the language’s alphabet into other strings
 – The rules should eventually let us rewrite to a string which uses only characters in the language’s alphabet
 – The special symbols are called nonterminals, and the characters in the language’s alphabet are called terminals

Writing down grammars
• There’s a starting nonterminal symbol, with a rule for the form it can have:
 – S → hello goodbye
• There may be other nonterminals, with rules that refer to each other
 – S → T goodbye
 T → hello
• Use a vertical bar to separate alternative choices, or give multiple rules for a nonterminal
 – S → T goodbye
 T → bonjour | guessgott | hola
 – S → T goodbye
 T → bonjour
 T → guessgott
 T → hola
• Extended BNF (EBNF) includes the Kleene star and plus notations
Exercise 2.11. Consider this grammar G, with start symbol R [Sipser]:

\[
\begin{align*}
R & \rightarrow XRX \mid S \\
S & \rightarrow aTb \mid bTa \\
T & \rightarrow XTX \mid X \mid \varepsilon \\
X & \rightarrow a \mid b
\end{align*}
\]

1. Give three examples of strings in $L(G)$
2. Give three examples of strings not in $L(G)$
3. True or false: can T rewrite to T?
4. True or false: can T rewrite to aba?
5. True or false: can T rewrite to abb?
6. True or false: can T rewrite to $ababa$?
7. True or false: can R rewrite to $ababa$?
8. True or false: can X rewrite to XX?
9. Describe $L(G)$ in English

Exercise 2.12. Give context-free grammars that generate the following languages over the alphabet \{0, 1\}. [Sipser]

1. Strings which begin with a 1 and end with a 0
2. Strings which contain at least three 1’s (not necessarily in order)
3. Strings which contain the substring 0101
4. Strings which start and end with the same symbol
5. Strings whose length is odd
6. Strings whose length is odd and whose middle symbol is 0
7. Strings which contain the same number of 1’s as 0’s
8. Strings which contain more 1’s than 0’s
9. Strings which are palindromes

Exercise 2.13. Write an unambiguous context-free grammar that generates exactly the same language as the regular expression $a^*(ba^*ba^*)^*$. [Scott, Ex. 2.9(b)]

Exercise 2.14. Describing a grammar’s language in plain English: Scott, Exercise 2.12(a), 2.15(a)

Regex vs. grammars

- Every language that can be written as a regex can be written as a CFG
- What about the reverse?
- CFGs give a sort of simple memory that a regex does not have
• The same-number-as and palindrome examples cannot be written as a regex
• Although grammars are expressive enough for programming language syntax, there are nonetheless languages which they cannot express...
 – Cliffhanger! To be resolved in CS453/553

Exercise 2.15. Rewrite your regular expressions from Exercise 2.2 as context-free grammars.

Parse trees
To demonstrate that a string really is generate by a grammar, we produce a parse tree
• Each internal node labelled with a nonterminal
 – Starting symbol at the root
• Each leaf labelled with a terminal
• If there is a rule \(M \rightarrow u_1 u_2 \ldots u_n \), then a node labelled \(M \) could have \(n \) children labelled \(u_1 \) through \(u_n \)

Followup reading: Scott, Sec. 2.3 intro (to start of Sec. 2.3.1)

Exercise 2.16. Using the grammar of Exercise 2.11 give parse trees for these strings: babb, babbb, aababb.

Exercise 2.17. Scott, Exercise 2.12(b)

Exercise 2.18. Scott, Exercise 2.13(a)

Exercise 2.19. Scott, Exercise 2.15(b)

2.3.2 Grammar properties

Some properties of operators

Properties
• Fixity: infix, prefix, postfix
• Arity
• Associativity
• Precedence

Examples
• In Java and C, ++ and – can be prefix or postfix
• Negation – is a prefix operator in most languages
• The arithmetic operators are usually infix
• Negation is unary, arithmetic operators are binary
 – The \((_ \ ? \ _ : \ _)\) operator in C is tertiary
• In the standard interpretation of arithmetic expressions, addition, subtraction, etc. are left-associative
• In the standard interpretation of arithmetic expressions, multiplication binds more tightly than addition
Bad grammar
(Parentheses are literal, bars are metasyntactic)

Expr --> Expr ^ Expr | Expr * Expr | Expr / Expr
| Expr + Expr | Expr - Expr | - Expr
| (Expr) | 0 | 1 | ...

- What’s so bad about this grammar?
- How do we parse 3+4*5?
 - Two ways: it is ambiguous
 - A grammar is ambiguous if it lets us build more than one parse tree for the same string

Exercise 2.20. Review the grammars you wrote in previous exercises. Which are ambiguous?

Better grammar

Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> (Expr) | - Basic | 0 | 1 | ...

- Is it still ambiguous for 3+4*5?
- The additional structure constrains the possible derivations so that they are unique

2.3.3 Top-down parsing

Parsing
Grammars generate, parsers recognize

- Top-down or bottom-up?
- Top-down
 - Conceptually simple
 - More restrictions on the form of grammars which are allowed
 - Efficient
 - Can be implemented directly
- Bottom-up
 - Start with the terminal symbols, reduce them into nonterminals
 - 3+4*5
 - Lookahead
 - Usually implemented indirectly, using a generator, with a pushdown automation details via tables
- Lots of work has been done (and continues) on parsing — to come in CS442/542
Writing a top-down parser

Top-down parsers can be easy to write

- Each rule becomes a separate subroutine
- Each rule’s routine expects a string matching that rule body
 - Match terminals by finding them in the input
 - Match nonterminals by calling the corresponding subroutine

The difficulties:

- **Choice!** When there is a vertical bar |, or multiple rules for the same nonterminal, how does our program know which to pursue?
- **Left-recursion!** When a nonterminal expands to another of itself in the left-hand position

Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> (Expr) | - Basic | 0 | 1 | ...

Removing left-recursion

So a lack of ambiguity is

- *Necessary* for a sensible grammar for a programming language
- But not yet *sufficient*

Must restructure the grammar to get rid of the left-recursion

- The Kleene star/plus operators of EBNF are often key tools
- We look ahead into the input to resolve choice
 - For efficiency, a solution should look only a single unit of input ahead before making each decision!

Followup reading: Scott, Sec. 2.3.1-2.3.2

Exercise 2.21. Rewrite the arithmetic grammar to remove left-recursion, and write a simple parser to evaluate strings representing arithmetic expressions.

Expr --> Expr + Product | Expr - Product | Product
Product --> Product * Power | Product / Power | Power
Power --> Power ^ Basic | Basic
Basic --> (Expr) | - Basic | 0 | 1 | ...

3 Names and bindings

3.1 Scope

3.1.1 Stack model of execution

The stack model of execution

- The standard, basic organization of memory includes a *stack* and a *heap*
– The stack grows from one end of memory
– The heap grows from the other end of memory
 * (For now we’re thinking only about the stack, and will discuss the heap later)

• Each call to a subroutine pushes a frame onto a system stack.

• Each frame contains:
 – Storage for local variables
 – Storage for arguments
 – Pointer to top of previous frame

• The frame pointer is a CPU register used to point to the current frame

• This idealized version of the system stack organization gives us a form of operational semantics
 – Explain how we resolve variable references, parameter passing
 – Better than an English description, it’s a formal model

Example
For a program

```plaintext
sub f() {
  var z=2
  g(1)
}
sub g(x) {
  var y=3
  ...
}
```

When

When \(f \) calls \(g \):

```
Frame for f
  z 2
  Prev FP

Frame for g
  y 3
  x 1
  Prev FP
```

Exercise 3.1. Scott, Exercise 3.4, including Java examples

Exercise 3.2. Scott, Exercise 3.9

How do nonlocal variables work in this model?

```plaintext
sub wrapper(x, y) {
  local z = somefn(x,y);

  nested sub inner(w, acc) {
    if (w<1) {
```
return fn2(z, acc);
} else {
 return inner(w-1, fn3(acc));
}

return inner(x, y);

How do we resolve `inner`'s reference to `z`?

![Diagram showing frame with `inner` and `wrapper`](image)

What about when the `else` branch recurs on `inner`?

![Diagram showing frame with `inner` and `wrapper`](image)

Need an additional entry in the frame for the *static pointer*

- Points to the frame of the environment which encloses this frame *in the source code*
Followup reading: Scott, Sec. 3.1-3.2

Exercise 3.3. Scott, Exercise 3.6, in particular 3.6(b)

Exercise 3.4. Scott, Exercise 3.11: assume the P calls Q, and Q calls R.

3.1.2 Static and dynamic scope

What does this program print?

```
global $z = 100;

sub $f()$
    print $z;
}

sub $g(y)$
    val $z = y$;
    $f();$
}

main:
    $g(10);$  
    print $z;$
```

- If these subroutines act like Java static methods?
- Or if they follow the static pointer as we discussed last time?
 - Then: 100
- But this is just one way of doing things!
 - A particular language could define the scope of name-binding differently

Finding z under a static scope rule

Static scope says that we should use the most closely enclosing binding to a name when accessing that name

```
global $z = 100;

sub $f()$
    print $z;$
}

sub $g(y)$
    val $z = y$;
    $f();$
}

main:
    $g(10);$  
    print $z;$
```

- Know (at compile time) that the in-scope reference for z from f is one enclosing scope outward
- So the code generated for f should refer through the static enclosure *once* to find the frame with z’s storage
• Print 100 both times

Finding \(z \) under a dynamic scope rule

Dynamic scope says that we should use the most recent binding to a name when accessing that name

• Conceptually, this means we should *follow the previous frame* until we find a frame which stores a value for that name

```python
global z = 100;

sub f() {
    print z;
}

sub g(y) {
    val z = y;
    f();
}

main:
    g(10);
    print z;
```

• Not using the static enclosing-environment pointers

• The most recent binding to \(z \) is by \(g \)

• But this binding will end when \(g \) exits
 – So print 10 then 100
Dynamic scope without search
Implementations of dynamic scope avoid searching the stack by using frames to store hidden, out-of-scope bindings

Then f can read the current (dynamic) value of z from the global frame

Followup reading: Scott, Sec. 3.3

Exercise 3.5. Scott, Exercise 3.5
Exercise 3.6. Scott, Exercise 3.14
Exercise 3.7. Scott, Exercise 3.18
Exercise 3.8. Scott, Exercise 3.19

3.2 Parameter-passing
3.2.1 Call-by-value

Some vocabulary about parameters

```
def function1(x, y) = {
    return 2*x + 3*y;
}
```

```
val z = 10;
print function1(3, z);
```

- x and y are formal parameters
 - When considering function1 by itself, we can make no assumptions about the values of x and y
- z and z are actual parameters
 - When we call function1, they certainly do have specific values
- What is the relationship between formal and actual parameters?
 - That is, how does a language define that the former should be bound to the latter?

Parameter-passing mechanisms
You may never have considered the matter up for debate

- Java and C seem to have essentially the same behavior for their parameter-passing
- But just like static vs. dynamic scope, the choice of parameter-passing mechanism is a choice made by a language's designers
Call-by-value
C’s parameter-passing mechanism is named *call-by-value*

- First evaluate the actual parameter (if it is an expression), and then pass that value.
- This is what we assumed in our lecture example for scope.
- Probably the most common, and in many ways the simplest, of the parameter-passing mechanisms we will see.

3.2.2 Call-by-reference

Call-by-reference

The traditional alternative to call-by-value in imperative languages

- Rather than the value itself being stored in the new subroutine’s frame, a *reference* to the location of that value is communicated
- Crucially, assignment to the formal parameter also update the actual parameter, since there is only a single stored value

For example, running `main` in

```java
def f(x) = {
  x=10
}

def main = {
  val b=5
  f(b)
}
gives
```

```
• Today, most commonly seen in C++
• In most languages with call-by-reference, the actual parameter *must* be a storage location
  – Not (for example) an arithmetic expression
• *Orthogonal* to many other choices, such as static vs. dynamic scope
```

Call-by-value and call-by-reference

- Given

```java
sub f(int x) {
  print x;
  x=3;
  return;
}
```
• What could happen when we evaluate

```java
int y=10;
f(y);
print y;
```

3.2.3 Call-by-sharing

How does Java pass parameters?

Scalar types are clearly passed by value, but what about object types?

• In a way, they are passed by value

```java
public void f(Object x) {
    x = new Object();
    // ...
}
```

The assignment does not change a caller’s variable

```java
final Object obj = "Hello";
f(obj);
println(obj); // Still shows Hello
```

• But in a way, they are passed by reference

```java
public void g(MyObj x) {
    x.setVal(x, 1.34);
    // ...
}
```

The assignment does change a caller’s field

```java
final MyObj obj = new MyObj(2.56);
println(obj.getVal()); // Shows 2.56
f(obj);
println(obj.getVal()); // Now shows 1.34
```

Call-by-sharing

We know enough about pointers to realize that what we are passing is a pointer to the actual object.

• And moreover that pointers are passed by value

• But the behavior is distinct enough from previous languages that we categorize Java’s mechanism as distinct from call-by-value
 – Named *call-by-sharing*
 – For non-simple types, pass a reference to some shared object
 – Side-effects altering the object are shared
 – But assignments to the formal parameter do *not* alter the actual parameter in calling routine
3.2.4 Call-by-copy-in/copy-out

Call-by-copy-in/copy-out
Like call-by-reference, concerns storage locations

• Before starting subroutine, evaluate the actual parameter

• Use the result value when starting subroutine

• When finishing subroutine, copy the final value of the formal parameter back to the actual parameter.

Followup reading: (For Sec. 3.2.1-3.2.4) Scott, Sec. 9.3

Exercise 3.10. Scott, Exercise 9.17. This question seems to predate the introduction of variable-length argument lists to Java and its peer languages.

Exercise 3.11. Trace the evaluation of this main routine under both call-by-reference and call-by-copy-in/copy-out parameter-passing semantics.

```plaintext
int y=10;

sub g() {
    print y;
}

sub f(x) {
    x=3;
    g();
}

sub main() {
    f(y);
}
```

3.2.5 Call-by-name

Call-by-name
The parameter-passing mechanisms so far all start the same way

• “First, evaluate the expression given as the actual parameter”

But as usual, a language designer can choose differently.

Under call-by-name, formal parameters are substituted with the unevaluated actual parameter expression when a subroutine is called.

• So the expression may be evaluated multiple times

• But not until we reach each instance of the formal parameter

• And if the expression has side-effects, the effects may occur multiple times!

Call-by-name probably seems like the oddest of the mechanisms we’ve seen so far
• But it’s not a new idea — it was introduced into programming languages in the late 1950s with ALGOL60
• We’ll see an example from Scala shortly
• (And we’re not finished with parameter-passing mechanisms yet)

Scala example: Complaints!

object ComplaintCount {
 var num:Int = 0
 def another() = {
 num = num + 1
 num
 }
}

class Complaint {
 println("This is Complaint "+ ComplaintCount.another())
 def sendTo(who:String) =
 println("Hey " + who + ", I have a complaint!")
}

An unsurprising example of complaining

object ComplaintCount {
 var num:Int = 0
 def another() = {
 num = num + 1
 num
 }
}

class Complaint {
 println("This is Complaint "+ ComplaintCount.another())
 def sendTo(who:String) =
 println("Hey " + who + ", I have a complaint!")
}

object SenderBV extends App {
 tellAll(new Complaint())
 def tellAll(c:Complaint) {
 c.sendTo("Tom")
 c.sendTo("Dick")
 c.sendTo("Harry")
 }
}

• Not surprising when we run it: create a complaint, and send it around

> scala SenderBV
This is Complaint #1
Call-by-name complaining

object ComplaintCount {
 var num:Int = 0
 def another() = {
 num = num + 1
 num
 }
}

class Complaint {
 println("This is Complaint #" + ComplaintCount.another())
 def sendTo(who:String) =
 println("Hey " + who + ", I have a complaint!")
}

object SenderBN extends App {
 tellAll(new Complaint())
 def tellAll(c: => Complaint) {
 c.sendTo("Tom")
 c.sendTo("Dick")
 c.sendTo("Harry")
 }
}

• Writing => as a prefix to a method parameter type means that the argument should be passed *call-by-name*
 – Not evaluated when the method is called
 – Evaluated fresh each time the method is used

• Now when we run it, we create a complaint each time we reference c

> scala SenderBN
This is Complaint #1
Hey Tom, I have a complaint!
This is Complaint #2
Hey Dick, I have a complaint!
This is Complaint #3
Hey Harry, I have a complaint!

Call-by-name can boil down boilerplate

If you have used Java’s HashMap classes before, you have probably written code like this:

```scala
V result;
if (map.containsKey(k)) {
  result = map.get(k);
} else {
  result = EXPR;
  map.put(k, result);
}
```
Scala’s equivalent to `HashMap` includes an extra method where the second parameter is call-by-name (indicated by the `=>`):

```scala
def getOrElse(key:K, default: => V): V
def getOrElseUpdate(key:K, defaultValue: => V): V
```

Call-by-name allows these common patterns to be more directly supported in the language.

Call-by-name without side effect

What would call-by-name mean in the context of Haskell?

- Remember that Haskell does not have side-effects
- Does this insight let us optimize call-by-name?

We could:

1. Wait until a formal parameter is used before we evaluate it
2. Share the result of the first evaluation among the other duplications of the actual parameter

- This strategy is known as *call-by-need, or lazy evaluation*
 - In fact, Haskell is defined to be a lazy language
 - We will see how:
 - Haskell associates laziness with data type constructors as well as with function application
 - Laziness allows much greater expressiveness when programming

3.2.6 Lecture 35 — Macros

Macros

- Not all applications of functions to arguments must take place at runtime
- A "function" that generates new source text from arguments is called a *macro*
- Macro facilities are fairly common, but there is great variability in what they can do
 - On one end, the C preprocessor performs simple text substitution
 - At the other end, Common Lisp allows arbitrary Lisp code to be executed at compile time to calculate source code
 - Haskell and Scala also recently added macro systems, which we might try out.
 - Which is at odds with the book’s claim that macros are anachronistic.

C macros

Just simple text substitution

```c
#define LINE_LEN 80
#define PI 3.141592651358979323846264338327950L
#define DIVIDES(a,n) (!((n) % (a)))
#define SWAP(a,b) {int tmp = (a); (a) = (b); (b) = tmp; }
#define MAX(x,y) (((x)<(y) ? (y) : (x))
```

- Was very useful for global or program constants
- Avoids overhead of function calls
- Note the extra parentheses

22
• What if a or b contain a reference to t from some surrounding scope?

• What if we call MAX(++m, ++n)?
 – Rewrites to ((++m)<(++n) ? (++n) : (++m))
 – Would it be a surprise when one variable is incremented twice?

Some things to know about Lisp

• Lisp uses prefix notation: all operators are written with the function first:
 (+ 3 x (* 5 y))
 (append (list 1 2 x) y (list z 8 9))

• The parentheses are for invocation, not grouping
 – Not optional
 – Extras not allowed
 – If you play with Lisp, make your editor highlight matching parentheses

• Lisp has a defconstant form, so we wouldn’t use its macros for LINE_LEN or PI.

Lisp macros

(defun divides (a n)
 `(zerop (mod ,n ,a)))

• The backtick ‘ quotes a piece of syntax to be inserted by the compiler.

• The comma , injects syntax within the quoted expression.

Avoiding name capture

(defun swap (x y)
 (let ((tmp (gensym)))
 `(let ((,tmp ,x))
 (setf ,x ,y
 ,y ,tmp)))))

(defun max (x y)
 (let ((xval (gensym))
 (yval (gensym)))
 `(let (((,xval ,x)
 ,[yval ,y])
 (if (< ,xval ,yval) ,yval ,xval)))))

• gensym creates and returns a new symbol table entry, guaranteed never to be the same as any other symbol

• Note that the calls to gensym are not part of the quoted and returned syntax
 – Evaluated, and their results used, at compile time

• Single evaluation of forms in max
 – C does not have a mechanism for statement-only features like storage allocation with an expression
 – Lisp does not distinguish between statements and expressions
3.3 Heap storage

The other end of memory
In the standard organization of memory, the stack grows from one end, the heap grows from the other

- The stack is organized FIFO
- The heap has no such time guarantees
- Allocations in the heap can vary in size, remain relevant for indeterminate periods

Simple heap management
Recall memory usage in the C/C++ family, or assembly language

- Declare specific data structures via `struct`, or a fixed multiple of size for an array
 - Very little in the way extending a data structure once declared
- One call `malloc` to allocate memory, another call `free` to release it
- Be wary of forgetting to free unused space!
- Be wary of keeping pointers into freed space!
- Fast and low overhead, but a high burden of error-prone space management on the individual application and programmer
- Problems of fragmentation — small, isolated free spaces separated by long-lived structures

Automatic garbage collection
In the 90s, automatic garbage collection became common

- Driven by higher-level (functional, object-oriented) academic languages showing feasibility
- Part of a trend of languages coming with larger and larger runtime systems and operating system links

Mark-and-scan garbage collection

- General idea: allocate heap space from the end of memory towards the stack
 - With each allocation, set aside extra bits for marks
- When the stack and heap collide (or when the heap hits a certain size), pause from executing program, and run garbage collector
- The garbage collector starts with pointers from registers and from the stack into the heap
- “Walks” the pointers, marking everything it finds as in use
- Then everything else must *not* still be in use, and can be re-used
Copying garbage collection

• General idea: divide the heap into two halves, allocate from only one half at a time
 – When that half fills, pause the program and run the garbage collector
• Again starting with live pointers from the heap and stack, copy live heap space from one half to the other half
 – Update pointers as they are walked
 – After copying resume the program, continuing to allocate from the half into which we just copied, until it fills and starts garbage collection again
• Can improve locality of reference, virtual memory performance

Generational garbage collection
Motivation: take advantage of the fact that space which has been used longer will probably also stay in use longer.

Divide the heap into generations, each of which is separately collected
• Older generations are collected less frequently
• Often combined with copy-collection — each generation in two parts, copying from one to the other

Reference counting
An appealing idea
• Every allocated chunk of memory has extra space set aside
• Like mark-scan, but space not used for marks
• Keep a count of the number of other places which point to it
• Circular structures can be a problem

Followup reading: RE-read Scott, Sec. 3.2.3-3.2.4

4 Types
Why types?
• Provide context for operations
 – For example, to distinguish integer and floating-point addition
• Detect and prohibit nonsensical operations
• Documentation which is automatically checked for correctness
• Opportunities for the compiler to optimize performance
 – Because we don’t have to check cases at runtime
 – Or for example register allocation in the presence of pointers
Scalar and composite

- **Scalar** types are indivisible
 - Most built-in types: integers, booleans, characters
 - In many languages, enumerated types
- **Composite** types are data structures with several distinct components
 - Some built-in types: `String` in Java, for example
 - Arrays
 - Most user- and library-defined types

When are two types the same?

- Matters when passing parameters, making assignments.
- Two general ways to decide:
 - Decide based on structure
 - Decide based on their name
- Record types

Structural equivalence

- These should be considered the same:

```c
type R1 = struct {
  int a, b;
}
type R2 = struct {
  int a;
  int b;
}
```

- What if the fields aren’t in the same order?

```c
type R3 = struct {
  int a;
  int b;
}
type R4 = struct {
  int b;
  int a;
}
```

Many (but not all) languages say that these are structurally equivalent
- Once again, it is a choice for the language designer

Name equivalence

- If the name is the same, the type is the same
 - Rules out the R1, R2 equivalence of the previous slide.
- What about type aliases?

```c
typedef old_type new_type;
```
- Of course they should be interchangeable!
  ```c
typedef unsigned int mode_t;
```
- Of course they should not be interchangeable!
  ```c
typedef double degrees_fahrenheit;
typedef double degrees_celsius;
```
- Sometimes and sometimes not?
5 Functional programming and Haskell

5.1 Exercises on Haskell basics

Exercise 5.1. [Hutton Ex. 2.7.2] Correctly parenthesize these numeric expressions:

- $2^3 \times 4$
- $2 \times 3 + 4 \times 5$
- $2 + 3 \times 4^5$

Exercise 5.2. Keller and Chakravarty, [Sec. 1 (First Steps)] Ex. 1-3.

Exercise 5.3. [Keller and Chakravarty] Which of the following identifiers can be function or variable names?

- square_1
- lsquare
- Square
- square!
- =square’=

Exercise 5.4. [Keller and Chakravarty] Define a new function showResult that, for example given the number 123, produces a string as follows:

showResult 123 ==> "The result is 123"

Use the function show in the definition of the new function.

Exercise 5.5. [Includes items from Hutton] Which of these expressions are well-typed, and what types do those expressions have?

- ['a'. 'b'. 'c']
- ('a'. 'b'. 'c')
- ('a'. 'b'. 'c', 'a'. 'b'. 'c')
- ['a'. 'b'. 1]
- ('a'. 'b'. 1)
- [(False, '0'), (True, '1')]
- [(False, True), ('0', '1')]
- ([False, True], ['0', '1'])
- ([False, '0'], [True, '1'])
- [tail, init, reverse]
Exercise 5.6. Write Haskell definitions which have the following types.

- \[(\text{Int, Int})\]
- \(\text{Int} \to \text{Int} \to \text{Bool} \to \text{Int}\)
- \(\text{Char} \to (\text{Char, Char})\)
- \(\text{Int} \to (\text{Int} \to \text{Int}) \to \text{Int}\)

Exercise 5.7. [Hutton Ex. 3.11.3] What types do these functions have? Try to work them out by hand before checking your answers in GHCI.

- \(\text{second } x s = \text{head } (\text{tail } x s)\)
- \(\text{swap } (x,y) = (y,x)\)
- \(\text{pair } x \ y = (x,y)\)
- \(\text{double } x = x \times 2\)
- \(\text{twice } f \ x = f (f x)\)

Exercise 5.8. Write a module \texttt{LesserInt} exporting a single function \texttt{lesserInt} which takes two integers, and returns the one which is lower in value.

To wrap your function in the module \texttt{LesserInt}, create a new file called \texttt{LesserInt.hs} whose first line is \texttt{module LesserInt where}, with your definition for \texttt{lesserInt} on its own line below.

Exercise 5.9. [Keller and Chakravarty] Write a function \texttt{showAreaOfCircle} which, given the radius of a circle, calculates the area of the circle,

\[
\text{showAreaOfCircle 12.3} \\
===> \text{"The area of a circle with radius 12.3cm is about 475.2915525615999 cm}^2\text{"}
\]

Use the \texttt{show} function, as well as the predefined value \texttt{pi :: Floating a => a} to write \texttt{showAreaOfCircle}.

Exercise 5.10. [Keller and Chakravarty] Write a function \texttt{sort2},

\[
\text{sort2 :: Ord a => a -> a -> (a, a)}
\]

which accepts two Int values as arguments and returns them as a sorted pair, so that \texttt{sort2 5 3} is equal to \(3,5\). How can you define the function using a conditional, how can you do it using guards?

Exercise 5.11. [Keller and Chakravarty] Define a module \texttt{IsLower} with a single function

\[
\text{isLower :: Char -> Bool}
\]

which returns \texttt{True} if a given character is a lower case letter. You can use the fact that characters are ordered, and for all lower case letters \texttt{ch} we have \(\text{’a’} \leq \text{ch} \) and \(\text{ch} \leq \text{’z’}\). Alternatively, you can use the fact that \texttt{[’a’..'z’]} evaluates to a list containing all lower case letters. Write your own version of \texttt{isLower}; do not use the standard version in \texttt{Data.Char} (or even import \texttt{Data.Char}).

Exercise 5.12. [Thompson] Write a module \texttt{DoubleAll} exporting one function \texttt{doubleAll} of type \texttt{[Int] -> [Int]} which doubles each element of a list.

Exercise 5.13. [Thompson] Write a module \texttt{Capitalize} exporting one function \texttt{capitalize} which converts all lower-cases letters in its argument to upper-case letters, but leaves the other characters alone. The Haskell \texttt{Data.Char} library contains functions which will be useful here.
Exercise 5.14. [Thompson] Write a module CapitalizeOnly exporting one function capitalizeOnly which converts all lower-cases letter in its argument to upper-case letters, leaves upper-case letters alone, and removes other characters from the result. The Haskell Data.Char library contains functions which will be useful here.

Exercise 5.15. [Thompson] Write a module Matches exporting one function matches of type Int->[Int]->[Int] which returns all occurrences of the first argument in its second argument. So for example, matches 10 [1,10,2,10,3,10,4] returns [10,10,10], and matches 10 [11,14,17,21] returns [].

Exercise 5.16. [Keller and Chakravartey] Write a module Mangle exporting function mangle,

\[
mangle :: \text{String} \rightarrow \text{String}
\]

which removes the first letter of a word and attaches it at the end. If the string is empty, mangle should simply return an empty string:

\[
\begin{align*}
mangle \ "Hello" &= \ "elloH" \\
mangle \ "I" &= \ "I" \\
mangle \ "" &= \ ""
\end{align*}
\]

Exercise 5.17. [Keller and Chakravartey] Write a module Divider with a function dividedBy which implements division on Int,

\[
dividedBy :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}
\]

by first writing a helper function that returns all the multiples of a given number up to a specific limit, and then using list functions on the resulting list.

\[
\begin{align*}
dividedBy \ 5 \ 10 &= 2 \\
dividedBy \ 5 \ 8 &= 1 \\
dividedBy \ 3 \ 10 &= 3
\end{align*}
\]

Exercise 5.18. [Keller and Chakravartey] Define a module LengthTaker with the function length,

\[
\text{length} :: [\text{a}] \rightarrow \text{Int}
\]

It is quite similar to sum and product in the way it traverses its input list. Since length is also defined in the Haskell standard Prelude, hide it by adding the line

\[
\text{import Prelude hiding (length)}
\]

to your module.

Exercise 5.19. [Hutton Ex. 4.8.1, with solution] Use Haskell library functions to define a function halve,

\[
\text{halve} :: [\text{a}] \rightarrow ([\text{a}],[\text{a}])
\]

Exercise 5.20. [Hutton Ex. 4.8.2, with solution] Define a module Third exporting a single function third,

\[
\text{third} :: [\text{a}] \rightarrow \text{a}
\]

which returns the third element in a list, a) Using head and tail. b) Using list indexing !!. c) Using pattern matching.

Exercise 5.21. Write a module LastItem exporting the function lastItem, which returns the last item in a list.
Exercise 5.22. Write a module LastButOne exporting the function lastButOne, which returns the next-to-last item in a list.

Exercise 5.23. [Keller and Chakravarty] Write a module CountOdds exporting a recursive function countOdds which calculates the number of odd elements in a list of Int values:

```haskell
countOdds [1, 6, 9, 14, 16, 22] = 2
```

Hint: You can use the Prelude function odd :: Int -> Bool, which tests whether a number is odd.

Exercise 5.24. [Keller and Chakravarty] Write a module RemoveOdd exporting a recursive function removeOdd that, given a list of integers, removes all odd numbers from the list, e.g.,

```haskell
removeOdd [1, 4, 5, 7, 10] = [4, 10]
```

Exercise 5.25. Write the function isPalindrome, which checks if a list is a palindrome, the same backwards as forwards.

Exercise 5.26. Write a module NeighborDups exporting a function noNeighborDups, which returns a list with consecutive duplicates removed.

Exercise 5.27. Write a module EncodeDecode which exports the function lengthEncode, for example,

```haskell
lengthEncode "Aaabbbcddeeeabb"
==>> [ (1,'A'), (2,'a'), (3,'b'), (1,'c'),
 (2,'d'), (3,'e'), (1,'a'), (2,'b') ]
```

Exercise 5.28. Extend your module EncodeDecode of Exercise 5.27 with the function lengthDecode, opposite of the above.

Exercise 5.29. Write a model ListSplitter exporting the function (splitListAt n xs), which splits a list into two lists, the first one with n elements.

Exercise 5.30. Consider these declarations:

```haskell
infixl 5 'test1'
infixl 7 'test2'
```

Complete the definition of test1 and test2 with two function declarations — it doesn’t matter what they do, just make them distinct enough for you to tell the difference between them as easily as you could tell the difference between other operators like addition and multiplication.

How do ‘test1‘ and ‘test2‘ behave differently with respect to each other? In a series of several applications of each?

Vary the declarations to use infixr and infix instead of infixl, and to use various different numbers. How does this change how the operators behave?

5.2 Functional datatypes

5.2.1 Algebraic data types

Algebraic data types

Haskell declares new data types with the data declaration

```haskell
data TYPENAME = CONSTRUCTOR1 ArgType1-1 ... ArgType1-n
| CONSTRUCTOR2 ArgType2-1 ... ArgType2-m
```
The List type is the same idea, just with special syntax

Pattern matching
All data types can be *pattern-matched* in a function definition or case structure

data Season = Winter | Spring | Summer | Fall

isFall Fall = True
isFall _ = False

Similarly for lists and for built-in enumerated types like Int

Exercise 5.31. [Keller and Chakravarty] Write a module `Days` which exports:

- The definition of `Day` from this page. Module `Days` should export both the name of the type, and the names of its constructors.
- A function which, given a day, returns the data constructor representing the following day:

  ```haskell
  nextDay :: Day -> Day
  ```

Exercise 5.32. [Thompson] Write a module `MonthsAndSeasons` which exports a type `Month` as an algebraic type for the twelve months (use the full name of the month as constructors, and export both the type and constructor names), and a function `monthSeason` which maps a month to its member of the type `Season`.

Exercise 5.33. [Thompson] Consider a module `Shapes` with this type of geometric shapes,

```haskell
 data Shape = Circle Float
             | Rectangle Float Float
```

encapsulating a value for the radius of a circle, or the dimensions of a rectangle.

1. Add functions `area` and `perimeter` which take a `Shape` as an argument, and return the value of the respective property of that shape.
2. Add a constructor `Triangle` to `Shape` for triangles. The new constructor should take three `Float` values, the length of the sides of the triangle.
3. Add cases to `area` and `perimeter` for `Triangle`.

Exercise 5.34. [Keller and Chakravarty] How would you define a data type to represent the different cards of a deck of poker cards? How would you represent a hand of cards?

Define a function `value21` which, given a hand of cards calculates its values according to the 21- (Blackjack) rules: that is, all the cards from 2 to 10 are worth their face value. Jack, Queen, King count as 10. The Ace card is worth 11, but if this would mean the overall value of the hand exceeds 21, it is valued at 1.
Exercise 5.35. The standard functions `head` and `tail`,

```haskell
head :: [a] -> a
tail :: [a] -> [a]
```
are partial. a) [Keller and Chakravarty] Implement total variants `safeHead` and `safeTail` by making use of `Maybe` in the function results. b) [Hutton Ex. 4.8.3 with solution] Implement `safeTail` to return an empty list where `tail` returns an error,

- Using a conditional expression
- Using guarded equation
- Using pattern matching.

Exercise 5.36. [Keller and Chakravarty] Write a function `myLength`

```haskell
myLength :: [a] -> Int
```
that, given a list `l`, returns the same result as `length l`. However, implement `myLength` without any explicit pattern matching on lists; instead, use the function `safeTail` from the previous exercise to determine whether you reached the end of the list and to get the list tail in case where the end has not been reached yet.

List comprehension notation
Express one list in terms of other lists

```haskell
*Prelude> [ 2*x | x <- [1,2,3] ]
[2,4,6]
*Prelude> [(x,y) | x <- [1,2,3], y <-['a', 'b', 'c']] [(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b'),(2,'c'),(3,'a'),(3,'b'),(3,'c')]
*Prelude> [ x | x <- [1..10], x 'mod' 3 == 1 ]
[1,4,7,10]
```

Exercise 5.37. Use list comprehension notation to complete this function definition to take a list of integers, and return a list containing only the elements of the argument which are divisible by three:

```haskell
dividesByThree :: [Int] -> [Int]
dividesByThree xs = [ x | x <- xs
```

Exercise 5.38. Use list comprehension notation to write the function `capVowelsFirst` that takes a list of strings, and return a list containing only the elements of the argument which start with a capital vowel.

5.2.2 Leftist heaps
Trees and heaps
Lovely memories from the simpler days of CS340

- A tree is a structure which can either be
 - Empty, or
 - A node, with a value plus subtrees

In a binary tree, every node has two subtrees

- A heap, generally speaking, is a structure used for finding and deleting minimum elements
- Often implemented through an array, or as a binary tree
- The value at any node is no larger than the values at either child

Tree rank
The rank of a tree node is the length of its right spine

Exercise 5.39. Write a Haskell data type BlackWhiteTree with two constructors
- Black, which takes two BlackWhiteTree arguments
- White, which takes no arguments

Encode each of the above examples (plus the one below) as BlackWhiteTree values with names bw1, bw2, etc.

Exercise 5.40. For your BlackWhiteTree type of Exercise 5.39 write a function bwNodeRank which returns the rank of the top node of a BlackWhiteTree.

The leftist property
A tree has the leftist property when the rank of any left child is at least as big as the rank of its right sibling

A leftist heap is a heap based on a binary tree with the leftist property
- We will see that leftist heaps support a nice merging behavior

Exercise 5.41. For your BlackWhiteTree type of Exercise 5.39 write a function bwHasLeftist which returns True when given the root node of a tree with the leftist property.
A leftist heap of floating point values
Let’s design a leftist heap LDH for holding floating-point values

The heap should support these operations:

```haskell
emptyHeap :: LDH
isEmpty :: LDH -> Bool
insert :: Double -> LDH -> LDH
merge :: LDH -> LDH -> LDH
findMin :: LDH -> Double
deleteMin :: LDH -> LDH
```

The last four functions should all preserve both heap ordering and the leftist property

Standard trick: store the rank

• To speed comparisons, we store the rank in each node
• To better guarantee properties, we restrict access to the constructors

```haskell
module LeftistDoubleHeap (LDH, emptyHeap, isEmpty, insert, merge, findMin, deleteMin) where

data LDH = EmptyLDH | NodeLDH Int Double LDH LDH

Some helper functions
We will need the rank of nodes

```haskell
leftistRank :: LDH -> Int
leftistRank EmptyLDH = 0
leftistRank (NodeLDH n _ _ _) = n
```

Assemble a NodeLDH so that we satisfy the leftist property

```haskell
makeLDH :: Double -> LDH -> LDH -> LDH
makeLDH e h1 h2 = let r1 = leftistRank h1
 r2 = leftistRank h2
 in if r1 >= r2
 then NodeLDH (1+r2) e h1 h2
 else NodeLDH (1+r1) e h2 h1
```

The easy ones
Returning and testing for an empty tree is straightforward

```haskell
emptyHeap :: LDH
emptyHeap = EmptyLDH

isEmpty :: LDH -> Bool
isEmpty EmptyLDH = True
isEmpty _ = False
```
Merging two heaps
The main decision in merging two trees is picking the smaller of the two top elements to be the new top element

• We merge the right spines in the same way that we can merge sorted lists
• Since the right spine is never longer than the left spine, we are assured of \(O(\log n)\) merging
• The makeLDH helper assures that the leftist property is upheld

merge :: LDH -> LDH -> LDH
merge EmptyLDH h = h
merge h EmptyLDH = h
merge h1@(NodeLDH _ e1 l1 r1) h2@(NodeLDH _ e2 l2 r2) =
  if e1<e2
    then makeLDH e1 l1 (merge r1 h2)
    else makeLDH e2 l2 (merge h1 r2)

Merging example

merge (NodeLDH 3 1.1 aa (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH)))
  (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH))
==>
if 1.1 < 2.0
then makeLDH 1.1 aa (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
  (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
else makeLDH 2.0 dd
  (merge (NodeLDH 3 1.1 aa (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH)))
  (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
==>
makeLDH 1.1 aa (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
  (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
==>
makeLDH 1.1 aa
  (if 3.0<2.0
    then makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH)
      (NodeLDH 2 2.0 dd (NodeLDH 1 4.2 ee EmptyLDH)))
    else makeLDH 2.0 dd (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
      (NodeLDH 1 4.2 ee EmptyLDH)))
==>
makeLDH 1.1 aa
  (makeLDH 2.0 dd (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
    (NodeLDH 1 4.2 ee EmptyLDH)))
==>
makeLDH 1.1 aa (makeLDH 2.0 dd
  (if 3.0 < 4.2
    then (makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH)
      (NodeLDH 1 4.2 ee EmptyLDH)))
    else (makeLDH 4.2 bb (merge (NodeLDH 2 3.0 bb (NodeLDH 1 5.4 cc EmptyLDH))
      EmptyLDH))))
==>
makeLDH 1.1 aa (makeLDH 2.0 dd
  (makeLDH 3.0 bb (merge (NodeLDH 1 5.4 cc EmptyLDH) (NodeLDH 1 4.2 ee EmptyLDH))))
==>
makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb
  (if 5.4 < 4.2
    then (makeLDH 5.4 cc (merge EmptyLDH (NodeLDH 1 4.2 ee EmptyLDH)))
    else (makeLDH 4.2 ee (merge (NodeLDH 1 5.4 cc EmptyLDH) EmptyLDH))))
==>
makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb (makeLDH 4.2 ee
  (merge (NodeLDH 1 5.4 cc EmptyLDH) EmptyLDH)))
==>
makeLDH 1.1 aa (makeLDH 2.0 dd (makeLDH 3.0 bb (makeLDH 4.2 ee
  (NodeLDH 1 5.4 cc EmptyLDH)))

35
**Insertion and deletion can just use heap merging**

```haskell
insert :: Double -> LDH -> LDH
insert e h = merge (NodeLDH 1 e EmptyLDH EmptyLDH) h
```

```haskell
findMin :: LDH -> Double
findMin EmptyLDH = error "Reading from empty heap"
findMin (NodeLDH _ e _ _) = e
```

```haskell
deleteMin :: LDH -> LDH
deleteMin EmptyLDH = error "Deleting from empty heap"
deleteMin (NodeLDH _ _ h1 h2) = merge h1 h2
```

**Exercise 5.42.** Assemble the module `LeftistDoubleHeap`, and define several example heaps, extracting information from each.

**References**


### 5.2.3 Red-black trees

**Red-black trees**

A balanced tree has the same number of elements and the same depth on the left- and right-sides of every node

- Balanced trees guarantee $O(\log n)$ operations in many cases
- True balance can be expensive to maintain, so a number of algorithms allow us to approximate balance more cheaply
- **Red-black trees** are an approximation to balanced trees
  - Not perfectly balanced, but close enough

Starts with an ordered binary tree

- No duplicate elements, modeling a set

Adds a color, red or black, to each node of the tree

- Leaves are considered black

Plus two invariants about the structure of the tree:

1. All paths from the root of the tree to an empty leaf must have the same number of black nodes
2. No red node has a red child

**Red-black tree data type**

We’ll design an implementation for red-black trees holding floating-point values

- Could also model the color with a `Bool` field, for example `True` for black and `False` for red

```haskell
module RedBlackDoubleTree (RBDT, emptyTree, isEmpty, member, insert) where

data Color = Red | Black

data RBDT = EmptyRBDT
 | BranchRBDT Color RBDT Double RBDT
```
Exercise 5.43. Write a function `verifyRBinvariants` which checks that an RBDT value satisfies the invariants that

1. Its numbers come in order
2. No red node has a red child
3. Every path from the root to an empty leaf has the same number of black nodes

Make sure that your function traverses the tree only once, and does not re-descend to re-count the black nodes at every branch (there is a hint for this last requirement on page 102).

Basic operations

- Empty trees are straightforward

```haskell
emptyTree :: RBDT
emptyTree = EmptyRBDT

isEmpty :: RBDT -> Bool
isEmpty EmptyRBDT = True
isEmpty _ = False
```

- Checking for membership is just as in any ordered binary tree

```haskell
member :: Double -> RBDT -> Bool
member _ EmptyRBDT = False
member e (BranchRBDT _ lt e0 rt) =
 case compare e e0 of
 LT -> member e lt
 EQ -> True
 GT -> member e rt
```

Top-level insertion

We will adopt the helpful convention that our trees will always have a black root node, even if top-level manipulations end with a red root

```haskell
insert e t =
 case helper e t of
 (BranchRBDT _ lt e0 rt) -> BranchRBDT Black lt e0 rt
 _ -> error "Internal error"
 -- Because helper never returns an empty node
```

Insertion and balancing

- Superficially the helper looks like recursive colorless sorted-tree insert, but does extra work to preserve the invariants

```haskell
helper :: Double -> RBDT -> RBDT
```

- The helper returns a singleton tree when it reaches an empty leaf

```haskell
helper e EmptyRBDT = BranchRBDT Red EmptyRBDT e EmptyRBDT
```
To preserve the number of black nodes on each path, the new node is red

• But this may give us a red node with a red child

\[
\text{helper } e \text{ tt } (\text{BranchRBDT } cl \ lt \ e0 \ rt) = \\
\quad \text{if } e<e0 \\
\quad \quad \text{then balance } cl \ (\text{helper } e \ lt) \ e0 \ rt \\
\quad \quad \text{else if } e>e0 \\
\quad \quad \quad \text{then balance } cl \ lt \ e0 \ (\text{helper } e \ rt) \\
\quad \quad \text{else tt}
\]

So we apply a separate balance function instead of the BranchRBDT constructor to check for violations of the red-red invariant

When the helper breaks the red-red invariant

\[
\text{helper adds a new bottommost node}
\]

\[
\begin{align*}
\text{balance Black a x} \\
\quad (\text{BranchRBDT Red (BranchRBDT Red b y c)} \\
\quad \quad z d) &= \\
\text{BranchRBDT Red (BranchRBDT Black a x b)} \\
\quad \quad y (\text{BranchRBDT Black c z d})
\end{align*}
\]

balance must find the bad pattern

• When using a subtree with a red root which has a red child
• Which can only happen if parent node is black
• Rearrange the tree to restore the invariants
• Push the forbidden red-red pair upwards

Four cases which balance must find

\[
\begin{align*}
\text{balance} :: \text{Color } & \rightarrow \text{RBDT } \rightarrow \text{Double } \rightarrow \text{RBDT } \rightarrow \text{RBDT} \\
\text{balance Black (BranchRBDT Red (BranchRBDT Red a x b)} & \ y c) \ z d = \\
\text{BranchRBDT Red (BranchRBDT Black a x b)} & \ y (\text{BranchRBDT Black c z d}) \\
\text{balance Black (BranchRBDT Red a x (BranchRBDT Red b y c)}) & \ z d = \\
\text{BranchRBDT Red (BranchRBDT Black a x b)} & \ y (\text{BranchRBDT Black c z d}) \\
\text{balance Black a x (BranchRBDT Red (BranchRBDT Red b y c)) & \ z d) = } \\
\text{BranchRBDT Red (BranchRBDT Black a x b)} & \ y (\text{BranchRBDT Black c z d}) \\
\text{balance Black a x (BranchRBDT Red b y (BranchRBDT Red c z d))} & = \\
\text{BranchRBDT Red (BranchRBDT Black a x b)} & \ y (\text{BranchRBDT Black c z d}) \\
\text{balance color left root right} & = \text{BranchRBDT color left root right}
\end{align*}
\]

• Can you see now the two reasons why we always set the color of the final root node to black?
Exercise 5.44. Assemble the module RedBlackDoubleTree, and define several example trees, extracting information from each. Use your function verifyRBinvariants from Exercise 5.43 to make sure it behaves correctly.

Exercise 5.45. We can optimize this code slightly based on the way helper knows whether its recursive call is in the left or right subtree. Replace balance with two functions balanceLeft and balanceRight, which check for a red-red violation only in the left or right subtree, respectively. Then update helper to call the appropriate replacement for balance. Use your function verifyRBinvariants from Exercise 5.43 to make sure it behaves correctly.

References


5.2.4 Huet’s Zipper

Locations within a tree

Sometimes we need to discuss not just a tree (or other structure) but a particular subtree of the overall structure

- For example, to visually navigate a structure
  - Moving left and right, up and down
  - Possibly editing along the way

- We need to separate one subtree from its context

- The zipper is a technique for implementing this shifting view

- Intuitively, the technique peels up part of a structure, as if turning a glove inside-out when removing it from your hand

We will work on a general tree

data Tree = Branch [Tree]  
          | Leaf Double

It is unusual to have no values at branches, but it will simplify the presentation

What is a context?

If we grab on to the link between a branch and one of its child trees, what is the context that we find on the other end from that branch?

- Siblings to its left
- Siblings to its right
  - The siblings are just trees
- More context above
  - Up to the root node
- We can encode the context as a data type

  data Context = Root  
                  | Siblings [Tree] Context [Tree]

- Then a tree with a particular subtree highlighted is just a pair of this context and the subtree

  data Location = Loc Context Tree
Moving around within a node

What does it mean to "navigate" from a node to one of its siblings?

For example, if we "move right"

• The first sibling to the right becomes the subtree of interest
• The previous subtree of interest becomes a new sibling to the left

\[
\text{goRight } (\text{Loc } (\text{Siblings } l:ls \ p \ r:rs)) \ t = \text{Loc } (\text{Siblings } t:ls \ p \ rs) \ r
\]

\[
\text{goRight } _ = \text{error } "\text{Cannot go right}"
\]

And similarly for moving left

\[
\text{goLeft } (\text{Loc } (\text{Siblings } l:ls \ p \ rs) \ t) = \text{Loc } (\text{Siblings } ls \ p \ (t:rs)) \ l
\]

\[
\text{goLeft } _ = \text{error } "\text{Cannot go left}"
\]

• Note that the left siblings are stored with the nearest first
  – So reversed from a left-to-right ordering

Moving up

What about moving up in the tree?

• The previous subtree of interest, plus the siblings of the current context, become part of a new branch node of interest
• The context above the old context becomes the new context

\[
\text{goUp } (\text{Loc } (\text{Siblings } ls \ p \ rs) \ t) = \text{Loc } p \ (\text{Branch } \ (\text{pushOnto } ls \ (t:rs)))
\]

\[
\text{where } \text{pushOnto } [] \ xs = xs
\]

\[
\text{pushOnto } (y:ys) \ xs = \text{pushOnto } ys \ (y:xs)
\]

\[
\text{goUp } _ = \text{error } "\text{Cannot go up}"
\]

Descending into a child node

• Its first child becomes the current subtree
• Its other siblings, plus the old context above, become the new context

\[
\text{goDown } (\text{Loc } p \ (\text{Branch } (t:ts))) = \text{Loc } (\text{Siblings } [] \ p \ ts) \ t
\]

No descending into a leaf, or an empty branch

• We identify with the link between parent and child, and there are no links below a leaf

Adding a subtree

We can make changes to the tree as we navigate it

• Since we reassemble tree and context structure as we go, we do not need to change nonlocal structures

Moving to the left or right is straightforward

\[
\text{insertLeft } (\text{Loc } (\text{Siblings } ls \ p \ rs) \ d) \ t = \text{Loc } (\text{Siblings } (t:ls) \ p \ rs) \ d
\]

\[
\text{insertRight } (\text{Loc } (\text{Siblings } ls \ p \ rs) \ d) \ t = \text{Loc } (\text{Siblings } ls \ p \ (t:rs)) \ d
\]

When we insert into the branch below, the new subtree becomes the current focus

\[
\text{insertBelow } (\text{Loc } p \ (\text{Branch } \ sibs)) \ t = \text{Loc } (\text{Siblings } [] \ p \ sibs) \ t
\]
Removing the current subtree

Removing is a little complicated, because if we remove the current subtree then we also need to move

- We need to pick default directions
- Move right if possible, else try left, else try up

\[
\begin{align*}
\text{prune } (\text{Loc } (\text{Siblings } ls p (r:rs)) _) & = \text{Loc } (\text{Siblings } ls p rs) r \\
\text{prune } (\text{Loc } (\text{Siblings } (l:ls) p []) _) & = \text{Loc } (\text{Siblings } ls p []) l \\
\text{prune } (\text{Loc } (\text{Siblings } []) p []) & = \text{Loc } p (\text{Branch } []) \\
\text{prune } (\text{Loc } \text{Root } _) & = \text{error } "\text{Cannot prune root node}" \\
\end{align*}
\]

Derivatives

How do we think about zippers for arbitrary data types?

- The intuition comes from the derivatives of calculus
- \( d(u+v)=du+dv \)
- \( d(uv)=udv+vdu \)
- Multiplication is analogous to gathering data together in a tuple or with a constructor
- Addition is analogous to the alternative constructors allowed for a data type
- So the context associated with a pair would be *either*
  - A regular left element, plus a context to the right; or
  - A context to the left, and a regular right element
- And if a type can have one of two forms, then contexts over that type will also have one of two forms

Exercise 5.46. Extend the general trees and contexts of this section to have a value associated not just with the leaves, but with branches as well.

Exercise 5.47. Develop a notion of contexts for binary trees.

References

5.2.5  Laziness in data structures

Haskell evaluation does as little as possible

What does this function do with its first and third arguments?
secondOfThree _ x _ = x

It is literally true that it does nothing with these arguments — *Haskell does not even evaluate them*

• You can prove this to yourself with this expression:

  secondOfThree (error "Boom") 1 (error "Boom")

• Returns 1 — and does not throw an error

• This is *laziness* — not evaluating an argument until it is actually needed

And it’s finely-grained

Whenever a function doesn’t require *some parts* of an argument, *those parts won’t necessarily be evaluated*

• secondOfList (_:_x:_:_n) = x

  If we apply this function to a list with errors, we won’t trigger these errors if the second element of the list doesn’t have errors

  secondOfList (error "el" : 3 : error "rest of the list")

  This expression returns 3

• Laziness applies not just to function application, but also to data constructors

• Until themselves pattern-matched, data structure components will not be evaluated

Unbounded lists

• We can describe lists which are *arbitrarily long*

• If we do something that requires the whole list (like displaying it, or foldl), then of course our program will not terminate productively

• But if we use a function like take or takeWhile then we can draw only as much as we need

Specifying an unending list

• Simple cases

  onesForever = 1 : onesForever
  twoAndUp = [2..]
  fromThreeByFives = [3,8..]
  byTens = byTens’ 10 where byTens’ x = x : byTens’ (10+x)

**Exercise 5.48.** Complete the recursive function genFibs in the style of byTens so that we could use genFibs to define a list corresponding to the Fibonacci numbers.

genFibs :: Int -> Int -> [Int]
genFibs n1 n2 = n1 : -- FILL IN HERE

The first argument \(n1\) corresponds to the present "first" element of the list of numbers, and the two arguments to the recursive call should lead to subsequent elements.

Prelude> take 6 (genFibs 10 100)
[10,100,110,210,320,530]
Exercise 5.49. Use genFibs from the previous exercise to define the list fibs of Fibonacci numbers.

Prelude> take 10 fibs
[0,1,1,2,3,5,8,13,21,34]

Exercises ??-??

Write recursive function genFibs in the style of byTens so that we could use genFibs to define a list corresponding to the Fibonacci numbers, and use it to define the standard list of all Fibonacci numbers starting 0, 1, 1, and so on.

Laziness in data structures

The Sieve of Eratosthenes

* Write out the numbers we’re interested in testing for primality

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

The Sieve of Eratosthenes

* Write out the numbers we’re interested in testing for primality

* 1 is not a prime, so scratch it out

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

The Sieve of Eratosthenes

* Write out the numbers we’re interested in testing for primality

* 1 is not a prime, so scratch it out

* Look at the lowest unmarked number — mark it as prime
The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
- But strike out its multiples — they’re definitely not prime

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
- But strike out its multiples — they’re definitely not prime
- And so on with the new lowest unmarked number
The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
- But strike out its multiples — they’re definitely not prime
- And so on with the new lowest unmarked number, and so on

```
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100
```

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
- But strike out its multiples — they’re definitely not prime
- And so on with the new lowest unmarked number, and so on, and so on

```
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100
```

The Sieve of Eratosthenes

- Write out the numbers we’re interested in testing for primality
- 1 is not a prime, so scratch it out
- Look at the lowest unmarked number — mark it as prime
- But strike out its multiples — they’re definitely not prime
- And so on with the new lowest unmarked number, and so on, and so on, and so on

45
So let’s code that up

Fibonacci numbers vs. primes
In all of the by-tems, Fibonacci numbers and prime numbers examples, we generate the list one element at a time

• Of course — as for any linked list!

• More to the point: we write code responsible for generating only one "next" element, and leave the rest of the elements to subsequent evaluations

• In byTens, the next list element was just a function argument
  – Set up future list elements by changing the argument to the recursive call

• In genFibs, same idea, just need two arguments

• For prime numbers, the helper function argument is the list of candidates for prime numbers under Eratosthenes’s algorithm
  – On each pass, we recognize the first of the candidates as prime
  – Filter its multiples from the list of candidates passed to the recursive call

Coding up the sieve

• One pass of the sieving algorithm:
  – Accept the first element as prime
  – Remove all multiples of the first element from the rest of the list
  – Sieve what’s left

\[
sieve (x:xs) = x : sieve (filter (\z -> z \mod' x > 0) xs)
\]

• Then the list of all prime numbers is just

\[
primes = sieve [2..]
\]

• So long as we don’t try to find the last element of the list!

*Prelude> take 30 primes

*Prelude> head (filter (> 10000) primes)
10007
So how do the various list functions work with nonterminating lists?

- Recall `foldl` and `foldr`.

  \[
  \text{foldl} \ f \ z \ [] = z \\
  \text{foldl} \ f \ z \ (x:xs) = \text{foldl} \ f \ (f \ z \ x) \ xs
  \]

  \[
  \text{foldr} \ f \ z \ [] = z \\
  \text{foldr} \ f \ z \ (x:xs) = f \ x \ (\text{foldr} \ f \ z \ xs)
  \]

- What if we want to apply a folding function to a list like `primes`?
  
  - (Say, with an \( f \) that constructs some other data structure)

- `foldl` will try to deconstruct the list all the way to the end before returning anything else

- If \( f \) returns some data constructor, then `foldr` can avoid trying to traverse the whole list

5.3 Parametric polymorphism

5.3.1 Polymorphic functions

What type do these functions have?

- What type does \( f \) have?

  \[
  f :: \text{Int} \rightarrow \text{Int} \\
  f \ x = x
  \]

  - \( \text{Int} \rightarrow \text{Int} \), of course

- What type does \( g \) have?

  \[
  g \ x = x
  \]

  - It could have type \( \text{Int} \rightarrow \text{Int} \)
    
    * But it could have type \( \text{String} \rightarrow \text{String} \)
    * Or \( [\text{Int}] \rightarrow [\text{Int}] \)
    * Or \( \text{Bool} \rightarrow \text{Bool} \)
    * Or \( \text{Double} \rightarrow \text{Double} \)
    * Or \( (\text{Double, Int, String}) \rightarrow (\text{Double, Int, String}) \)

  - Is there any type Haskell type \( a \) for which \( g \) could not have type \( a \rightarrow a \)?
    
    * No! Absolutely any \( a \) works

Polymorphic functions

We can write (or Haskell can deduce) *polymorphic* function types with unspecified parts to them

- Just as Java can have generic methods and classes
  
  - In functional languages, you’ll see the phenomenon referred to as *polymorphic* more often than *generic*

- Polymorphic functions

  \[
  a \rightarrow a \\
  ([\text{Char}], a) \rightarrow b \rightarrow [\text{Char}] \rightarrow (a \rightarrow b)
  \]
• What are these \(a, b, c\)?
  – *Type variables*
  – Quantified outermost, so \(t \rightarrow t\) means \(\forall t. (t \rightarrow t)\)
  – Write type variables with an initial lower-case letter

• What about a function of type \(\text{Int} \rightarrow a\) — could such a function exist?
  – Yes, but it is not very interesting
    
    ```haskell
 boring :: Int \rightarrow a
 boring z = error "How dull, always an error"
    ```
  – In a certain sense, we cannot expect to get more information ("Any type! Any at all!") from a function than we put in ("Just an Int, nothing else")

**Benefits of polymorphic types**

• Detect and prohibit further nonsensical operations

• *Finer-grained* documentation which is automatically checked for correctness

• Reduce code duplication

• More easily distinguish bugs in using a library from bugs within a library

5.3.2 **Polymorphic data types**

**Data types can be polymorphic too**

• You may already have noticed that functions on lists can be polymorphic

```haskell
reverse :: [a] \rightarrow [a]
reverse xs = rev' [] xs
 where rev' acc [] = acc
 rev' acc (x:xs) = rev' (x:acc) xs
```

  – Lists are a **polymorphic type**
  – So what is the type of the empty list (outside of a context which restricts it)?

• Your types can be polymorphic too

```haskell
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
 | Leaf a

binaryTreeMap f (Leaf x) = Leaf (f x)
binaryTreeMap f (Branch t1 t2)
 = Branch (binaryTreeMap f t1) (binaryTreeMap f t2)
```

  – Here we distinguish the **type constructor** `BinaryTree` from types like `BinaryTree Int`, `BinaryTree Float`, or `BinaryTree a`.

  – By itself, `BinaryTree` is not a type
One second thought
How does search in this binary tree work?

```haskell
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
 | Leaf a

binaryTreeMap f (Leaf x) = Leaf (f x)
binaryTreeMap f (Branch t1 t2)
 = Branch (binaryTreeMap f t1) (binaryTreeMap f t2)

• With abstracted types like a, we cannot assume things about them, like whether they are an Int or String
• We also cannot assume that they support comparison!
• To define binary trees as we would really expect, we will need other tool from Haskell’s toolkit — another day

Collections classes
In many languages, collections classes are the best-known use case of polymorphic types
• $\text{Set}<A>$, $\text{Map}<A,B>$, $\text{List}<A>$
• Avoid casts from versions of the collections library which just use Object as the type of all contents

5.3.3 Further type definitions
There are two more ways of defining a new type in Haskell
• One way is a type synonym, keeping equivalence
• Another way does not preserve interchangeability

Equivalent synonyms via type
type defines an abbreviation for our convenience
• The prelude defines String this way:

```haskell
type String = [Char]
```

We can use String in our our type or instance declarations, but ghci can’t always echo the name back to us
• We can give type variables for polymorphic types as well:

```haskell
type ListOfTuplesWithInt a = [(a,Int)]
tupWith1 :: ListOfTuplesWithInt Bool
tupWith1 = [(True, 3), (False, 4), (False, 5)]
```

Distinct synonyms via newtype
newtype defines a type synonym which is not interchangeable with the original
• newtype DifferentTuple = DiffTup (Int, String)
• We use it as if it had been declared with data

```haskell
intFromDiffTup (DiffTup (n,__)) = n
```
• But there are important differences with data
There can be only one constructor form
- That constructor can have only one value associated with it
 * Which is why we have a tuple here, and not two separate values
- The overhead of distinguishing the different data constructors can be compiled away

* The usual style with newtype is to give the type and constructor the same name

```haskell
newtype DifferentTuple = DifferentTuple (Int, String)
intFromDiffTup (DifferentTuple (n,_)) = n
```

* Optionally, we can also declare an accessor function at the same time

```haskell
newtype DifferentTuple
  = DifferentTuple { getDiffTup :: (Int, String) }
```

* And type variables are allowed

```haskell
newtype ZZ a = ZZ { getZzA :: a }
```

Using newtype for alternative instances

One use of newtype is to associate different instance declarations with a type.

```haskell
newtype WordInt = WI Int

instance Show WordInt where
  show (WI 0) = "zero"
  show (WI 1) = "one"
  show (WI 2) = "two"
  show (WI 3) = "three"
  show (WI 4) = "four"
  show (WI 5) = "five"
  show (WI 6) = "six"
  show (WI 7) = "seven"
  show (WI 8) = "eight"
  show (WI 9) = "nine"
```

Exercise 5.50. Consider the declaration:

```haskell
newtype NewTypeExampleWithInt = { theInt :: Int }
```

What type does Haskell tell you that the function theInt has? Create some NewTypeExampleWithInt values; how do you use them with theInt? What results do you get?

5.4 Higher-order functions

5.4.1 Functions as values

First-class citizens

In Haskell, we say that functions are *first-class citizens* of the language.

What does this mean?

- We can write them as standalone constants *without necessarily binding them to a name* — just as for any other value.
• We can pass them to another function, so that a formal parameter has function type; or bind them to a local name — just as with any other value

• We can return one function from another function — just as any with other value

• We can use anonymous function constants, or names locally bound to a function, in just the same way as names globally bound to a function — just as any with other value

A function is a mapping from arguments to results
We can describe that mapping as a lambda expression
\arg -> result

The backslash abbreviates the Greek letter \(\lambda \).
\(\x -> x+1 \)
\(\ss -> "Pre" + ss \)

There can be multiple parameters
\(\x \ y -> 2*x+y \)

Sometimes called a lambda abstraction
• Abstracting the names over the body of the result

Scope
Functions can refer to names outside the scope of their arguments
\(\a -> \sin (2*a + \pi/2) \)

This is valid even for local names
let \(x = 5*\pi \) in \(\z -> \sin (x + z/2) \)

Note that Java has a limited facility for \(\lambda \) abstractions
(int \(x \), String \(y \)) \(-> x + y.length() \)

• Since Java 8

• Understood by Java as an anonymous class implementing a single-method interface

• Has stricter rules for shadowing, using out-of-scope names

Functions as arguments
We can pass functions as arguments to other functions
callWithThree :: (Int->Int) \(-> \) Int
callWithThree f = f 3
double x = x+x
triple x = 3*x

• callWithThree double returns 6

• callWithThree triple returns 9

The functions can be polymorphic
callWithThree :: (Int->a) -> a
 callWithThree f = f 3
howManyZs 0 = ""
howManyZs n = "Z" : howManyZs (n-1)

- callWithThree double still returns 6
- callWithThree triple still returns 9
- callWithThree howManyZs returns "ZZZ"

Functions as results
Functions can also return another function as a result

whichIncrementer :: Bool -> (Int -> Int)
whichIncrementer x = if x then (\x -> x+1) else (\y -> y+2)

- So (whichIncrementer True) 10 returns 11
- (whichIncrementer False) 20 returns 22

How we write types

- Recall how we write the types for multi-argument functions

 myFormula :: Int -> Int -> Int
 myFormula m n = 20*m + n

- In particular, we do not write the type like this:

 (Int, Int) -> Int

- The notation suggests that there are several functions involved
 - There are!
 - Functions in this form are said to be curried

Currying

- Let’s say we need a function of type Int->Int

- We can give myFormula one of its arguments now, and (presumably) others later

 myFormula :: Int -> Int -> Int
 myFormula m n = 20*m + n
 let needsOneInt :: Int -> Int
 needsOneInt = myFormula 100
 in needsOneInt 5
 - Returns 2005

- Since myFormula is curried, we can partially apply it
It’s not a cooking reference

Haskell Brooks Curry

• Born 1900 in Massachusetts, majored in mathematics at Harvard, then returned for a master’s in physics
• During his master’s work, learned of the then-ongoing work of Whitehead and Russell to ground mathematics in formal logic
• Returned to mathematics for his Ph.D., focusing on the new combinatorial logic of Schoenfinkel
• Spent most of his career at Pennsylvania State College
• Retired 1970, died 1982

Combinatory logic and its impact

• Similar in scope to Church’s lambda calculus
• Wrote and taught extensively about combinatory logic and the logical foundations of mathematics
• Memorialized with the Curry-Howard correspondence, Curry’s paradox, and three programming languages named after him

Operator sectioning

Partial application also allies to binary operators

• In this context, also known as sectioning
• Requires parentheses

\[
gg = (2 +) \\
hh = (* 5) \\
kk = (1.0 /) \\
\]

So

• \(gg \) 10 reduces to 2+10
• \(hh \) 10 reduces to 10*5
• \(kk \) takes the reciprocal if its argument

But note that \((- 1)\) is not a function value, it is a number one less than zero

• Use \((-)\) 1 to section subtraction
References

- Image of HB Curry by Gleb Svechnikov, licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

5.4.2 Patterns of recursion over lists: filter, map, fold

Finding patterns

```
sumOneTo :: Int -> Int
sumOneTo x | x>0 = x + sumOneTo (x-1)
sumOneTo _ = 0
```

```
prodOneTo :: Int -> Int
prodOneTo x | x>0 = x * prodOneTo (x-1)
prodOneTo _ = 1
```

Three patterns of behavior on lists

Filtering Derive one list from another by selecting some of its arguments

Mapping Transform one list to another by transforming its individual elements

Folding Combine the elements of list with each other to produce a result

Filtering

Given a list of integers, return a list of the even integers in the argument list

```
justEvens :: [Int] -> [Int]
justEvens [] = []
justEvens (x:xs) | x 'mod' 2 == 0 = x : justEvens xs
jus\text{tEvens} (_:xs) = jus\text{tEvens} xs
```

Given a string, return a string of only the lower-case letters in the original string (assuming `Data.Char` imported for `isLower`)

```
justLower :: String -> String
justLower [] = []
justLower (x:xs) | isLower x = x : justLower xs
justLower (_:xs) = justLower xs
```

Given a list of lists, return the list containing only the lists of length 2 or more from the argument

```
justLengthy :: [[a]] -> [[a]]
justLengthy [] = []
justLengthy (x:xs) | length x > 1 = x : justLengthy xs
justLengthy (_:xs) = justLengthy xs
```

These functions operationally differ only in the tested condition

The filter function

We can pass a predicate as an extra parameter

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
cfilter p (x:xs) | p x = x : filter p xs
cfilter p (_:xs) = filter p xs
```

54
Exercise 5.51. Define justEvens, justLower and justLengthy using filter instead of explicit recursion.

Mapping one function to another
Given a list of integers, return a list with the argument values multiplied by 11

- elevenfold :: [Int] -> [Int]
elevenfold [] = []
elevenfold (x:xs) = (11*x) : elevenfold xs

Given a string, return that string cast to lower-case (assuming Data.Char imported for toLower)

- allToLower :: String -> String
 allToLower [] = []
 allToLower (x:xs) = toLower x : allToLower xs

Given a list of lists, return the list containing the reverses of the original argument’s lists

- reverseAll :: [[a]] -> [[a]]
 reverseAll [] = []
 reverseAll (x:xs) = reverse x : reverseAll xs

These functions operationally differ only in the operation applied to each element

The filter function
We can pass the transforming function as an extra parameter

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

Exercise 5.52. Define elevenfold, allToLower and reverseAll using map instead of explicit recursion.

Combining the elements of a list together
Given a list of integers, return the result of adding the elements together

- sumTogether :: [Int] -> [Int]
 sumTogether [] = 0
 sumTogether (x:xs) = x + sumTogether xs

Given a list of lists, return the concatenation of all of these lists together (using ++ and not worrying too much about efficiency)

- concatTogether :: [[a]] -> [a]
 concatTogether [] = []
 concatTogether (x:xs) = x ++ concatTogether xs

These functions operationally differ in two places

- The value to which we map the empty list
- The way we combine one element with the result of combining together the rest of the elements
A **fold function**

We can pass the base value and combining function as two extra parameters

\[
\text{fold} :: (a \to b \to b) \to b \to [a] \to b \\
\text{fold} _ z \[] = z \\
\text{fold} f z (x:xs) = f x (\text{fold} f z xs)
\]

- fold is often referred to as reduce

Exercise 5.53.

Define `sumTogether` and `concatTogether` using `fold` instead of explicit recursion.

Definitely a trap

Here is one of those simple questions which seems like something out of primary school but which is probably a trap:

What is 10-3-2-1?

Then what is `fold (-) 0 [10, 3, 2, 1]`?

- Remember that \((-)\) is the sectioned version of subtraction
- It’s 8! It was a trap!

Two folds

The trap is that we *implicitly defined a certain associativity* in our first try at fold — and it happened to be right-associative

- Often right-associativity is what we need
- But in the big picture, we do need the choice of associativity
- Haskell renames our fold as foldr

\[
\text{foldr} :: (a \to b \to b) \to b \to [a] \to b \\
\text{foldr} _ z \[] = z \\
\text{foldr} f z (x:xs) = f x (\text{foldr} f z xs)
\]

- There is also foldl

\[
\text{foldl} :: (b \to a \to b) \to b \to [a] \to b \\
\text{foldl} _ z \[] = z \\
\text{foldl} f z (x:xs) = \text{foldl} f (f z x) xs
\]

- Caveat: these are not the same types that you would see if you asked ghci

: t foldr

so we will revisit these signatures later!
Exercise 5.54. [Keller and Chakravarty] Rewrite the definition of mapInts

```haskell
mapInts :: (Int -> Int) -> [Int] -> [Int]
mapInts f [] = []
mapInts f (x : xs) = f x : map f xs
```

to use case notation. That is, complete the following definition

```haskell
mapInts :: (Int -> Int) -> [Int] -> [Int]
mapInts f xs = case xs of
    ...```

Exercise 5.55. [Keller and Chakravarty] The map function is just a special case of foldr. Can you rewrite the map definition in terms of foldr? Complete the following definition:

```haskell
map :: (a -> b) -> [a] -> [b]
map f = foldr ...
```

Exercise 5.56. Use a fold function to implement the exclusive-or function xor of type [Bool] -> Bool, which returns True when there is exactly an odd number of True values in the list.

Exercise 5.57. Use a fold function to concatenate a list of lists together into a single list,

```haskell
concatAll :: [[t]] -> [t]
```

Exercise 5.58. Use filter to write a function that removes the vowels from a string.

Exercise 5.59. Redefine length and reverse using the fold functions.

Exercise 5.60. For all of the functions with fold, which are more efficient with foldr, and which are more efficient with foldl?

Exercise 5.61. [Keller and Chakravarty] Rewrite the definition of map

```haskell
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs
```

to use case notation. That is, complete the following definition

```haskell
map f xs = case xs of
 ...```

Exercise 5.62. Write intTreeFoldl and intTreeFoldr, folding functions on integer binary trees,

```haskell
data IntTree = Branch IntTree IntTree
             | Leaf Int
```

The functions should have signatures

```haskell
intTreeFoldl :: (t -> Int -> t) -> t -> IntTree -> t
intTreeFoldr :: (Int -> t -> t) -> t -> IntTree -> t
```

and should apply the operations and default with the given associativity of the values in the leaves. For example,

```haskell
*Main> let t1 = (Branch (Branch (Leaf 10) (Leaf 3))
              (Branch (Leaf 2) (Leaf 1)))
*Main> intTreeFoldl (\x y -> x-y) 0 t1
-16
*Main> intTreeFoldr (\x y -> x-y) 0 t1
8
```
Exercise 5.63. Write `binaryTreeFoldl` and `binaryTreeFoldr`, folding functions on general binary trees,

```
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
  | Leaf a
```

Exercise 5.64. Write `binaryTreeFilter`, of type `(a -> Bool) -> (BinaryTree a) -> Maybe (BinaryTree a)`. It must be `Maybe`, since we have no constructor for an empty tree.

References

The material of this section is standard in functional language textbooks and tutorials. A classic paper which carries the idea (much) further is

And then further still,

5.5 "Ad-hoc" polymorphism and type classes

5.5.1 Type classes

Almost everything

Some functions aspire to be polymorphic, but cannot quite make it

- Many values can be ordered, but how do we compare pairs? Or lists?
- Many values can be tested for equality, but what about functions?
- Many values can be converted to strings for display, but again, what about functions? What about our complicated data types which we simply do not need to represent as a string?

And the types do matter!

In these examples, unlike in the parametric polymorphic functions we saw earlier, the actual quantified type really does matter

- The way we compare two integers really is different than the way we compare two floating-point values
- So the actual type really does matter, all the way down to the machine level

Classes of types

Haskell lets us express these quantifications by using type classes

- Operations (the functions for comparison, formatting, etc) are associated with a type class
- Every type which is a member of a class must implement all of the operations associated with that class
- Types are individually declared to be members of a class
Declaring classes

For example:

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 • Must give type signatures, since we’re specifying operations without (necessarily) giving an implementation
 • When we ask Haskell what the types of these functions are, it tells us explicitly about the type constraint
 – (==) :: Eq a => a -> a -> Bool
 – The quantification is not universal, but limited to types of the particular class
 – We can write these constraints too, when giving an explicit signature of a function we write

Default implementations of functions

We can give default implementations of some (or all) of the functions associated with a class

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
 x == y = not (x /= y)
 x /= y = not (x == y)

 • Notice here that we define the two operations in terms of each other!
 • So the instance declaration must define at least one of the two operations — otherwise these definitions make no sense

Exercise 5.65. Adapt your module LeftistDoubleHeap from Exercise 5.44 as simply LeftistHeap, with type LH polymorphic in the type of element which it contains. Since merge makes a comparison on elements of the contained type, most of the exported functions will need an Ord a constraint,

 emptyHeap :: Ord a => LH a
 isEmpty :: LH a -> Bool
 insert :: Ord a => a -> LH a -> LH a
 merge :: Ord a => LH a -> LH a -> LH a
 findMin :: Ord a => LH a -> a
 deleteMin :: Ord a => LH a -> LH a

Exercise 5.66. Adapt your module RedBlackDoubleTree from Exercise 5.42 as simply RedBlackTree, with type RBT polymorphic in the type of element which it contains. Since helper and member make a comparison on elements of the contained type, most of the exported functions will need an Ord a constraint,

 emptyTree :: Ord a => RBT a
 isEmpty :: RBT a -> Bool
 member :: Ord a => a -> RBT a -> Bool
 insert :: Ord a => a -> RBT a -> RBT a
 helper :: Ord a => a -> RBT a -> RBT a
 balance :: Color -> RBT a -> a -> RBT a -> RBT a
Exercise 5.67. [Keller and Chakravarty] Implement a function \texttt{deleteSorted},
\begin{verbatim}
defineSorted :: Ord a => a -> [a] -> [a]
\end{verbatim}
which removes a value passed as first argument from a sorted list given as the second argument. If the value does not occur in the list, the list is returned unchanged. Exploit the fact that the list is sorted: if an element is not present in the list, stop the search as early as possible.

Exercise 5.68. Change the declaration of \texttt{instance Show MyComplex} so that the real coefficient is not shown when it is zero and the complex coefficient is non-zero.

Exercise 5.69. Complete the declaration of \texttt{instance Show WordInt} to print any integer as words.

Another example - complex numbers
There’s a built-in class of complex numbers, but let’s make our own
\begin{verbatim}
data MyComplex = MyComplex Double Double
\end{verbatim}

\begin{verbatim}
instance Show MyComplex where
 show (MyComplex x iy) = case compare iy 0 of
 GT -> show x ++ "+" ++ show iy ++ "i"
 EQ -> show x
 LT -> show x ++ "-" ++ show (-iy) ++ "i"
\end{verbatim}

\begin{verbatim}
instance Num MyComplex where
 (MyComplex x iy) + (MyComplex x’ iy’) = MyComplex (x + x’) (iy + iy’)
 (MyComplex x iy) - (MyComplex x’ iy’) = MyComplex (x - x’) (iy - iy’)
 (MyComplex x iy) * (MyComplex x’ iy’) = MyComplex (x*x’ - iy*iy’) (x*iy’ + x*iy’)
 abs (MyComplex x iy) = MyComplex (sqrt (x*x + iy*iy)) 0
 signum (num@(MyComplex x iy)) = let (MyComplex a _) = abs num
 in MyComplex (x/a) (iy/a)
 fromInteger n = MyComplex (fromInteger n) 0.0
\end{verbatim}

More complex operations
\begin{verbatim}
instance Fractional MyComplex where
 (MyComplex x iy) / (MyComplex x’ iy’) = let denom = x’*x’ + iy’*iy’
 in MyComplex ((x*x’ + iy*iy’)/denom) ((x’*iy - x*iy’)/denom)
 recip (MyComplex x’ iy’) = let denom = x’*x’ + iy’*iy’
 in MyComplex (x’/denom) (-iy’/denom)
 fromRational n = MyComplex (fromRational n) 0.0
\end{verbatim}

- Could define trigonometric etc. operations for \texttt{Floating}.

Instances of a polymorphic datatype
Two ways:
1. Declare the full type to be an instance, possibly with constraints on the type variables
2. Declare the \texttt{type constructor} to be an instance of class on \texttt{higher kinds}
Exercise 5.70. Adapt your module `LeftistHeap` from Exercise 5.65 to separate the functions into a class definition of heaps and heap operations, with type `LH` being one instance of the class. Use the approach of higher-kinded classes so that heaps are polymorphic.

Exercise 5.71. Adapt your module `RedBlackTree` from Exercise 5.66 to separate the functions into a class definition of trees and tree operations, with type `RBT` being one instance of the class. Use the approach of higher-kinded classes so that trees are polymorphic.

Constraints on an instance declaration

```haskell
instance Eq a => Eq (BinaryTree a) where
  (Leaf x) == (Leaf y) = (x==y)
  (Branch xs1 xs2) == (Branch ys1 ys2) =
    xs1 == ys1 && xs2 == ys2
_ == _ = False

instance Show a => Show (BinaryTree a) where
  show (Leaf x) = "(Leaf " ++ show x ++ ")"
  show (Branch xs1 xs2) = "(Branch " ++ show xs1 ++ ", " ++ show xs2 ++ ")"
```

- Like constraints on a type signature

5.5.2 Type classes and software architecture

Remember the `Shape` datatype from Exercise 5.33

```haskell
data Shape = Circle Float
           | Rectangle Float Float
```

You added a `Triangle` constructor

- What else did you have to change when you added that constructor?
 - Immediately, the `perimeter` function gave warnings
 - There was now a possible form of `Shape` which the function could not address!

What if we were in deeper than that?
`Shape` was a small example for a learning exercise, but sometimes we must change software which is larger

- New features added to old systems
- A new case introduced under late-revised software requirements
- Impacts of bug reports, shifted priorities, etc.
- A type like `Shape` might be pattern-matched in many functions across many files
- If many function suddenly fail to compile, or even just each generate verbose warnings, further progress can be slow

Type classes offer an alternative structure

- Instead of a `data` type, define a class
- Instead of constructors, define an instance type
Instead of a data type, define a class

From

```haskell
data Shape = ...
-- and functions perimeter, area follow
```
to

```haskell
class Shape a where
    perimeter :: a -> Float
    area :: a -> Float
```

Instead of constructors, define an instance type

From

```haskell
data Shape = Circle Float | Rectangle Float Float
perimeter (Circle radius) = 2 * pi * radius
area (Circle radius) = pi * radius * radius
```
to

```haskell
data Circle = Circle Float
instance Shape Circle where
    perimeter (Circle radius) = 2 * pi * radius
    area (Circle radius) = pi * radius * radius
```
```haskell
data Rectangle = Rectangle Float Float
instance Shape Rectangle where
    perimeter (Rectangle l w) = 2 * (l + w)
    area (Rectangle l w) = l * w
```

Exercise 5.72. Write a type `Triangle` (specified by the three sides of the triangle, as in Exercise 5.33) which is also in class `Shape`.

Pros and cons

If we use a type with several constructors

- Adding a new function is straightforward
- But adding a new constructor can be rough

If we use a class with several instance types

- Adding a new function can be rough
- But adding a new constructor is straightforward

This is an instance of the Expression Problem

- An old challenge for language designers, identified in print in 1975
- How can a language support both adding datatype cases and adding functions on the datatype
 - In a type-safe way, and
 - Without recompiling existing code?
- We will look at two other solutions to the Expression Problem when we look at object-oriented languages
References

5.5.3 A class of sorting trees

This tree and that tree
Recall our red-black trees of Section 5.2.3:

```haskell
data Color = Red | Black
data RBDT = EmptyRBDT
    | BranchRBDT Color RBDT Double RBDT
with functions emptyTree, isEmpty, member, insert
```

Plain-old binary trees
It is easy to imagine a library of red-black trees coexisting with other tree implementations, and even just plain-old binary trees:

```haskell
data BinaryTree = EmptyBT | LeafBT BinaryTree Double BinaryTree
```

- Or even a non-sorted tree version!

```haskell
data NaiveBinaryTree =
    EmptyNBT | LeafNBT NaiveBinaryTree Double NaiveBinaryTree
Again both with functions emptyTree, isEmpty, member, insert
```

A tree class
We can describe a class of trees to which all of these implementations adhere:

```haskell
class SearchTree t where
    emptyTree :: t
    isEmpty :: t -> Bool
    member :: Double -> t -> Bool
    insert :: Double -> t -> t
```

Simple trees into the class

```haskell
instance SearchTree BinaryTree where
    emptyTree = EmptyBT
    isEmpty EmptyBT = True
    isEmpty (LeafBT _ _ _) = False
```

and so on

- The same functions, just as part of an instance declaration instead of top-level
Red-black trees into the class
And likewise for the red-black trees:

```haskell
instance SearchTree RedBlackTree where
    emptyTree = EmptyRBT
    isEmpty EmptyRBT = True
    isEmpty _ = False
    member _ EmptyRBT = False
    member e (NodeRBT _ lt e0 rt) = case compare e e0 of
        LT -> member e lt
        EQ -> True
        GT -> member e rt
```

What about polymorphism?
What we’d really like is a polymorphic datatype for our trees

- Not just for `Double` values, but for any types (consistently within one tree!)
- This is a little harder to combine with classes
 - We need a type constraint to apply to the `content` type of the tree, but the operations to apply to the tree itself
 - The right solution is to allow classes over `type constructors`, and not just types
 - We will come back to this problem when we look at `kinds`

5.5.4 Automatically deriving instances of the built-in classes

Automatic instances
As part of a `data` definition, we can automate instance declarations for several of the built-in classes

- Often saves us from boilerplate code
- Sacrifices flexibility — we get one kind of instance implementation automatically
 - Sadly, Haskell still cannot read our minds!

Equality

```haskell
data Shape = Circle Float | Rectangle Float Float
deriving (Eq)
```

Two `Shape` values will be equal if

- They have the same constructor
- The respective fields are also equal
- If we want to disregard some fields, we must write our own `instance` declaration!

Ordering

```haskell
data Shape = Circle Float | Rectangle Float Float
deriving (Ord)
```

Imposes a total order on `Shape` values

- All circles are less than all rectangles!
Convertability to text

data Shape = Circle Float
 | Rectangle Float Float
deriving (Read, Show)

Imposes a total order on Shape values
 • All circles are less than all rectangles!

5.5.5 Higher-kind class type variables

Kinds in Haskell
Haskell has an explicit notion of kinds
 • Kinds are a more general classification than types, which we can attribute to more things
 • “Type” is just one particular kind
 – Every Haskell type has kind *
 – We can query the kind of entities in the interpreter

Prelude> :k Int
Int :: *
Prelude> :k String
String :: *
Prelude> :k [Bool]
[Bool] :: *
Prelude> :k (Int -> String -> ([Bool], [Char]))
(Int -> String -> ([Bool], [Char])) :: *

Higher kinds
Type constructors have higher kinds

Prelude> :k Maybe
Maybe :: * -> *

In the parser library, Parser needs two type arguments to form a type:

Prelude> :k Parser
Parser :: * -> * -> *

Classes for higher kinds
 • We saw several examples of type classes
 – For example
 class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
 – Here a represents any type which might be a member of class Eq
 – The function signatures show how values of such a type a might be used
 • Haskell also allows classes to concern higher-kind types
 – If we say that f is a member of such a class, then when we use f in a function signature, we must supply it with type arguments to produce a type of kind *
Class **Functor** — things we can map over

- **Functor** is one such class of higher-kindred types, of type constructors, instead of types
- Generalizes the `map` function on lists
- From standard prelude:

  ```haskell
  class Functor f where
  fmap :: (a -> b) -> f a -> f b
  ```

BinaryTree as a Functor

Recall our data type `BinaryTree`

```haskell
data BinaryTree a = Branch (BinaryTree a) (BinaryTree a)
                 | Leaf a
```

We can declare `BinaryTree` (not `BinaryTree Int`, etc.) to be a member of `Functor` by showing how `fmap` should work

```haskell
instance Functor BinaryTree where
  fmap f (Leaf x) = Leaf $ f x
  fmap f (Branch xs1 xs2) = Branch (fmap f xs1) (fmap f xs2)
```

- No constraints on `BinaryTree`'s type arguments
 - There are no explicit type arguments to constrain!

Another type constructor class — **Foldable**

- We’ve seen this in the type signature for the fold functions
  ```haskell
  *Main> :t foldl
  foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
  *Main> :t foldr
  foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
  ```

- The list type constructor `[]` is a member of `Foldable`

5.6 Examples of larger Haskell libraries

5.6.1 Monadic parser combinators

Laziness as a design technique

- There’s more to laziness than the ability to describe and partially evaluate an infinite list
 - (The list of prime numbers *is* in fact infinite, even if we only ever calculate some prefix of it.)
- We can structure a system so that we describe large lists, knowing that we will only calculate as much as we need

A larger example: a parsing library

- What, in general, is a parser?
- The parser of most compilers takes a list of lexemes, and returns some abstract representation of the program
 - **Lexeme**: a simple grouping of characters into basic program units, like *identifiers, keywords, constants*, and specific punctuation
 - Typically lexemes are specified by a regular expression and the program itself is specified by a grammar
- So at first glance, a parser might have type `[input] -> output`
Composing parsers

• What we’d really like is a handy way to combine parsers
 – Will let us write parsers which look like grammars
 – Much more maintainable than explicit recursive descent, or certainly a bottom-up parser

• One parser might do some of the work, leaving the rest for another parser

• So the result of a parser must also return the unused input.

\[
\text{input} \rightarrow (\text{result, input})
\]

But what about failure?

• If we combine parsers in *alternation* (accept either an X or a Y), then we may fully expect one of the two to always to fail
 – An operation might be +, or it might be − — but it can’t be both, so one of those options would fail
 – A basic expression could be a constant, or it could be a variable — but it can’t be both, so one of those options would fail

• How do we handle this?
 – We could do something horrible by throwing exceptions with \texttt{error} and catching them
 – But \texttt{error} is made for genuine errors; this is something we expect routinely
 – Replace \texttt{failure} with a list of successes.

• A parser returns the different possible ways of parsing its input

\[
\text{newtype Parser input output} = \text{Parser } ([\text{input}] \rightarrow [(\text{output},[\text{input}])])
\]

\[
\text{parse } (\text{Parser } p) = p
\]

Running a parser

• So we’ve reasoned that the right type for a parser should be

\[
\text{newtype Parser input output} = \text{Parser } ([\text{input}] \rightarrow [(\text{output},[\text{input}])])
\]

\[
\text{parse } (\text{Parser } p) = p
\]

• Whatever failures and multiple parses we find at intermediate points within the grammar, we usually expect the top-level final parser to produce a unique result from all of the input

\[
\text{getParse :: Parser } i \circ \rightarrow [i] \rightarrow o
\]

\[
\text{getParse parser input} =
\]

\[
\text{case parse parser input of}
\]

\[
[(\text{result,[]})] \rightarrow \text{result}
\]

\[
[] \rightarrow \text{error "No parse"}
\]

\[
[(\text{result, _})] \rightarrow \text{error "Input not consumed"}
\]

\[
_ \rightarrow \text{error "Parse is not unique"}
\]

• Or maybe we won’t care about the uniqueness, and we relax that restriction
Building blocks

• How do we build a parser?

• What are our starting points?

• The most basic possible parsers will either return some result without consuming input, or return no result

 accept :: result -> Parser input result
 accept res = Parser (\inp -> [(res, inp)])

 reject :: Parser input result
 reject = Parser (\inp -> [])

• For example:

 > parse (accept 'x') "abc123"
 [('x','abc123')]
 > parse reject "abc123"
 []

Considering the input

• The most basic parsers are a little surprising, since they do not actually look at their input!

• Here’s a simple parser which expects an exact piece of input

 literal :: Eq a => a -> Parser a a
 literal s = Parser literal’
 where literal’ (x:xs) | x == s = [(x,xs)]
 | _ = []

• For example:

 > :t letterA
 letterA :: Parser Char Char
 > parse letterA "Asdf"
 [('A','sdf')]
 > parse letterA "asdf"
 []
 > parse letterA "1234"
 []

General criteria for input

• More generally, we can define literal as a special case of a parser that takes a predicate for an acceptable piece of input

 satisfy :: (a -> Bool) -> Parser a a
 satisfy f = Parser (\inp -> case inp of
 (x:xs) | f x -> [(x,xs)]
 | _ -> [])

 literal :: Eq a => a -> Parser a a
 literal s = satisfy (== s)
• For example:

> import Data.Char
> :t isUpper
isUpper :: Char -> Bool
> let upperLetter = satisfy isUpper
> :t upperLetter
upperLetter :: Parser Char Char
> parse upperLetter "ASDF"
[('A','SDF')]
> parse upperLetter "asdf"
[]

Need more useful results
With satisfy and literal, the result of a parser is just one piece of its input
• But usually we think of a parser as transforming its input in some way
• We can transform the result by applying a function

\[
\begin{array}{c}
\text{input} \\
\text{p} \\
\text{result} \\
f \\
\text{transformed result} \\
\text{remaining input}
\end{array}
\]

• We want to take this combination itself as one of our composable parsers

The transformer

\[
\begin{array}{c}
\text{infixl 6 'using'}
\text{using} ::
\text{Parser inp res} \to \text{(res -> res')} \to \text{Parser inp res'}
\end{array}
\]

\[
\begin{array}{c}
\text{(Parser p) 'using' f} \\
= \text{Parser} \\ \text{(
\text{\inp \to \{(f res, inp') | (res,inp') <- p inp\})}
\end{array}
\]

• For example:

> let upDown = upperLetter 'using' toLower
> :t upDown
upDown :: Parser Char Char
> parse upDown "ASDF"
[('A','SDF')]
> parse upDown "asdf"
[]

Combining parsers — choice

• The ‘alt’ combinator combines two parsers as alternatives

\[
\begin{array}{c}
\text{infixl 4 'alt'}
\text{alt} ::
\text{Parser inp res} \to \text{Parser inp res} \to \text{Parser inp res}
\text{p1 'alt' p2 = Parser (\input \to parse p1 input}
\text{++ parse p2 input)}
\end{array}
\]

• For example:
> let lowerA = literal 'a'
> let lowerZ = literal 'z'
> let lowerAorZ = lowerA 'alt' lowerZ
> :t lowerAorZ
> lowerAorZ :: Parser Char Char
> parse lowerAorZ "asdf"
[('a','sdf')]
> parse lowerAorZ "zxcv"
[('z','xcv')]
> parse lowerAorZ "qwer"
[]

What should it mean to combine two parsers in sequence?
Certainly a key idea is that the second parser should operate on the input remaining from the first parser

But what do we do with two results?

Let the first result produce the next parser
The solution: use the first result to produce the second parser

• Instead of combining a Parser in out1 with a Parser in out2,
• Combine a Parser in out1 with a function of type out1 -> Parser in out2

Combining parsers — sequence
• The ‘thn’ combinator combines two parsers sequentially

infixr 5 ‘thn’
thn :: Parser inp res1 -> (res1 -> Parser inp res2) -> Parser inp res2
p1 ‘thn’ fp2 = Parser \inp -> [(res2, inp’’) |
(res1,inp’) <- parse p1 inp,
(res2,inp’’) <- parse (fp2 res1) inp’])

• For example:

> let parseSecondAorZ c1 = lowerAorZ ‘thn’ \c2 -> accept (c1,c2)
> let parseTwoAorZ = lowerAorZ ‘thn’ parseSecondAorZ
> :t parseTwoAorZ
parseTwoAorZ :: Parser Char (Char, Char)
The Kleene star

- What does it mean to apply a parser zero or more times?
 - As a result, we would expect to get a list of that parser's result type
 - We could apply it once, and then apply it some more — that's a thn
 - Or we could do something else — that's alt
 - The something else is nothing — which accept gives us

- Translating to Haskell:

 many :: Parser inp res -> Parser inp [res]
 many p = (p 'thn' \\first ->
 many p 'thn' \\rest ->
 accept (first : rest))
 'alt' accept []

- For example:

 > let lowerAorZs = many lowerAorZ
 > :t lowerAorZs
 lowerAorZs :: Parser Char [Char]
 > parse lowerAorZs "azazsxdcfv"
 ["azaz","sxdcfv"),("aza","zxdcfv"),("az","azsxdcfv"),
 ("a","zazsxdcfv"),("","azazsxdcfv")]

The Kleene plus

- We remove the option to do nothing

 some :: Parser inp res -> Parser inp [res]
 some p = p 'thn' \\first ->
 many p 'thn' \\rest ->
 accept (first : rest)

- For example:

 > let lowerAorZs1 = some lowerAorZ
 > parse lowerAorZs1 "azazsxdcfv"
 ["azaz","sxdcfv"),("aza","zxdcfv"),
 ("az","azsxdcfv"),("a","zazsxdcfv")]

Multiple results

- The multiple results let us account for the fact that we do not know what subsequent parsers may demand

 > parse lowerAorZs "azazsxdcfv"
 ["azaz","sxdcfv"),("aza","zxdcfv"),("az","azsxdcfv"),
 ("a","zazsxdcfv"),("","azazsxdcfv")]

71
We may demand that a single \(z \) must follow the lowerAorZs

```haskell
> let p2 = lowerAorZs 'thn' \xs ->
    lowerZ 'thn' \x ->
    accept (xs,x)
> :t p2
p2 :: Parser Char ([Char], Char)
> parse p2 "azazsxdcfv"
[(["aza","z"),"sxdcfv"),(["a","z"),"azsxdcfv")]
```

Is it inefficient to produce all of these parses?

* No — *Laziness will only generate the possibilities which are necessary!*

We may demand a single \(z \), and then a single \(s \), as followers

```haskell
> let p3 = lowerAorZs 'thn' \xs ->
    lowerZ 'thn' \_ ->
    literal 's' 'thn' \_ ->
    accept xs
> parse p3 "azazsxdcfv"
[(["aza","xdcfv")]
```

6 Lambda calculus

6.1 Syntax

Untyped lambda calculus

- A *calculus* is a way of writing expressions, plus a way of relating one expression to another
- The *lambda calculus* lets us discuss many programming language features in a very minimal language
- Terms \(M, N, M' \) etc.:
 - Variables \(x, x', y, z_0, z_1, \ldots \)
 - Abstractions \(\lambda x. M \)
 - Applications \(MN \)
- Use parentheses to disambiguate
 - Abstractions include as much as possible to the right: \(\lambda x. MN \) means \(\lambda x. (MN) \), not \((\lambda x. M)N \)
 - Function application is left-associative: \(LMN \) means \((LM)N \), not \(L(MN) \)

Exercise 6.1. Remove all possible parentheses from these expressions so as not to change the interpretation of each.

1. \(((\lambda x.(\lambda y.((x)y)))(\lambda z.(z))))\)
2. \((xy)(xz)\)
3. \((\lambda x.((\lambda y.((\lambda z.z)))y)\)
4. \((\lambda z.((\lambda u.u)(\lambda z.z)))\)

Answers to the first two items are on p. 102
Properties of terms

- **Free and bound variables**
 - A lambda abstraction $\lambda x. M$ binds occurrences of x in M
 - Static scope for parameters
 - A variable with a corresponding abstraction is said to be *free*

- Formulas for the variables which occur free and bound in a term:
 - $fv(x) = \{x\}$
 - $bv(x) = \{\}$
 - $fv(MN) = fv(M) \cup fv(N)$
 - $bv(MN) = bv(M) \cup bv(N)$
 - $fv(\lambda x. M) = fv(M) \setminus \{x\}$
 - $bv(\lambda x. M) = bv(M) \cup \{x\}$

- If $fv(M) = \{\}$, then M is *closed*. Otherwise, M is *open*.

- **Values** represent the forms of expression which (informally) we take to be end products of a computation.
 - Abstractions are values
 - Applications are non-values
 - Variables are negotiable!
 * Sometime we take them to be values
 * Sometimes not
 * It depends on the technical details of the particular system we will consider

- **Syntactic identity** \equiv

Exercise 6.2. Write out the sets of free variables and of bound variables for each of the following expressions.

- $(\lambda x. (\lambda y. zxy)) (\lambda z. xzw)$
- $\lambda x. xy(xz)$
- $(\lambda x. (\lambda y. y)(\lambda z. z)) y$

Substitution

A basic operation is *substituting* a term N for a variable x in some other term M

- Written $M[\frac{N}{x}]$
- Specifically:
 - $x[\frac{N}{x}] \equiv N$
 - $x[\frac{N}{y}] \equiv x$ \hspace{1cm} $x \neq y$
 - $(LM)[\frac{N}{x}] = (L[\frac{N}{x}]) (M[\frac{N}{x}])$
 - $(\lambda x. M)[\frac{N}{x}] = \lambda x. M$
 - $(\lambda x. M)[\frac{N}{y}] = \lambda x. (M[\frac{N}{y}])$ \hspace{1cm} $x \notin fv(N)$
 - $(\lambda x. M)[\frac{N}{y}] = \lambda z. (M[\frac{z}{x}] [\frac{N}{y}])$ \hspace{1cm} $x \in fv(N), z \notin M, N$
Exercise 6.3. Simplify each of the following expressions, writing them as plain lambda terms without substitutions.

- \((\lambda x.(\lambda y.zxy))((\lambda z.zzw) \frac{\lambda k.kk}{x})\)
- \((\lambda x.(\lambda y.zxy))((\lambda z.zzw) \frac{\lambda k.kk}{z})\)
- \((\lambda x.xy)(xz) \frac{\lambda x.zx}{y}\)

Exercise 6.4. [Barendregt, Sec. 2.2] In combinatory logic one considers a small number of closed terms rather than general lambda expressions. One common system uses three terms, \(I \equiv \lambda x.x\), \(S \equiv \lambda x.\lambda y.\lambda z.xz(\lambda y.yz)\), \(K \equiv \lambda x.\lambda y.x\). Show that

- \(I = S \times K\)
- \(\lambda x.M = K \times M\) if \(x \notin \text{fv}(M)\)
- \(\lambda x.MN = S(\lambda x.M)(\lambda y.N)\)

What are the normal forms of these terms:

- \((\lambda y.yyy)((\lambda a.\lambda b.a)I(S S))\)
- \(S \times S \times S \times S \times S\)

6.2 Reduction

Relating terms by reduction

Three reduction rules

\(\alpha\) \(\lambda x.M \rightarrow \lambda y.M[y/x]\) if \(x \not\equiv \) \(y\), \(y \not\in \text{fv}(M)\)

\(\beta\) \((\lambda x.M)N \rightarrow M[N/x]\) if \(x \not\in \text{fv}(M)\)

\(\eta\) \(\lambda x.Mx \rightarrow M\) if \(x \not\in \text{fv}(M)\)

- In modern presentations of the lambda calculus for computer science, we do not consider \(\alpha\) reduction to be "interesting" computational work

 - So when we write a term, we mean to denote the equivalence class of terms modulo \(\alpha\) reduction

- Barendregt’s hygiene condition

- A term with no redexes is said to be in normal form

 - Can also discuss \(\beta\)-normal or \(\eta\)-normal form

- From reduction to equality

Exercise 6.5. Identify all of the redexes in the following terms.

- \((\lambda x.\lambda y.yx)((\lambda y.\lambda z.wz)y)\)
- \((\lambda z.((\lambda x.xx)(\lambda y.zxy))\)

Exercise 6.6. Apply the hygiene condition to each of the expressions in Exercises 6.2, 6.3 and 6.5.
Exercise 6.7. Reduce each of the expressions in Exercises 6.3 and 6.5:

- To β normal form
- To η normal form
- To β, η normal form
- To each of the possible ways of contracting one single redex in each term

Properties of reduction

Uniqueness of normal forms

- If $M \rightarrow M_1$, $M \rightarrow M_2$, and both M_1 and M_2 are normal forms
 - Then $M_1 \equiv M_2$ (modulo α)
- However, it is not guaranteed that every term will have a normal form!

Confluence (aka the Church-Rosser property, aka the diamond property)

- If $M \rightarrow M_1$ and $M \rightarrow M_2$
 - Then there is some N such that both $M_1 \rightarrow N$ and $M_2 \rightarrow N$

Church encodings

- Booleans
 - $\text{true} \equiv \lambda m.\lambda n.m$
 - $\text{false} \equiv \lambda m.\lambda n.n$
 - $\text{if} \equiv \lambda p.\lambda m.\lambda n.pmn$
- Pairs
 - $\text{mkpair} \equiv \lambda x.\lambda y.\lambda f.fxy$
 - $\text{fst} \equiv \lambda x.\lambda y.x$
 - $\text{snd} \equiv \lambda x.\lambda y.y$
- Numbers
 - $\text{0} \equiv \lambda f.\lambda x.x$
 - $\text{1} \equiv \lambda f.\lambda x.fx$
 - $\text{2} \equiv \lambda f.\lambda x.f(fx)$
 - $\text{3} \equiv \lambda f.\lambda x.f(f(fx))$ and so on
 - $\text{isZer0} \equiv \lambda n.n(\lambda x.\text{false}\text{true})$
 - $\text{suc}c \equiv \lambda n.\lambda f.\lambda x.f(nx)$
 - $\text{plus} \equiv \lambda n_1.\lambda n_2.\lambda f.\lambda x.n_1 f(n_2 fx)$
 - $\text{times} \equiv \lambda n_1.\lambda n_2.\lambda f.\lambda x.n_1(n_2 f)x$
- Subtraction, division more complicated but possible
- Then negative numbers, rationals, reals, etc.
Exercise 6.8. Define a closed lambda term and so that
- \(\text{and true true} \rightarrow_{\beta} \text{true} \)
- \(\text{and true false} \rightarrow_{\beta} \text{false} \)
and so on. Write out the details of each of the four relationships.
Do the same for or, not and xor.

Exercise 6.9. Define a partial signum operator, which returns 0 for 0, and 1 for any positive number.

Exercise 6.10. Write out the step-by-step details of the following reductions:
- \(\text{fst (mkpair 2 3)} \rightarrow_{\beta} 2 \)
- \(\text{snd (fst (mkpair (mkpair 3 4) false))} \rightarrow_{\beta} 4 \)
- \(\text{succ 4} \rightarrow_{\beta} 5 \)
- \(\text{succ (succ 2)} \rightarrow_{\beta} 4 \)
- \(\text{plus (plus 2 3) 1} \rightarrow_{\beta} 6 \)
- \(\text{iszero 0} \rightarrow_{\beta} \text{true} \)
- \(\text{iszero (succ 1)} \rightarrow_{\beta} \text{false} \)
- \(\text{times 2 (plus 1 2)} \rightarrow_{\beta} 6 \)

Exercise 6.11. Define the following functions. Write out reduction sequences to show that each is defined correctly on 1, 2 and 4.
- factorial
- \(\text{sumOneUp } x = \sum_{i=1}^{x} i \)

Delta reduction
- The Church encodings show how to represent various concepts as plain lambda expressions
 - It’s interesting that it’s possible
 - In fact, every computable function can be represented in \(\lambda \)
- But we can also extend the language of terms
 - Extend lambda terms to include various other symbols
 - Specify a function \(\delta \) mapping strings of these symbols to one symbol
 - Then \(\delta \) reduction rewrites applications across a string:
 - If \(\delta(s_1 \cdots s_n) = s_0 \)
 - Then \(\cdots ((s_1 s_2) s_3) \cdots) s_n \rightarrow_{\delta} s_0 \)

6.3 Parameter-passing disciplines

Two parameter-passing mechanisms
Earlier this semester we discussed call-by-name and call-by-value
• Call-by-value has a simple explanation in the stack-frame model
• Call-by-name... not so much

So we will use the \(\lambda \) calculus to build a simple (but rigorous!) comparison of the two

• Distinguish them by the answer to the question
 – How do we pick the next \(\beta \)-redex?
• Here we specifically mean \(\beta \)-redexes — we are interested in runtime computation

Picking the next redex

We have already seen some aspect of a strategy for picking a redex

Consider \((\lambda x.x)(\lambda y.(\lambda z.z) y)(\lambda m.\lambda n.n m m)\)

• At the top level, this is an application
 – \((\lambda x.x)(\lambda y.(\lambda z.z) y)\) on the left side
 – \((\lambda m.\lambda n.n m m)\) on the right side

• This whole term is not itself a \(\beta \)-redex
 – We would need an abstraction on the left
 – There is work to do on the left side before it becomes an abstraction
 – So in this situation we have usually looked for our first redex on the left side

A first rule for finding the next redex

• When looking for a redex with an abstraction
 – If the term on the left is not an abstraction
 – Then look for the next redex on the left

So then what?

If there is an abstraction on the left, do we then reduce the application?

Maybe.

• If call-by-value, no — in call-by-value languages, we expect a value for an actual parameter
• If call-by-name, yes — we are happy to use unevaluated expressions as actual parameters

Call-by-name and call-by-value in words

Can we do better than an informal English description??

Call-by-name

• If a term is an abstraction, we have a value
• If a term is a variable, we are stuck
• If a term is an application of an abstraction, reduce this term
• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Call-by-value
• If a term is an abstraction, we have a value
• If a term is a variable, we are stuck
• If a term is an application of an abstraction to a value, reduce this term
• If a term is an application of an abstraction to a non-value, look for the next redex on the right side of the application
• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Contexts

A context is just a term with a hole

*C ::= [] | M C | C M | \lambda x . C

We can break up any term into a context, plus the expression in its hole

For example, \((\lambda x. x) (\lambda y. (\lambda z . z) y) (\lambda m . \lambda n . m m)\) is

• The context [] \((\lambda m . \lambda n . m m)\)
• With \((\lambda x . x) (\lambda y . (\lambda z . z) y)\)

It is also

• The context \((\lambda x . x) [] (\lambda m . \lambda n . m m)\)
• With \(\lambda y . (\lambda z . z) y\)

But we are mostly interesting in seeing a \(\beta\)-redex in the hole!

We can describe \(\beta\) reduction in any position as:

\[C[M] \rightarrow C[N] \text{ if } M \rightarrow N \]

Using contexts to describe finding the next redex

We describe the position of the next redex by giving a subset of contexts, called evaluation contexts

• One grammar for call-by-name, one for call-by-value

Call-by-name informally

• If a term is an abstraction, we have a value
• If a term is a variable, we are stuck
• If a term is an application of an abstraction, reduce this term
• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Call-by-name evaluation contexts

\[E ::= [] | E M \]

Call-by-value informally

• If a term is an abstraction, we have a value
• If a term is a variable, we are stuck
• If a term is an application of an abstraction to a value, reduce this term
• If a term is an application of an abstraction to a non-value, look for the next redex on the right side of the application

• If a term is an application of a non-abstraction, look for the next redex on the left side of the application

Call-by-value evaluation contexts

\[E ::= [] \mid E \ M \mid (\lambda x.M) \ E \]

Also for call-by-value

Restrict \(\beta \) reduction to value arguments

\[(\beta_V) (\lambda x.M)V \rightarrow M \left[\frac{V}{x} \right] \]

6.4 Simply-typed \(\lambda \)

Simply-typed lambda calculus

• Environments and judgments

 – An environment is a set of assumptions about how free variables are typed

 * For example: \(x : \text{Int}, f : \text{Int} \rightarrow \text{Int} \)

 * Use upper-case Greek letters for environments: \(\Gamma \)

 * Also called contexts

 – A judgment is a statement that we have proven an expression to be of a particular type

 * Environment \(\vdash \) term : type

• Simply-typed lambda calculus (with integers)

\[
\begin{align*}
\text{Var} & \quad \Gamma, x : A \vdash x : A \\
\text{Const} & \quad \Gamma \vdash 1 : \text{Int} \quad \text{etc.} \\
\text{Abstr} & \quad \Gamma \vdash \lambda x. M : A \rightarrow B \\
\text{Apply} & \quad \Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A \\
& \quad \Gamma \vdash Mn : B
\end{align*}
\]

• Important properties

 – Progress: If \(\Gamma \vdash M : A \), then either \(M \rightarrow N \), or \(M \) is a value

 – Preservation: If \(\Gamma \vdash M : A \), and \(M \rightarrow N \), then \(\Gamma \vdash N : A \)

 – Normalizing: If \(\Gamma \vdash M : A \), then \(M \) reduces to a normal form in a finite number of steps

Exercise 6.12. For each of the closed terms in Exercises 6.1 through 6.5, determine which are simply-typable (and their types), and which are not. For each of the open terms, which are simply-typable under a suitable environment? In both, write out the typing trees (and environments) for each which is typable; explain why not for the ones which are not.
Pair and sum types

- **Pairs**

\[
\begin{align*}
\times I_1 & : \frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash (M, N) : A \times B} \\
\times E_1 & : \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{fst}(M, N) : A} \\
\times E_2 & : \frac{\Gamma \vdash M : A \times B}{\Gamma \vdash \text{snd}(M, N) : B}
\end{align*}
\]

- **Sums**

\[
\begin{align*}
\sum I_1 & : \frac{\Gamma \vdash M : A}{\Gamma \vdash \text{left}(M) : A + B} \\
\sum I_2 & : \frac{\Gamma \vdash M : B}{\Gamma \vdash \text{right}(M) : A + B} \\
\sum E & : \frac{\Gamma \vdash L : A + B \quad \Gamma, x : A \vdash M : C \quad \Gamma, y : B \vdash N : C}{\Gamma \vdash \text{case } L \text{ of left } x.M \mid \text{right } y.N : C}
\end{align*}
\]

Exercise 6.13. What are appropriate reduction rules for expressions with \(\times \) and \(+ \) types?

6.5 Polymorphism in lambda calculi

A simple version of polymorphism

- **Extend types:** could also be a type variable \(\alpha \), or a quantification \(\forall \alpha. T \)

- **Rules:**

\[
\begin{align*}
\forall I & : \frac{\Gamma \vdash M : A}{\Gamma \vdash M : \forall \alpha.A \quad \text{if } \alpha \notin \text{fv}(\Gamma)} \\
\forall E & : \frac{\Gamma \vdash M : \forall \alpha. A}{\Gamma \vdash M : A \left[\frac{L}{\alpha} \right] \quad \text{for any type } T}
\end{align*}
\]

- **More polymorphism than practical**
 - Most languages restrict where type variables can be abstracted
 - In Java/Scala, at class/method declarations

Exercise 6.14. Work out closed polymorphic types for each of the Church-encoded terms above. There may be several possible types for each, with quantifiers placed in different positions. Give types with:

- The quantifiers placed as deeply within the type as possible
- All quantifiers to the far outer left of the type
7 Object-oriented programming and Scala

7.1 Subclasses and what they unlock

Extending classes
You have probably been writing subclasses since your first course in Java

```scala
class A {
    def f(x:Int):Int = x+10
    // ...other definitions...
}
class B extends A {
    override def f(x:Int):Int = 2
    def g(s:String) = f(s.length())
}
```

- The subclass is a foundational aspect of object-oriented programming
 - Class B "inherits everything" from class A except for having its own recipe for method f
 - Class B has a method g not present in class A
- Adding this mechanism to a language opens up many interesting semantic questions
 - As usual, not every language makes the same decisions as Java

First questions

```scala
class A { // 1
    def f(x:Int):Int = x+10 // 2
    // ...other definitions... // 3
}
class B extends A { // 5
    override def f(x:Int):Int = 2 // 6
    def g(s:String) = f(s.length()) // 7
}
```

What do these lines print?

```scala
val b:B = new B()
println(b.f(5))
```

- No particular surprise: 2

What about these lines?

```scala
val a:A = new B()
println(a.f(5))
```

- For a few minutes, we’ll ignore the question of why it’s OK create a B and assign it to a storage location declared to hold an A
- If we’re working with Java or Scala, then the output is the same: 2
- But again we have found a feature which is a decision made by the language designer, and which differs in other languages
Dispatch

- The association of a method call with code to be run is called *dispatch*

- What determines how we dispatch the call to `a.f(5)`?

```scala
class A {
  def f(x: Int): Int = x + 10
  // ...other definitions...
}
class B extends A {
  override def f(x: Int): Int = 2
  def g(s: String) = f(s.length())
}
object AB {
  def main(args: Array[String]): Unit = {
    val a: A = new B()
    println(a.f(5))
  }
}
```

- Java and Scala use *dynamic* dispatch
 - The instantiated type `B` determines the dispatched method
 - The type of the storage location for a subsequent assignment or method call does not matter
 - The type at instantiation determines the dispatch of all method calls

- Some other languages, notably C++ by default, use *static* dispatch
 - The declared type `A` determines the dispatched method
 - The actual type of the object itself is not consulted
 - This dispatch is determined at *compile-time*
 * Whereas the instantiation type of objects is a *runtime* property

Subtypes

Subtyping is another key idea in object-oriented languages

If `A` is a subtype of `B`, then we should be able to use an instance of `A` in any context which calls for a `B`

- Might seem to be contrary to the idea of static typing, since one type can be provided where a different type is called for
 - But in fact, static typing is absolutely possible with subtyping — Java has used it for years!

- So with classes `A` and `B`, it is the principle of subtyping which justifies allowing the assignment

```scala
val a: A = new B()
```

- Since any operation which might be demanded of an `A` can be provided by a `B`
 - It does not matter that the implementation of the methods in `B` may be different
 - It does not matter that there may be additional methods in `B`, since if a context expects an `A` it would never invoke them

- This relationship is *not* symmetric:
Subtypes and subclasses are not the same idea!

- It is true that if A is a subclass of B (which we write A <: B), then A is a subtype of B.
- But there are also other ways to judge that one type should be taken as a subtype of another.
 - In particular, there are interesting interactions between generics and subtyping, and between function types and subtyping.
 - Will look in more detail at this relationship in the next few lectures.

7.2 Function values

Like Haskell, Scala has anonymous functions.

Functions are first-class values in Scala as well as in Haskell.

In the Scala interpreter:

```scala
scala> val f = { (x:Int) => x+10 }
f: Int => Int = <function1>

scala> f(3)
res0: Int = 13
```

- Syntax for an anonymous function: { (x:Int) => x+10 }
 - The curly braces are optional, but make it much clearer.
- We can bind functions to names, and call them.
 - The parentheses are not optional: it’s f(3), not f 3.
- There are function types
 - f has type Int => Int
 - Unlike Java, there actually is a separate function type!
 - Not an abbreviation for a single-member interface.
- Functions are not printable, so instead it prints <function1>.

7.3 Generic patterns involving multiple classes

Multiclass genericity.
Defining related generic classes

```java
public interface LeftSide< A extends LeftSide<A,B>,
        B extends RightSide<A,B> > {
    public B toRight();
}

public interface RightSide< A extends LeftSide<A,B>,
        B extends RightSide<A,B> > {
    public A toLeft();
}

public class MyLeft implements LeftSide<MyLeft, MyRight> {
    public MyLeft(int leftVal) { this.leftVal = leftVal; }
    private int leftVal;
    public MyRight toRight() {
        return new MyRight(Integer.toString(leftVal));
    }
}

public class MyRight implements RightSide<MyLeft, MyRight> {
    public MyRight(String rightVal) { this.rightVal = rightVal; }
    private String rightVal;
    public MyLeft toLeft() { return new MyLeft(rightVal.length()); }
}
```

7.4 Type variables and members

7.4.1 Scala generics and variance

Generics

Scala’s system for generic types (that is, parametric polymorphism) resembles Java in simpler cases

```scala
class Buffer[X](private var contents:X) {
    def get():X = contents
    def set(x:X):Unit = {
        contents = x
    }
}
```

Generics and methods

Individual methods can also be generic

```scala
class GenMethod {
    def stringLen[A](a:A):Int = a.toString().length()
}
```

- Note order of parameter lists
- Straightforward for resolving scoping of variables

```scala
class ElementGrabber {
    def firstOf[A](z:List[A]):A = z match {
        case (x :: xs) => x
        case _ => throw new RuntimeException("Empty")
    }
}
```
Generics and subtyping

class G[X] {
}

• If B is a subtype of A, then is:
 – G[B] a subtype of G[A]?
 – G[A] a subtype of G[B]?
 – Or neither?

• By default there’s no relation

scala> val gA : G[A] = new G[B]()
<console>:10: error: type mismatch;
 found : G[B]
 required: G[A]

scala> val gB : G[B] = new G[A]()
<console>:10: error: type mismatch;
 found : G[A]
 required: G[B]

Covariant subtyping

We can declare a covariant relationship between G and its type argument

class G[+X] {
}

• Then G[B] is a subtype of G[A]

scala> val gA : G[A] = new G[B]()
gA: G[A] = G@327514f
scala> val gB : G[B] = new G[A]()
<console>:10: error: type mismatch;
 found : G[A]
 required: G[B]

Contravariant subtyping

The opposite relationship is contravariant subtyping

class G[-X] {
}

• Then G[A] is a subtype of G[B]

scala> val gB : G[B] = new G[A]()
gB: G[B] = G@3e6ef8ad
scala> val gA : G[A] = new G[B]()
<console>:10: error: type mismatch;
 found : G[B]
 required: G[A]
Another use of covariance: method result types

- Overriding \(g \) is allowed because of covariance for method result types

```scala
class Cov1 {
    def g():A = new A()
}
class Cov2 extends Cov1 {
    override def g():B = new B()
}
```

- Why is this allowed?
 - Consider any use of the result of a call to \(g \) on a \(\text{Cov1} \)
    ```scala```
    val c:Cov1 = getMeACov1(...)
    val a:A = c.g()
    ```
 - Any \(B \) instance can be assigned to \(a \), since \(B \) is a subtype of \(A \)
 - So if \(g \) were actually to return a \(B \), the assignment is still valid
 - So an override such as \(\text{Cov2}'s \) is always OK
 - (This works in Java, too)

Covariance and contravariance apply to function types too

- Another background class

```scala
class E() {
}
```

- Think about function types

```scala```
scala> val fEA: E => A = { x:E => new A() }
fEA: E => A = <function1>
scala> val fEB : E => B = { x:E => new B() }
fEB: E => B = <function1>
```

- What is the relationship between \(E \Rightarrow A \) and \(E \Rightarrow B \)?
 - \(E \Rightarrow B \) is a subtype of \(E \Rightarrow A \)
    ```scala```
    scala> val fE : E => A = fEB
    fE: E => A = <function1>
    ```
 - So the function type is covariant in the result type

- But is there a relationship between \(A \Rightarrow E \) and \(B \Rightarrow E \)?

How can contravariance be a thing?

- Again two functions

```scala```
scala> val fAE : A => E = { x:A => new E() }
fAE: A => E = <function1>
scala> val fBE : B => E = { x:B => new E() }
fBE: B => E = <function1>
```
• What is their relationship?

• Not covariant — \(A \rightarrow E \) is not a subtype of \(B \rightarrow E \)

```
scala> val gE : A => E = fBE
<console>:11: error: type mismatch;
  found : B => E
  required: A => E
```

• But it is contravariant in the argument position —

```
scala> val gE : B => E = fAE
gE: B => E = <function1>
```

• Why is this right?
 – If a value \(x \) can be supplied for a type \(A \), it must be able to do everything we expect of an \(A \)
 – If we know that it can’t do certain of those things, than it’s not acceptable at that type
 – If we can say this is systematically of all elements of another type \(B \), then \(B \) must not be a subtype of \(A \).

Capabilities example

class A() {
}

class B() extends A() {
}

class C() extends A() {
}

class E() {
}

• A function of type \(A \rightarrow E \) should be able to take an argument of type \(A, B \) or \(C \)
 – If we assert this typing, then we are committed to this capability
 – If we provide a function of type \(B \rightarrow E \), then we fall short of this commitment

• A function of type \(B \rightarrow E \) should be able to take an argument of type \(B \)
 – But not necessarily an argument of type \(A \) or \(C \)
 – A function of type \(A \rightarrow E \) delivers on the commitment made by an assertion of the type \(B \rightarrow E \)
 – So \(A \rightarrow E \) is a subtype of \(B \rightarrow E \), even though (because!) \(B \) is a subtype of \(A \).

A sample class

• \(A \) and \(B \) as last time

```scala
class A { }
class B extends A { }
```

• \(G \) with a method that uses its type variable
class $G[T]$(maker: Int=>T) {
 def mthd(x: Int): T = maker(x)
}

- What variance can we imagine for T?

Does covariance make sense?
For a value g of type $G[A]$, could we provide something of type $G[B]$?
- The context might call g.mthd(i), and expect to get a value of type A
- That call on an object of type $G[B]$ would return a B
- But B is a subtype of A, so it’s OK
 - That’s also written $B <: A$
- So it’s reasonable to consider $G[B]$ a subtype of $G[A]$
- And we could declare

```scala
class $G[+T]$(maker: Int=>T) {
    def mthd(x: Int): T = maker(x)
}
```

A sample class
- A and B as yesterday

```scala
class A { }
class B extends A { }
```

- G with a method that uses its type variable

```scala
class $G[T]$(maker: Int=>T) {
    def mthd(x: Int): T = maker(x)
}
```

- What variance can we imagine for T?

Does contravariance make sense?
For a value g of type $G[B]$, could we provide something of type $G[A]$?
- The context might call g.mthd(i), and expect to get a value of type B
- That call on an object of type $G[A]$ would return a A
- A is *not* a subtype of B, so that’s a type mismatch
- So it’s not reasonable to consider $G[A]$ a subtype of $G[B]$
Another sample class

class A { }
class B extends A { }

class H[T]() {
 def mthd(x: T) = 99
}

• What variance can we imagine for T?

Does covariance make sense?
For a value h of type H[A], could we provide something of type H[B]?

• The context might call h.mthd(new A())
• mthd on an object of type H[B] would require an argument of type B
• But new A() cannot be used where a B is required, because A is not a subtype of B — it’s the other way around
 – So that’s a type mismatch
• So it’s not reasonable to consider H[B] a subtype of H[A]

Another sample class

class A { }
class B extends A { }

class H[T]() {
 def mthd(x: T) = 99
}

• What variance can we imagine for T?

Does contravariance make sense?
For a value g of type H[B], could we provide something of type H[A]?

• The context might call h.mthd(new B())
• mthd on an object of type H[A] would require an argument of type A
• new B() can be used where type A is required, because B<A
• So it’s reasonable to consider H[A] a subtype of H[B], and we could declare

 class H[-T]() {
 def mthd(x: T) = 99
 }

Limits on using variance declarations

• The use of [+T] and [-T] variance declarations is limited by how T is used in the class
• Scala tracks which type variables are used in covariant positions, and which are used in contravariant positions
• We are never required to use a variance declaration
 – But we are forbidden from making a declaration opposite to actual usage
 – Which means that in some cases, we can make neither a covariant nor a contravariant declaration
7.4.2 Type members

Type members

- We have seen that traits and classes may have both methods and fields as members of the class
- Scala also allows types to be members of a trait or class
 - In a (concrete) class, type members are essentially abbreviations
    ```scala
class Doubler {
  type IntPair = (Int, Int)
  def doubler(x: Int): IntPair = (x, 2 * x)
}
```
 - But in a trait or abstract class, type members are much more interesting!

Abstract type members

Like methods and fields, type members can be abstract

```scala
trait Encoder {
  type Holder
  var contents: Holder
  def encode(s: String): Holder
  def decode(h: Holder): String

  final def hold(s: String): Unit = { contents = encode(s) }
  final def give(): String = { decode(contents) }
}
```

Then different concrete classes can provide different concrete types

```scala
class Enc1 extends Encoder {
  type Holder = Int
  override var contents: Int = 1
  override def encode(s: String): Int = s.length()
  override def decode(h: Int): String = "Z" * h
}
class Enc2 extends Encoder {
  type Holder = Char
  override var contents: Char = 'z'
  override def encode(s: String): Char = s.length() match {
    case 0 => 'z'
    case _ => s.charAt(0)
  }
  override def decode(h: Char): String = h.toString * 3
}
```

Universal vs. existential

What is the difference between a type parameter and a type member?

- A type parameter is a universal construction

```scala
trait Tiny[A] {
  def getOne(): A
}
```
We can provide any type to Tiny

In a real sense, Tiny is not itself a type, but a mapping from one type to another

A type member is an existential construction

The programmer instantiating a class extending Encoder does not necessarily get to choose the type for Holder

However, such a type must exist

Useful in traits in frameworks for implementations, organizing common structure

7.4.3 Higher-kinded type variables

Higher kinds

In Scala, what does List mean?

List[Int] and List[String] and List[List[Array[Boolean,(Int)=>String]]] are types

But List, by itself and without a type argument, cannot be used in the usual ways for a type:

```scala
def f(x: List): Unit = {
}
```

does not compile

The type constructor List is higher-kindled

- A sort of map from one type to another
- There are many such types in the standard Scala libraries: Option, Set, Queue
- They can also take two arguments (Map) or more

Higher-kinded type variables

We are used to seeing type variables, and including them in subroutine signatures, in (at least) Java, Haskell and Scala

- Scala also allows type variables to represent higher-kindled entities

```scala
def f[X[_], A](u: A, g: (A)=>X[A]): X[A] = g(u)
```

Then we can apply f

```scala
f[List,Int](30, { (x:Int) => x :: Nil })
```

- In fact the type arguments to f are optional, since Scala can infer them

```scala
f(30, { (x: Int) => x :: Nil })
```

Higher-kinded type variables in the standard libraries

Higher-kindled type variables are used in Scala’s standard libraries for conversion between different collection classes

- All collections in the libraries have a method to for converting them into a different collection type
- to takes a single higher-kindled type parameter, the constructor of the collection type to be created

```scala
val xs: Set[String] = ...
val zs = xs.to[List]
```

- Implemented with an implicit argument

 - Passes a builder for the particular collection types
 - The standard imports include builders for all of the standard collections
7.4.4 Dependent types and the lambda cube

Where can we use types in Scala?

- Types of parameters, val or var declarations
- Arguments of generic classes/traits
- Fields of classes/traits
 - Possibly abstract
 - And then subsequently used in the types of other fields and methods

    ```scala
    trait T {
      type A
      var stored: A
      def store(a: A) { stored = a; return }
      def process[B](f: A=>B) = f(stored)
    }
    ```
 - Concrete subclasses must provide an actual type, just as they must provide method definitions

    ```scala
    class C extends T {
      type A = String
      var stored = ""
    }
    ```

How does this not break variance?

```scala
trait T {
  type A
  var stored: A
  def store(a: A) { stored = a; return }
  def process[B](f: A=>B) = f(stored)
}
```

- Taking subclasses of T with different values for A would seem to conflict with variance
 - How can a subclass be a subtype if A is in a contravariant position?
- This isn’t an issue because A is not a simple parametrized type provided from outside T
 - For any instance t:T, the type A depends on the term t
 - A is another field of t, but it can be used as a type

    ```scala
    class G {
      def f(t:T):Int = 4
      def g(t:T):t.A = t.stored
      def h(t:T):(t.A=>Unit) = { (x:t.A) => t.store(x) }
    }
    ```
 - However we cannot say

    ```scala
    def k(t:T, x:t.A) = t.store(x)
    ```
Constraints on abstract types

• We can give constraints on abstract type fields

 trait T {
 type A <: G
 var stored: A
 def store(a: A) { stored = a; return }
 def process[B](f: A=>B) = f(stored)
 }

• Subtypes of T must provide compliant concrete types for A
 – Subtypes can also impose more strict constraints
• This can be useful when specifying the internal structure of a class
 – Specify the types of internal data structures used within the class, and abstract methods in terms of these types
 – Different implementations can use different types internally
 – We’ll see later how we can mix-and-match parts of classes so long as these internal interfaces are compatible

7.5 Implicits

Implicit information

Parameter-passing has normally been an explicit action for us

• Spell out all arguments, every time we call a method
• Only the object context is implicit, sort of

But sometimes making all of the parameters explicit is a burden

• Different reference or/and wrapper objects passed in every method call
• Lots of duplication of parameter lists, plumbing code
• Many parameters not used in many methods (except for plumbing)
• Global variables are one solution, but lead to brittle code

Scala’s solution: reduce boiler plate by allowing some parameters to be implicit

What can be defined implicitly?

• Some of the formal parameters of a method, so that the caller does not need to repeat them every time
• Certain ways to convert values of one type into another type

What provides the implicit values?

• Fields or local variables can be marked as a source of implicit formal parameters
• Methods can be marked as an implicit converter from one type to another
A bad program

object ImplicitsExample extends App {
 def echo(num:Int) = { println(num) }
 echo(true)
}

- Clearly bad; it’s a mismatch in any typed language

 implicit scala:3: error: type mismatch;
 found : Boolean(true)
 required: Int
 echo(true)

 one error found

- If we are working in a context where it will often be convenient to take a boolean value as an integer, we can define an implicit method to perform this conversion for us

 Methods providing implicit conversions

 object ImplicitsExample extends App {
 implicit def boolToInt(b:Boolean) = if b then 1 else 0
 def echo(num:Int) = { println(num) }
 echo(true)
 }

 - Now this compiles

 > scalac implicit.scala
 > scala ImplicitsExample
 1

Ambiguity is a dealbreaker

object ImplicitsExample extends App {
 implicit def boolToInt(b:Boolean) = if b then 1 else 0
 implicit def anotherBoolToInt(b:Boolean) = if b then 10 else 0
 def echo(num:Int) = { println(num) }
 echo(true)
}

- This won’t compile because Scala can’t work out which one to use

 implicit.scala:4: error: type mismatch;
 found : Boolean(true)
 required: Int
 Note that implicit conversions are not applicable because they are ambiguous: both method boolToInt in object ImplicitsExample of type (b: Boolean)Int and method anotherBoolToInt in object ImplicitsExample of type (b: Boolean)Int are possible conversion functions from Boolean(true) to Int
 echo(true)

 one error found
Although ambiguity is only an error if it is actually relevant

```scala
object ImplicitsExample extends App {
  implicit def boolToInt(b:Boolean) = if (b) 1 else 0
  implicit def anotherBoolToInt(b:Boolean) = if (b) 10 else 0
  def echo(num:Int) = { println(num) }
  echo(4)
}
```

• This compiles and runs, since we never try to implicitly apply the conversion

```
> scalac implicit.scala
> scala ImplicitsExample
4
```

A more useful use case

I find WINGS can get in the way of seeing the big picture in simple cases

• So for advising, I generate paper checklists for my advisees

• Output looks like this:

![Image of a CS major course planner — Spring 2019](image)

• Model program requirements, advisee progress as small Scala programs

```scala
class CS(units:Int, num:Int, short:String,
        long:String, pre:List[Requirement])
extends Course(units, "CS", num, short, long, pre) {
  def this(units:Int, num:Int, name:String,
            preqs:Requirement*) =
    this(units, num, name, name, preqs.to[List])
    // ...
}
// --------------------------------------------------
object CS120 extends CS(4, 120, "Software Design I", MTH151)
object CS202 extends CS(3, 202, "Intro. Web Design",
                        OneOf(CS120, CT100))
object CS220 extends CS(4, 220, "Software Design II", CS120)
object CSmajor2018 extends Program(
    "CS major", "CS major (general)",
    MTH207, MTH208, CS120, CS220, OneOf(CS225, MTH225),
    CS270, CS340, CS341, CS370, CS421, CS441, CS442,
    // ...
)
```

// --
Referring to requirements
Key classes and methods

- **Person objects**
 - Have their degree requirements, lists of current classes, previously passed classes
 - Method here uses those fields to generate the advising report with the progress all filled in

- **Course objects**

- **Requirement objects**
 - Sometimes a requirement one specific class
 - Sometimes it has more complicated structure
 * One out of two different classes (CS225 or MTH225)
 * Four electives from a set of choices
 - Easy enough to have different subclasses of Requirement

- **Program objects collect several Requirement objects under one name**
 - But when we model a program’s requirements, it would be repetitive and distracting to write something like

```scala
object CSmajor2018 extends Program(
  "CS major", "CS major (general)",
  new SingleClassRequirement(MTH207), new SingleClassRequirement(MTH208),
  new SingleClassRequirement(CS120), new SingleClassRequirement(CS220),
  OneOf(CS225,MTH225),
  new SingleClassRequirement(CS270), new SingleClassRequirement(CS340),
  // ...
  * The solution — allow Course objects to be *implicitly converted* to Requirement objects
```

Implicit conversion to requirements
To allow implicit conversion, we add a method which Scala can apply to make the types work out

```scala
class Course(val units:Int, val prefix:String, val number:Int,
  val shortName:String, val longName:String,
  val prerequisites:List[Requirement])
extends Step {

  implicit def requiredCourse(course:Course):Requirement =
  new SingleClassRequirement(course)

  // ...

  * Tagged implicit
  * Part of Course, so can be found wherever a Course is used
  * The constructor for Program expects Requirement arguments
    - When it get a Course, use requiredCourse to convert
```
Another scenario: local configuration
How the advising handout package is deployed:

- In some repository store the model of our curriculum
 - Probably someplace public like GitHub
 - So anyone can use the basic framework
 - Since our course requirements are not secret
 - Shared by all of the CS advisors who decide to use it
- Then each advisor stores their advisees’ information locally
 - Definitely not public

The top-level class which each advisor extends is `Advisees`

```scala
object Portfolio extends Advisees(
  Person("2555555555","Dinosaur", "Barney T.",
    "dinosau.barne@uwla.edu",
    List(GenEd2018, CSmajor2018, MathMinor2018),
    List(CS370, CS419ml, CS421, MTH309), // now
    List(CS120, CS202, CS220, CS225, CS270, // past
    // ...
  ),
  // One Person instance per advisee
  ) {
    reportDirectory = "reports" // set a property field
  }

- Also includes other local configuration information
- This information needs to be passed down to the more deeply nested routines that e.g. generate the pictures

An implicit parameter for the set of advisees
Each checklist is written by the method `writeChecklist` in class `Person`

- Takes an implicit parameter of the `Advisees` configuration object

```scala
def writeHandout(doc:LaTeXdoc)(implicit advisees:Advisees)
```

- When `writeHandout` is called, if an implicit field or variable of the right type is in scope, then the implicit parameter can be omitted

- Called from a method on `Advisees`

```scala
abstract class Advisees(people:Person*) {
 implicit def cohort:Advisees = this
 var reportDirectory:String
 var photoDirectory:String

 def reports():Unit = {
 for (person <- people) {
 val doc = new LaTeXdoc(reportDirectory + "/"
 + getHandoutFileRoot(person))
 person.writeHandout(doc)
 doc.close()
 }
 }
```
Can retrieve an implicit value from an arbitrary point in a method. But the dependencies are a little less visible to the programmer this way.

**How are implicits communicated?**

Basic rule: Implicits apply when they are visible within the *static scope* in which they are recalled.

- They are not global.
- The previous examples show that they are visible from within the same class.
- They can also be imported.

```scala
class ImplicitsExample2 {
 def echo(num:Int) = { println(num) }
}
object ImplicitsExample2 extends App {
 import ImplicitsExample.boolToInt
 new ImplicitsExample2().echo(true)
}
```

**How are implicits communicated?**

- In the companion object of the type at either end of a conversion, or of the type of an implicit value reference.

```scala
class Something(i:Int) {
 def get() = i
}
object Something {
 implicit def unwrap(s:Something) = s.get()
}
object ImplicitsExample extends App {
 def echo(num:Int) = println(num)
 echo(new Something(10))
}
```

or

```scala
class Something(i:Int) {
 def get() = i
}
object Something {
 implicit def wrap(i:Int):Something = new Something(i)
}
object ImplicitsExample extends App {
 def echo(s:Something) = println(s.get())
 echo(10)
}
```

- In the companion object of the type used as the argument to the type constructor of the required implicit value.
Implicit value via the companion object

case class B(i:Int)
object B { implicit val defaultB = B(100) }
object ImplicitsExample extends App {
def tenPlus(i:Int)(implicit b:B) =
  b match { case B(x) => 10 + i + x }
println(tenPlus(4))
}

• Then running

  > scala ImplicitsExample
  114

  • We can call up an implicit value in any scope with implicitly

  scala> implicitly[B]
  res0: B = B(100)

Another case for explicit flagging of feature use

import scala.language.implicitConversions

  • Because implicit conversion can have surprising effects — use with caution!

Implicit parameters for Scala’s version of type classes

  • In Haskell:
  – Declare a type to be an instance of a class, and provide the associated operations
  – Then that type can be allowed in constraints for that class

  • In Java:
  – Methods like Collections.sort take a Comparator object

  • In Scala:
  – The equivalent of the Comparator object can be implicit
  – An implicit parameter can be always be explicitly provided

Numbers as words

Sometimes we want to represent numbers as words: twenty-three, five hundred seventeen, etc.

trait AsWords {
  def asWords(num: Int): String
}

Then we can create objects which represent words for integers in a particular way

val intAsWords: AsWords = new AsWords {
  override def asWords(num: Int): String = {
    if (num == 0) {
      "zero"
    } else if (num < 0) {
      "minus " + asWords(-num)
    } else {
      // Add logic to handle numbers as words
    }
  }
}
private case class Thousand(value: Int, name: String)

private val thousands = Seq(Thousand(1000000000, "billion"), Thousand(1000000, "million"), Thousand(1000, "thousand"))

def asWords(n: Int, sb: StringBuilder): Unit = {
  var sep = ""
  var num = n
  for (Thousand(value, name) <- thousands) {
    val inPlace = num / value
    // and so on
  }

Making it implicit

We then make `intAsWords` implicit, and not need to explicitly pass it to every method which uses an `AsWords`

object AsWords {
  implicit val intAsWords: AsWords = new AsWords {
    override def asWords(num: Int): String = {
      // ...
  }
}

object TryWords extends App {
  recite(10, 22)
  def recite(x: Int, y: Int)(implicit aw: AsWords) = {
    println(aw.asWords(x) + " plus " + aw.asWords(y)
      + " equals " + aw.asWords(x+y))
  }
}

• Since `intAsWords` is in the companion object for `AsWords`, it will be in scope wherever `AsWords` is in scope

Convert many things to words

If we make `AsWords` polymorphic, we can convert other types to words

trait AsWords[A] {
  def asWords(a: A): String
}

And perhaps others for numerals in German, French, etc.
object AsWords {
  implicit val boolAsWords: AsWords[Boolean] = new AsWords[Boolean] {
    override def asWords(b: Boolean): String = {
      if (b) "true" else "false"
    }
  }
  implicit val intAsWords: AsWords[Int] = new AsWords[Int] {
    override def asWords(num: Int): String = {
      // ...}
  }
}

object TryWords extends App {
  repeat(true)
  repeat(10)
  def repeat[A](a: A)(implicit aw: AsWords[A]) = {
    println("Given " + aw.asWords(a))
  }
}

Other classes as words
We will not always have access to all of the code in a project
• Because management says some things are off-limits
• Because we do not have the source code, just compiled JARs
• So when we write a new class (let’s call it Bubble), we may not be able to simply add a new implicit val of type AsWords[Bubble] into object AsWords
  
  case class Bubble(val b: String)

• This situation motivates that last rule for where Scala will look for implicits: in the companion object of a type parameter
  
  object Bubble {
    implicit val bubbleAsWords: AsWords[Bubble] = 
    new AsWords[Bubble] {
      override def asWords(bub: Bubble): String = {
        "a bubble saying " + bub.b + ""
      }
    }
  }

Scala’s rendition of type classes
Compare with Haskell’s type classes
• Define a type class AsWords, where any type in the class supports a function asWords
• Give an instance declaration for any type which is in the class
• Define a polymorphic trait AsWords with a method asWords
• For any class C convertable to words, place an implicit val with type AsWords[C] in the companion object of either AsWords or C
7.6  The expression problem redux

References


8  Further topics

Time allowing, we will study additional topics at the end of the semester. Any additional notes and exercises will be distributed separately.

9  Hints and answers for selected exercises

Exercise 5.43 (p. 37) Use a helper function which performs the actual recursion. The helper can return both whether the invariants are satisfied, and the sum of the black nodes in the subtree.

Exercise 6.1 (p. 72)  
1. \((\lambda x. (\lambda y. xy)) \lambda z. (z)\)
2. \(xy(xz)\)