
Technical Reference for the dt Programming Language and Assembler

Justin Severeid and Elliott Forbes
Department of Computer Science

University of Wisconsin-La Crosse
La Crosse, WI 54601

{severeid.justin, eforbes}@uwlax.edu

Technical Report TR09122024
University of Wisconsin-La Crosse

1. Introduction

This document is a technical reference for the DuctTape (dt) programming language, and its compil-
er/assembler (also called dt). Rationale, and the background for this language/tool are described in [3]
and will not be repeated here. If you have used dt and found it helpful in your research, please cite [3]
rather than this technical report.

The most up-to-date version of document can always be found at https://cs.uwlax.edu/∼eforbes/dt/dtref-recent.
pdf. It will be updated as bugs are found/fixed and as new versions of dt are released. Older versions of
this document will also be available at the same link, where the document name will follow the form
dtref-TRmmddyyyy.pdf, where mm is the two digit month, dd is the two letter day, and yyyy is
the four letter year of the release date of the document.

For the sake of clarity, this document will stylize DuctTape the language as dt, with italicized font.
DuctTape the high-level assembler tool that implements the dt language will be referred to using a fixed-
width system font as dt. And we will use .dt, a fixed-width system font prefixed with dot (i.e. referring
to a dot-dt file), to refer to a program written in the dt language.

The remainder of this document outlines the installation and usage of the dt high-level assembler in
Section 2. The details of the dt syntax are discussed in Section 3. Section 3 also describes what code will
be emitted by dt for high-level language constructs. The output file formats of dt will be explained in
detail in Section 4. A brief walk-through of the dt high-level assembler itself can be found in Section 5.
And finally, knowns bugs and limitations of dt are enumerated in Section 6.

https://cs.uwlax.edu/~eforbes/dt/dtref-recent.pdf
https://cs.uwlax.edu/~eforbes/dt/dtref-recent.pdf

2. Installation and Command-line Options

This section helps you get started with using dt, the high-level assembler for the dt language.

2.1. Installation

The source code for the dt high-level assembler has been moved to a public GitHub repository, which
can be found at https://github.com/eforbes-uwl/dt. Use the usual git commands to clone the repository:

git clone https://github.com/eforbes-uwl/dt.git

Once cloned, you can descend into the ./dt/ base directory, and compile. Simply issue the make com-
mand to compile, there is only one compilation target defined to build dt, specifically ./dt/bin/dt.
The clean build target is also defined to delete all derived files, including the dt executable itself. The
only requirements for compilation are reasonably recent versions of gcc, flex and bison. dt was
most recently compiled with gcc 14.2.1, flex 2.6.4, and bison 3.8.2, although there is no reason to
believe older/newer versions of these tools won’t compile.

cd ./dt
make

You may want to add the dt executable to your $PATH environment variable. The dt executable will
be in the ./dt/bin subdirectory. Edit your .bashrc (or similar) file in your home directory, and add
the dt path to the PATH environment variable, before it has been exported.

PATH="$HOME/.local/bin:$HOME/bin:$PATH:$HOME/dt/bin"
export PATH

2.2. Command-line Usage

The following help message is displayed when you execute dt from the command-line, without specifying
any options or files.

usage: ./bin/dt [flags] <infile...>

-version Print the dt version number and exit.
-out <outfile> Output filename will have a base name of <outfile>.

The default is "a" if -out is not used.
-checking Prints debug info (encodings, addresses, etc)

for parsed program to stdout.
-elf Outputs an ELF64 Linux executable. The output

filename will use a .out extension.
-text Outputs file to a flat memory image, as an

ASCII encoded text file. The file extension will be
.txt.

-bin Outputs file to a flat memory image, as a
binary file. The file name will end with a .bin
extension.

https://github.com/eforbes-uwl/dt

This is a helpful reminder of the available options and required files needed when running dt. The
angle-brackets indicate required tokens, and square-brackets indicate optional tokens.

The -version command-line flag will always print the dt version number, and immediately quit,
regardless of the other command-line flags. This technical report describes dt version 0.2.0.

You must have at least one input file indicated, that should be an ASCII text file with correct dt source
code. It is customary that the file name end with the .dt extension, but it is not required to have any
particular file name. You can have a single dt program that extends over several .dt source files, they
will be parsed in the order listed at the command-line.

By default output files will have the base name a regardless of the output file format. This default can
be changed by passing the -out option, along with a new base file name. The file extension after the
base name will be determined by which output format is selected.

It is not required to use any other command-line flags, however, by default dt will not emit any output
– not to the console, nor to any files. You can simply pass an input file name and dt will check the
syntax, but will otherwise produce nothing else.

To have dt produce output, you must use any combination of the remaining command-line flags:
-checking, -elf, -text, and/or -bin. The -checking writes helpful information about the input
file to stdout. All other command-line flags will produce an output file. If multiple output formats are
specified, then multiple files will be produced. The -elf flag indicates a ELF64 executable, suitable for
execution in Linux. The -text and -bin options will produce flat memory images, typically used for
simulators. These file formats are documented in Section 4.

3. dt Language Syntax

This section describes the dt language in detail. The section is divided into discussions of the high-level
organization of a dt program, the syntax of the language, and the code emitted by high-level language
constructs. There are also several code examples to highlight the flexibility of dt.

3.1. dt Program Organization

Figure 1 shows the high-level organization of a dt program. Each dt program is composed of one or
more mem() blocks. The mem() blocks are used to encompass zero or more instructions, data values,
and/or high-level language constructs. A mem() block must be supplied with a starting address, which
are assumed to be 64 bit. Multiple memory regions can be populated without the need to specify what
values appear in the “gaps” between memory regions. Each instruction will use 4 bytes of memory, in
program order, starting from the mem() block starting address. Each data value put in the program source
will use bytes of memory determined by which assembler directive is used to provide the value. dt will
automatically ensure alignment, based on the size of data/instruction used, padding with zero values.

A single dt program can be split into multiple files. However, a mem() block must appear in its entirety in
a single file. By convention, those files are named with an extension of .dt. There are no restrictions on
the number of mem() blocks or their starting addresses for a program targeted for the flat memory image
output formats (either text or binary). However, when using the ELF64 output file format, the program
entry point must be address 0x000000400000. Thus, there must be a mem() block with that same
address, and it is expected that normally the first addresses used in that mem() block will be instructions.

dt program

*.dt source file
mem(...){

}
mem(...){

}

%instructions/data/definitions

%instructions/data/definitions

...

*.dt source file
mem(...){

}
mem(...){

}

%instructions/data/definitions

%instructions/data/definitions

...

...

Figure 1. Program organization of a complete dt program.

3.2. Assembly Syntax

The syntax of the dt language can be sub-divided into several categories: comments, mem() blocks,
definitions, instructions, data values, high-level assignments, and high-level block statements. White-space
and linefeeds are ignored by the dt high-level assembler. Also, and very importantly, dt is case-sensitive
for definitions (section 3.2.3), but case-insensitive for all other constructs.

This subsection will cover the syntax required if the programmer uses only the assembly language syntax
permitted by dt. Section 3.3 discusses the additional high-level language syntax that is permitted by dt.

3.2.1. Comments. Comments can appear anywhere in the source file. They start with a hash (#) and
extend to the remainder of the source line. Multi-line comments are not implemented in dt. An example
comment is shown in Listing 1.

1 # Th i s i s a comment .

Listing 1. Code example of a comment

3.2.2. mem() Blocks. A collection of nearly all other syntactical constructs other than comments must
be contained within a mem() block. The exception to this rule is discussed in Section 3.3.1. A mem()
block indicates to the dt high-level assembler where in the memory space the code contained within the
mem() block will be put. That, in turn, impacts instruction and data addresses, which themselves impact
instruction offsets.

A mem() block is specified by the keyword mem. After the mem keyword, the starting address should
be specified within parenthesis. The starting address should be formatted the same way as 64 bit integer
values as specified in section 3.2.4. After the parenthesized starting address, the instructions and data of
a mem() block should be encompassed in curly braces. An example of a mem() block, with a starting
address of 0x000000400000, is shown in Listing 2.

1 mem (0 x000000400000) {
2 # i n s t r u c t i o n s , da t a , e t c . , s h o u l d go h e r e −− c u s t o m a r i l y i n d e n t e d
3 }

Listing 2. Code example of a mem() block

3.2.3. Definitions. Definitions allow the programmer to name several of the other dt programming
constructs. A definition is a label followed by a colon follow by one of those program constructs. A label
can be any alpha-numeric string that starting with a letter. The label can contain underscores (), but no
other punctuation is allowed. Remember that definitions are the only part of dt that is case-sensitive, so
label is the different than Label is the different as LABEL. There is no restriction on the length of
the label.

There are two classes of definitions, those that name an associated memory location, and those that name
a register. Registers are of one of two form: using the assembler names (for example $zero, $ra, $sp,
etc.) or of the generic numbered form $x0-$x31 for the integer registers. Once a register is given a
defined name, the instructions that follow can then refer to the name in instead of the register number.

Memory locations can also be named, by simply prefacing an instruction and/or a value with a label,
followed by a colon. A named memory location can be used by other instructions to assist in forming
addresses, or in leaving offset calculations to the high-level assembler.

Note that all definitions are global. Therefore, it is possible to refer to registers and/or memory locations
that span different mem() blocks – and even across multiple .dt files. Also note that registers must
be named with a register definition before that label can be used by any instructions, but memory
definitions/uses can come in any order. Registers can be renamed as often as needed, but memory locations
can typically only be labeled once except for circumstances when a memory location is internally named
by the high-level assembler (discussed in Section 5).

Listing 3 shows two example definitions, one for a register, and another to name a memory location that
holds an addi instruction. Since the addi instruction is the first (and only) element that requires a
memory location, bar is naming memory location 0x000000400000.

1 mem (0 x000000400000) {
2 foo : $x5 # g i v e s $x5 a handy name
3 b a r : a d d i foo , $x0 , 0x7
4 }

Listing 3. Code example of a register and memory definition

3.2.4. Data and Immediate Values. Values are used in two main ways in dt programs. Some instructions
require immediate values or offsets. Alternatively, it is possible to simply initialize a memory location
with a known value. In either use case, immediate values are still bound by the number of bits in the
instruction encoding of memory location.

Integer values can be specified in either decimal or hexadecimal, and use syntax similar to the C
programming language. A decimal value is specified using an optional sign (+ or -), followed by the
numerical value. A hexadecimal value is specified with a 0x followed by the hexadecimal value.

Floating point values are also possible. They are also denoted in the same way as in the C programming
language with an optional sign, a whole value, a decimal point, a fractional value, and an optional
exponent which is denoted with the letter e, an optional sign, and the value of the exponent.

Memory can be initialized with a starting value. The syntax to fill a memory location is to use one of the
assembler directives listed in Table 1, followed by listing the value. One of the directives (.stringz)
additionally permits strings to be defined. dt strings also follow C-style syntax – the must be enclosed
in double-quotes, within which characters and/or escaped characters can appear. dt strings are always
terminated with a single byte with value zero. Unlike C, dt does not allow for a single character (i.e.
single-quoted) data value.

As alluded toward in Table 1, the different directives are used to specify data with different data widths.
The table lists the number of bytes, depending on which directive used. For .stringz, the number of
bytes will equal the number of characters, plus the NULL terminating character. Escape sequences will
be a single byte, as expected from C. The .stringz example from Table 1 will occupy 13 bytes of
memory. The dt high-level assembler will automatically align all data to its data size (i.e. a .word will
be aligned to 4 bytes, a .half to 2 bytes, etc.)

Directive Size (in bytes) Data Format Example
.byte 1 Decimal or hex .byte 0xff
.half 2 Decimal or hex .half -1
.word 4 Decimal or hex .word 0xdeadbeef
.long 8 Decimal or hex .long 0
.float 4 Single precision IEEE 754 .float 3.14159
.double 8 Double precision IEEE 754 .double 6.022e23
.stringz variable ASCII encoded string .stringz "Hello world\n"

Table 1. Assembler directives for inserting data values into memory in dt programs

Listing 4 shows several examples that use values. Line 2 shows an addi instruction, where the im-
mediate has the value -1. Since this addi instruction appears first in the mem() block, it will oc-
cupy addresses 0x000000400000 through 0x000000400003. Line 3 populates memory locations
0x000000400004 through 0x000000400008 with the ASCII values for the string "foo\n". Line 4
indicates a 4 byte .word, but must be aligned. Therefore, dt will pad (with zeros) memory addresses
0x000000400009 through 0x00000040000b and the value 0xdeadbeef will occupy the next 4
bytes of memory. Finally, Line 5 will populate memory with the 64 bit IEEE 754 encoded value for
2.998×108 – an 8 byte quantity that happens to already be aligned at its address of 0x000000400010
without the need for any additional padding.

1 mem (0 x000000400000) {
2 a d d i $x1 , $x0 , −1
3 . s t r i n g z ” foo \n ”
4 . word 0 x d e a d b e e f
5 . d ou b l e 2 .998 e8
6 }

Listing 4. Code example of immediate values and initialized memory locations

3.2.5. Instructions. Instructions can be specified by the instruction mnemonic, following the syntax in the
RISC-V ISA specification [4] for the RV64I and RV64M subsets of the instruction set. Some instructions
have alternative forms that will be discussed in section 3.3.1. Table 2 lists the valid mnemonics that can
be used.

Listing 5 gives examples of several types of instructions. Instructions are fully specified using their
mnemonic, followed by their operands. Operands can be specified in several ways, depending on the
instruction type. For instructions with all register operands, typically the destination register is listed
first, followed by the source operands. This is the typical format for arithmetic and logical instructions.
Note that nop is a pseudo-instruction, requiring no operands, which is implemented as an addi $x0,
$x0, 0 instruction. In the example code Listing 5, line 3 shows an example add instruction with source
registers $x0 and $x3 and destination register $x5.

Memory instructions (loads and stores) use a format in which the address register is surrounded with
square brackets, and the offset or offset register is listed before the brackets. This syntax is similar
to the form seen in the RISC-V ISA document and in assembly dumps, thought the ISA document
uses parenthesis rather than square brackets. Listing 5 line 4 shows an example of this syntax. In that
example, the address in register $x5 is added to the offset of 0, and the value at that location is written
to destination register $x9.

Table 2. Instruction mnemonics recognized by the dt high-level assembler

Arithmetic Memory CTI Other
lui lb jal nop
auipc lh jalr fence
addi lw beq fence.i
slti lbu bne ecall
sltiu lhu blt ebreak
xori sb bge csrrw
ori sh bltu csrrs
andi sw bgeu csrrwi
slli j csrrsi
srli jr csrrci
srai ret
add
sub
sll
slt
sltu
xor
srl
sra
or
and
mul
div

1 mem (0 x000000400000) {
2 # . . .
3 add $x5 , $x0 , $x3
4 lw $x9 , 0 [$x5]
5 beq $x9 , $x0 , t a r g e t
6 # . . .
7 t a r g e t : nop
8 }

Listing 5. Code example of several instructions

Control transfer instructions have no destination register, so their source register(s), if any, are listed
immediately after the mnemonic. For the instructions that allow for direct targets (either immediate
addresses, or offsets from the PC), the dt high-level assembler allows you to use a labeled memory location
in place of the offset. In that case, dt will determine the appropriate address or offset automatically.
Listing 5 line 5 shows that a beq instruction will skip over some code to a nop named target if
the beq is taken. Table 2 also lists a ret instruction, which is a pseudo-instruction for a jalr $x0,
0($x1). The ret, if used, requires no operands.

3.3. High-Level Language Syntax

A programmer can simply use the syntax from the previous sections to write RISC-V programs entirely
in assembly language syntax. However the real strength of dt is in the additional high-level language
syntax that can be intermixed with assembly syntax. This section describes these additional high-level
language features, and outlines the exact instructions that will be emitted by dt when using high-level

Operation Format Resulting Instruction
reg = reg + reg add
reg = reg + imm addi
reg = reg - reg sub
reg = reg - imm addi
reg = reg * reg mul
reg = reg / imm div
reg = reg addi
reg = imm See discussion
reg = -reg sub
reg = reg & reg and
reg = reg & imm andi
reg = reg | reg or
reg = reg | imm ori
reg = reg ˆreg xor
reg = reg ˆimm xori
reg = reg xori
reg = imm Not yet implemented
reg = reg << imm slli
reg = reg << reg sll
reg = reg >> imm srli
reg = reg >> reg srl
reg = reg < reg slt
reg = reg < imm slti
reg = reg > reg Not yet implemented
reg = reg > imm Not yet implemented
reg = reg <= reg Not yet implemented
reg = reg <= imm Not yet implemented
reg = reg >= reg Not yet implemented
reg = reg >= imm Not yet implemented
reg = reg == reg Not yet implemented
reg = reg == imm Not yet implemented
reg = reg != reg Not yet implemented
reg = reg != imm Not yet implemented
reg = @label See discussion (address-of operator)

Table 3. Assignment operations allowed by dt

syntax.

3.3.1. Assignments. Many common operations have an alternative shorthand notation which is similar
to the C set of operations. The general form is to list a destination register (or named register), followed
by one of the operands and operators listed in Table 3. The table also shows which instruction will be
used to implement the assignment – the destination register will always use the register listed on the
left-hand side of the assignment, and the source operands will always use the register/immediate on the
right-hand side. If two registers appear on the right-hand side, then they will be used in the same order
as they appear in the expression.

Note that only a single operation can be done per assignment, compound operations, or operations on
three or more operands are not allowed. This is because the dt high-level assembler does not do register
allocation. So, the programmer must use separate lines for each intermediate result, explicitly identifying
which registers should be used. This also means that the order of operations is irrelevant.

Some operations listed in Table 3 require more than one instruction, or require one of many possible
different instructions. Assigning an integer register to another integer register is simply a case of using
an addi with zero immediate to do the copy. But when assigning an immediate value to a register,
depending on the size of the immediate, the operation may be done with a single ori, or may require
an lui followed by an ori.

Some assignments require a little creativity. For example, to assign the negated value of a register to
another register, dt will use a sub where the first operand is the sink register $x0 and the second is the
register on the right-hand side of the assignment.

Several of the comparison operators have not yet been implemented. This is because RISC-V does not
have single instructions to perform the comparison. These operations will require several instructions
each, and is left for future work.

dt permits one type of assignment that is treated specially. The $pc register refers to the machine
program counter (instruction pointer) register. A programmer can assign an immediate value to $pc.
This does not produce any instruction, instead it is used to specify the program entry point, to be added
to the metadata written to the output of dt (depending on the type of output). It is required to put the
assignment of $pc outside of any mem() blocks. If no assignment to $pc is used, then the entry point
is assumed to be address 0x000000000000.

Listing 6 shows two mem() blocks with equivalent instructions. However, one mem() block is written
using the instruction mnemonics, and the other is written using the shorthand assignments. These two
mem() blocks will produce binary equivalent instructions. Note that these mem() blocks could not appear
in the same program, as their memory regions would overlap. Also note that code block (b) shows the
$pc assignment that shows explicitly shows that the program entry point is address 0x10000.

1 # code b l o c k (a)
2 mem (0 x10000) {
3 o r i $x1 , $x0 , 3
4 x o r i $x1 , $x1 , −1
5 and $x3 , $x2 , $x1
6 s l t $x4 , $x3 , $x0
7 }
8

9 # code b l o c k (b)
10 $pc = 0 x10000
11

12 mem (0 x10000) {
13 z e r o : $x0
14 mask : $x1
15 v a l : $x2
16 r e s : $x3
17 cond : $x4
18

19 mask = 3
20 mask = ˜ mask
21 r e s = v a l & mask
22 cond = r e s < z e r o
23 }

Listing 6. Code example of equivalent instructions using (a) instruction mnemonics and (b)
shorthand assignments

Another useful feature of dt is the support provided for an address-of operator, using the @ symbol. This
can be used to assign the address of any named memory address, whether it is a labelled instruction
definition or a data value. Listing 7 shows two different uses of the address-of operator – the first to
easily read a data value from memory, and the second to get the address of an instruction to be used as
the target of a jump.

1 mem (0 x10000) {
2 $ t 0 = @value # g e t t h e a d d r e s s o f l i t e r a l ” v a l u e ” 123
3 lw $t1 , 0 [$ t 0] # r e a d memory t o g e t t h e v a l u e
4 $ t 2 = @loop # g e t t h e a d d r e s s o f j r pseudo − i n s t r u c t i o n
5
6 l oop :
7 j r $ t 2 # i n f i n i t e l oop t o end program
8
9 v a l u e :

10 . word 123
11 }

Listing 7. Code example showing uses of the address-of operator

3.3.2. Block Statements. The last group of syntatical constructs provide the high-level language-like
features of if-statements and loops. The syntax for each of these constructs is similar to the C programming
language. However, the major difference is that the condition must be a single register or named register.
This is because a complex condition requires a temporary register, and the dt high-level assembler does
not do register allocation. This also eliminates the for loop from availability: the initial value, and
increment amount could be handled, but the comparison to know when the loop should stop requires a
register. The dt high-level assembler also has no formal mechanism or syntatical construct for functions.
This is due to the several requirements that functions require, a runtime stack, the stack pointer, the return
register, function arguments, and so on – all of these are against the intent behind dt to give all control
to the programmer.

The constructs that are available however, are: if-statements, if-else statements, while loops,
do...while loops, until loops (similar to until loops in BASIC or scripting languages), and do...until
loops. These constructs can contain instructions, definitions, values (if you really want to mix instructions
with data), assignments, and other block statements. These block statements can also be named themselves
– simply provide a label followed by a colon followed by the block statement. This will name the first
instruction of the block statement. That named instruction might be an instruction in the body of the
block statement as in do...while and do...until loops, or it might be an instruction that is not evident
in the code (i.e. part of the supporting code emitted by the block statement).

The condition for each of the statements must be an integer register or label that corresponds to an integer
register. The meaning, however, is the same as in C – any non-zero value is considered true, and zero
is considered false. Table 4 gives the syntax for each of the constructs and the code generated by the
dt high-level assembler.

3.4. Code Examples

This section includes two example programs written in dt. The intent is to show longer, full program
examples, and also to show the flexibility of the syntax.

dt Syntax Assembly Produced
if (reg) {

code body
}

beq reg, $x0, label1
code body

label1:
if (reg) {

code body
}
else {

code body
}

beq reg, $x0, label2
code body
j label3

label2:
code body

label3:

while (reg) {
code body

}

beq reg, $x0, label4
label5:

code body
bne reg, $x0, label5

label4:

until (reg) {
code body

}

bne reg, $x0, label6
label7:

code body
beq reg, $x0, label7

label6:
do {

code body
} while (reg)

label8:
code body
bne reg, $x0, label8

do {
code body

} until (reg)

label9:
code body
beq reg, $x0, label9

Table 4. Structured control flow code blocks recognized by dt

3.4.1. Bubble Sort. This first example shows an implementation of the bubble sort algorithm. The
first while loop populates memory, starting at address 0x000000000000, with arbitrary values in
descending order. The second (nested) while loop implements the actual bubble sort, and sorts values
into ascending order. This second loop saves the sorted array in place. The final while loop iterates
through the array to verify that the order is correct, counting the number of correct positions, and saving
that count to memory address 0x000000600000.

1 $pc = 0 x000000400000
2

3 mem (0 x000000400000) {
4 i i : $x1
5 max : $x3
6 add r : $x2
7 d a t a : $x4
8 cond : $x5
9

10 f l a g : $x6
11 v a l 1 : $x7
12 v a l 2 : $x8
13 comp : $x9
14 r e s u l t : $x10
15 j j : $x11
16

17 max = 512 # number o f e l e m e n t s
18

19 # f i l l w i th v a l u e s
20 add r = 0x0

21 d a t a = 0 x041ab25e
22 i i = 0
23 cond = i i < max
24 w h i l e (cond) {
25 sw da ta , 0 [add r]
26 d a t a = d a t a − 3
27 add r = add r + 4
28 i i = i i + 1
29 cond = i i < max
30 }
31

32 f l a g = 1
33

34 # pe r fo rm s o r t
35 w h i l e (f l a g) {
36 f l a g = 0
37 add r = 0x0
38 i i = 0
39 cond = i i < max
40 w h i l e (cond) {
41 lw va l1 , 0 [add r]
42 lw va l2 , 4 [add r]
43

44 comp = v a l 2 < v a l 1
45 i f (comp) {
46 f l a g = 1
47 sw val2 , 0 [add r]
48 sw val1 , 4 [add r]
49 }
50

51 add r = add r + 4
52 i i = i i + 1
53 cond = i i < max
54 }
55 }
56

57 # v e r i f y s o r t e d r e s u l t
58 add r = 0 x00000000
59 r e s u l t = 0
60 i i = 0
61 cond = i i < max
62

63 w h i l e (cond) {
64 lw va l1 , 0 [add r]
65 lw va l2 , 4 [add r]
66

67 comp = v a l 1 < v a l 2
68 i f (comp){
69 r e s u l t = r e s u l t + 1
70 }
71 add r = add r + 4
72 i i = i i + 1
73 cond = i i < max
74 }
75

76 add r = 0 x000000600000
77 sw r e s u l t , 0 [add r]
78

79 i n f : j i n f
80 }

Listing 8. Bubble sort example source code

3.4.2. Matrix Multiply. The second example program is used to compute a matrix multiplication of two
matrices, call them A and B, and write the result to matrix C. The matrices are 4 rows by 4 columns
and their data is initialized in a separate mem() block from the instructions and are saved in row-major
form as would have been done by a C compiler. The code is shown in Listing 9.

1 $pc = 0 x000000400000
2

3 mem (0 x000000400000) {
4 i i : $x1
5 j j : $x2
6 kk : $x3
7 i c o n d : $x4
8 j c o n d : $x5
9 kcond : $x6

10 a a d d r : $x7
11 baddr : $x8
12 c a d d r : $x9
13 a v a l : $x10
14 b v a l : $x11
15 c v a l : $x12
16 mtemp : $x13
17 s temp : $x14
18 f o u r : $x15
19 s i x t e e n : $x16
20 mres : $x17
21

22 f o u r = 4
23 s i x t e e n = 16
24 i i = 0
25 i c o n d = i i < 4
26 w h i l e (i c o n d) {
27 j j = 0
28 j c o n d = j j < 4
29 w h i l e (j c o n d) {
30 # i n i t i a l i z e c [i] [j] t o z e r o
31 c v a l = 0
32

33 kk = 0
34 kcond = kk < 4
35 w h i l e (kcond) {
36 # compute a d d r e s s o f a [i] [k]
37 a a d d r = @A
38 mres = i i * s i x t e e n
39 mtemp = mres
40 mres = kk * f o u r
41 s temp = mres
42 mtemp = mtemp + stemp
43 a a d d r = a a d d r + mtemp
44

45 # compute a d d r e s s o f a [k] [j]
46 baddr = @B
47 mres = kk * s i x t e e n
48 mtemp = mres
49 mres = j j * f o u r
50 s temp = mres

51 mtemp = mtemp + stemp
52 baddr = baddr + mtemp
53

54 # l o a d t h e v a l u e s o f a [i] [k] and b [k] [j]
55 lw ava l , 0 [a a d d r]
56 lw bva l , 0 [baddr]
57

58 # c [i] [j] += a [i] [k] * b [k] [j]
59 mres = a v a l * b v a l
60 mtemp = mres
61 c v a l = c v a l + mtemp
62

63 kk = kk + 1
64 kcond = kk < 4
65 }
66

67 # compute c [i] [j] a d d r e s s
68 c a d d r = @C
69 mres = i i * s i x t e e n
70 mtemp = mres
71 mres = j j * f o u r
72 s temp = mres
73 mtemp = mtemp + stemp
74 c a d d r = c a d d r + mtemp
75

76 # s t o r e c [i] [j]
77 sw cva l , 0 [c a d d r]
78

79 j j = j j + 1
80 j c o n d = j j < 4
81 }
82 i i = i i + 1
83 i c o n d = i i < 4
84 }
85 }
86

87 # m a t r i x d a t a
88 mem (0 x000010000000) {
89 A : . word 10 # A[0] [0] 0 x000010000000
90 . word 2 # A[0] [1] 0 x000010000004
91 . word 7 # A[0] [2] 0 x000010000008
92 . word −4 # A[0] [3] 0 x00001000000c
93 . word 9 # A[1] [0] 0 x000010000010
94 . word −2 # A[1] [1] 0 x000010000014
95 . word 12 # A[1] [2] 0 x000010000018
96 . word 1 # A[1] [3] 0 x00001000001c
97 . word 17 # A[2] [0] 0 x000010000020
98 . word 8 # A[2] [1] 0 x000010000024
99 . word −3 # A[2] [2] 0 x000010000028

100 . word 1 # A[2] [3] 0 x00001000002c
101 . word 6 # A[3] [0] 0 x000010000030
102 . word −5 # A[3] [1] 0 x000010000034
103 . word 13 # A[3] [2] 0 x000010000038
104 . word 0 # A[3] [3] 0 x00001000003c
105

106 B : . word 3 # B [0] [0] 0 x000010000040
107 . word 7 # B [0] [1] 0 x000010000044
108 . word 9 # B [0] [2] 0 x000010000048
109 . word −2 # B [0] [3] 0 x00001000004c
110 . word 15 # B [1] [0] 0 x000010000050

111 . word −1 # B [1] [1] 0 x000010000054
112 . word 4 # B [1] [2] 0 x000010000058
113 . word 6 # B [1] [3] 0 x00001000005c
114 . word 11 # B [2] [0] 0 x000010000060
115 . word 8 # B [2] [1] 0 x000010000064
116 . word 3 # B [2] [2] 0 x000010000068
117 . word −7 # B [2] [3] 0 x00001000006c
118 . word 1 # B [3] [0] 0 x000010000070
119 . word 10 # B [3] [1] 0 x000010000074
120 . word 4 # B [3] [2] 0 x000010000078
121 . word −5 # B [3] [3] 0 x00001000007c
122

123 C : . word 0 # C [0] [0] 0 x000010000080
124 }

Listing 9. Matrix multiplication example source code

4. Output File Formats

Out-of-the-box dt provides its output in a variety of formats. This section outlines each of those formats.
The intent of supporting several output formats is to maximize flexibility for the users of dt to use the dt
output as the input to other tools – simulators, emulators, kernels, virtual machines, compilers/assemblers,
Verilog testbenches, FPGA block memories, and so on.

4.1. Checking Output Format

When issuing the dt command, using the -checking command-line option will emit machine code
and a variety of debugging information to stdout. This output could be redirected to a file for future
use, or can simply be used for debugging purposes.

When using the -checking output, three key pieces of information are displayed: the entry point
(memory address) of the program, the instructions/data for each mem() block, and the symbol table. All
of these items are emitted, even if the .dt program does not have syntax to modify one of them (for
example, the PC will be displayed, even if the program never changes the default value of $pc).

The program entry point is displayed using the text "Program counter:", a tab character, followed
by the entry point address. The memory address of the entry point will be printed in hexadecimal,
preceded by the C-style 0x, and will have 48-bits (12 hex digits), zero padded if needed. Displaying
only 48-bits for addresses is used throughout dt output, as the use of the full 64-bit address space is
uncommon.

Field Output Origin

<type>

inst: An instruction
bdata: A .byte directive
hdata: A .half directive
wdata: A .word directive
ldata: A .long directive
fdata: A .float directive
ddata: A .double directive
sdata: A .stringz directive
def: A register label definition
join: A join-node

<addr> A 48-bit address, in hexadecimal The memory address of this line, if one exists

<value>
An n-bit value, in hexadecimal For instructions n=32 bit, the encoding

For data values n=8, 16, 32 or 64 depending on the directive
A string For the .stringz directive, strings will be surrounded by double-quotes
A label For join-nodes and register definitions

<asm> The instruction, in assembly language source Only exists for lines that correspond to instructions

Table 5. Meaning of each field of a line of mem() block information when using -checking

For each mem() block in the .dt program, the -checking output will print a line mem() block:
<address>:, where <address> will be the starting address of the mem() block. This header line
will be followed by several lines, each of which corresponds to the contents of the mem() block. The
lines after this header have the format: <type> <addr> <value> <asm>. Each of these fields are
separated by a tab character. Table 5 describes each of these fields. The Field column indicates which field

the row describes, the Output column describes what can possibly appear for that field, and Origin
describes what .dt code produces that type of field.

After each mem() block has been output, the last piece of information shows the symbol table that
was built when assembling the .dt program. There will always be a header row with the exact text:
Symbol table entries:. Thereafter, there will be one row for each symbol that appears in the
.dt program. Each row will have entry[<n>]:, where n increments for each additional symbol in
the .dt program. After the entry number, is the symbol itself – whether a symbol indicated by the
programmer, or an internally generated symbol (for join-nodes). The next field will indicate the type
of symbol, either mem for a labelled memory location, or reg for a labelled register. The last field of
each entry will be either an address, in 48-bit hexadecimal, for named memory locations, or the register
number for named registers. The register names will always use the format $x<n> where <n> refers to
the register number.

4.2. ELF64 File Format

dt is able to produce a Linux executable when using the -elf command-line flag. It is well beyond the
scope of this technical report to describe the ELF64 file format. An interested reader can either refer to
the elf man page, or the ELF64 standard [1] for more in-depth information on the ELF64 file format.
This section will only describe the properties of the executable emitted by dt. The executable produced
by dt has been tested to execute using the HiFive Unleashed [2] by SiFive, running Debian Linux.

The executable produced by dt is the bare minimum to support execution in Linux. The executable is
always statically linked and consists of an ELF header, a program header table, and a section.

The ELF header fields are mostly hard-coded to match the needs of a RISC-V executable. The e_machine
is set to EM_RISCV, e_type set to ET_EXEC, e_ident[EI_CLASS] set to ELFCLASS64, e_ident[EI_DATA]
set to ELFDATA2LSB, and so on. The only surprise is the .dt must set the $pc entry point to
0x000000400000, which is then internally adjusted, since the entire program executable will be loaded
to memory, the actual first instruction appears at a later address (based on the size of the ELF header
plus the size of the program header table).

The program header table itself is an array of meta-data, one element for each loadable section. In dt, it
is currently assumed there is only one loadable section. Thus, there is only a single entry in the program
header table, which refers to a single mem() block of a .dt program. This program header table entry
p_type is marked as PT_LOAD, as this single mem() block should be loaded into memory by the Linux
loader. The section will have all permissions (read, write and execute), and so the program header table
entry p_flags will be set to allow all permissions. This means that the single mem() block, though
likely executable instructions, could have its memory locations overwritten (i.e. to permit self-modifying
code). It is permissible to mix instructions and data in this single mem() block of the .dt program.
However it is up to the .dt programmer to ensure that data isn’t accidentally executed.

The section data copied into the remainder of the ELF executable output file is exactly the instruction
encodings and/or data from the single mem() block of the .dt program. Note that dt will pad data
values with zero values to enforce correct alignment based on the data type (4 bytes for instructions, 2
bytes for .half, 4 bytes for .word, etc.).

Traditionally, a full Linux executable (even statically linked) will also include sections for things like
debugging information, a section header table, string tables, and so on. However, these sections are
optional per the ELF64 standard, and have been omitted to the bare minimum needed for correct execution
in Linux.

4.3. Flat Memory Image File Format – Text

A full Linux executable may be overkill for many users of dt, so the -text (this section) and -bin
(next section) command-line options were introduced to permit output in simplified output that can easily
be read as input to other tools.

The -text output produces an ASCII-encoded text file, rather than printing to stdout. The file format
has minimal meta-data and is intended to display data as a flat memory address image. There are no
restrictions on the number of mem() blocks, or the entry point address of the .dt program. The output
was formatted to loosely resemble the UNIX xxd tool, a command-line hex editor.

Values (instruction encodings or data) from each mem() block will appear with 16 bytes worth of values
per row of the output, in hexadecimal. The values will 16 byte aligned, padded with zeros if necessary,
and each byte separated by a space character. For values that consist of multiple bytes (half words, words,
machine instructions, etc.) the bytes are saved in little-endian order.

Each line of output will have a 48 bit address, in 12 hex digits, as the first column of the output. The
output is not guaranteed to be in address order, the addresses will appear in the same order as the
mem() blocks appear in the .dt program. The columns of addresses/values are separated by spaces.
Each mem() block will be followed by a blank new line.

The -text output does not show the program entry point, nor any of the labels from the symbol table.

Listing 10 shows a simple .dt program with two mem() blocks, one with a single instruction, and
one with a single data value. The output that will result is shown in Listing 11. Notice that the mem()
block with the data value is not aligned to a 16 byte boundary, but the output has been automatically
adjusted accordingly. Also, both values (the instruction, and the word) are 4 byte quantities, and are in
little-endian order.

1 mem(0 x100000000008){
2 . word 0 x d e a d b e e f
3 }
4

5 mem(0 x000000400000){
6 a d d i $x1 , $x0 , 99
7 }

Listing 10. Code example used to produce a text file output

1 100000000000 00 00 00 00 00 00 00 00 e f be ad de 00 00 00 00
2

3 000000400000 93 00 30 06 00 00 00 00 00 00 00 00 00 00 00 00

Listing 11. Result of running dt on Listing 10 when using -text output

4.4. Flat Memory Image File Format – Binary

The goals for the flat binary memory image file format is similar to those of the text file format – the
file format should be simple, and express as much of a dt program as possible. To have dt emit the flat
binary memory image, use the -bin command-line option.

Each mem() block of a dt program will be numbered, such that the top-most mem() block in the source
code will be number 0, the next will be number 1, and so on. When emitting the binary flat memory
image, dt will write each mem() block to their own file. This was done to minimize file meta-data.
Files will be given the base name (just a by default, or the base name provided at the command-line
with the -out option), and that base name will immediately be followed with a dash and the mem()
block number, then ending with the .bin file name extension. For example, a dt program consisting of
two mem() blocks, using the default file names would be a-0.bin and a-1.bin

Within the files, the only meta-data will occur at offset zero in the file, and will be eight bytes – the
starting address of the mem() block contained within the file. These addresses are automatically adjusted
to 16 byte alignment.

After the starting address, the remainder of the contents of binary memory image files will be the data of
the mem() block. The data will be padded out to 16 byte alignment. Bytes used for padding will have
the value zero. Finally, the multi-byte data is saved in little-endian order.

5. dt Source Code

This section briefly describes the source code for the dt high-level assembler itself. The source is written
using flex and bison for the lexer and parser, and the rest of the code is written in C. One strength of dt
is that the code is relatively short, with only roughly 3200 SLOC (generated using David A. Wheeler’s
’SLOCCount’). Thus, as long as a programmer is already familiar with flex/bison/C, the code base can
be understood in a short period of time.

dt is a two-pass assembler. The first pass scans and parses the .dt program, and builds up several data
structures. There are cases when not all information is known, however. For example, during the first
pass, a labelled target may not have been encountered when a use of that label is found. After the first
pass, all labels will have been scanned, and so the second pass iterates through the data structures from
the first pass to fill in these details and then emit the final output.

The discussion of the code will be split into two sub-sections, the first will give a high-level view of the
directory tree, and the second will describe some of the data structures and functions that were written
to implement dt.

5.1. dt Files

All source code, including the header files, for dt appear in the src/ subdirectory under the top-level
directory. Once compiled, their object files will be saved to the obj/ subdirectory, and the overall dt
executable will appear in the bin/ subdirectory. Table 6 outlines the contents of each of the source code
files.

File Purpose
dt.l Scanner/lexical analyzer.

dt.y
Contains the main() entry point, as well as
the parser.

riscvarch.h
Holds constants that describe RISC-V ISA-
specific values like opcodes and function
codes.

inst.c/.h

Holds the main instruction_t data type which
defines a RISC-V instruction. Also implements
the functions that manipulate instances of
instruction_t.

mem.c/.h

Defines a handful of data types and functions
used to maintain lists of instructions/data.
Although the nodes in these lists represent
entities that occupy memory (of the target
RISC-V machine), there are some cases where
these files represent nodes that do not require
any memory.

pc.c/.h Holds the .dt program entry point address.
symtab.c/.h Implements the symbol table.

output.c/.h Functions used to emit the final .dt program
in any of the supported output formats.

util.c/.h Implements the dt version number, as well as
some of the generic support functions.

Table 6. Source code files used to implement dt

5.2. dt Data Structures and Functions

Throughout dt are a handful of key data structures and functions that carry out the bulk of implementation.
This section covers some (not all) of these data structures and functions, to make reading the actual dt
source code a little quicker for a developer.

5.2.1. Instructions. The main goal of dt is to emit instructions, and it thus follows that the instruction
representation is key. The instruction_t implements an instruction, and its declaration can be found
in inst.h. This data type has member variables for representing the instruction type in two ways: a
shorthand implemented by the inst_id, a unique number for each instruction mnemonic, and also by
the longer combination of the opcode, funct3 and funct7 member variables. The latter of these are
the actual encodings that will be used when emitting the binary instruction encoding.

There are several unions that are also used to hold binary values that will appear in the final instruction
encoding. The union is used to encompass any bit field that overlaps in the RISC-V instruction encoding
type (R-type vs. I-type vs. S-type, etc.). The last member variable, called target_name is a string that
is used to hold the target label when the .dt program uses a target label instead of a target address.

The calculate_offsets() function also supports these instructions that use a target label. Once all
addresses are known (calculated in the parser), calculate_offsets() finds the label in the symbol
table, and uses the corresponding memory address to calculate memory offsets.

The encode_*_type() family of functions actually carries out the bitwise encoding of each of the
instruction types.

5.2.2. mem() Block Representation. Each mem() block in a .dt program is represented with a node of
a linked list. The nodes in this list are of type struct memblock_list_type/memblock_list_t.
Each node has member variables for the highest and lowest address used within the mem() block it
represents. Each node also has a pointer to the instructions/definitions/values found within that mem()
block.

One important function that is related to mem() blocks is in the check_mem_bounds() function. This
function iterates through all mem() blocks (i.e. each memblock_list_t node of the list), comparing
the lowest and upper-most address of all blocks to make sure none of the blocks have overlappin addresses.

Since the contents of a mem() block could be one of a handful of categories (an instruction, a data value,
or a definition), there is a layer of indirection in the struct mem_entry_type/mem_entry_t.
Instances of mem_entry_t are also linked list elements. The type member variable describes whether
the node is for an instruction, a data value, or a definition (as defined in the type_t) enum. The type
describes the difference between an instruction, a data value, or a definition. However type_t also
indicates that the node type could be a join-node. A join-node is a dummy node (i.e. does not represent
any line of code from the original .dt program) that appears after the closing curly brace of a loop or
if-statement. Thus, a join-node is the point at which control flow reconverges in a control flow graph.
Since joinnodes represent targets of instructions that are automatically inserted by dt for high-level
language statements, they have not been given a label by the .dt programmer. To solve this issue, target
names of join-nodes are randomly generated internally. The function internal_name() generates

these names.

The name member variable of a mem_entry_t, a string, is used whenever the node is representing
a line of .dt code that has been labelled. The status member variable can take one of two (enum)
values, ENTRY_COMPLETE or ENTRY_INCOMPLETE. A node that is incomplete is one that uses a
target label, but the label does not yet have an address (i.e. the first pass of the assembly process).

Listing 12 presents a hypothetical .dt program that has several mem() blocks, each of which con-
tain different types of code. Figure 2 shows the data structures used to represent this hypothetical
program. The first mem() block contains only definitions for registers, which is shown on the right-
most memblock_list_t entry in Figure 2.

1 mem(0 x00000000){
2 v a l : $ t 0
3 add r : $sp
4 }
5

6 mem(0 x00400000){
7 f i r s t : lw va l , 0 [add r]
8 i f (v a l) {
9 sw va l , −4[add r]

10 }
11 }
12

13 mem(0 x10000000){
14 . word 0 x d e a d b e e f
15 }

Listing 12. Code to highlight what data structures will be produced

The second mem() block in Listing 12 has a short instruction sequence, including an if-statement. Notice
the right-most memblock_list_t entry in Figure 2. It refers to four mem_entry_t instances, the
top-most holds the properties of the lw instruction from line 7. The next mem_entry_t represents
the beq that implements the if-statement, which will target the join-node at the bottom of the list
of mem_entry_t instances. Since there is no instruction after the if-statement, the join-node still
correctly allows dt to produce the correct offset for the beq instruction. If there was an instruction
after the if-statement body, there would still be a join-node in addition to the instruction node after the
join-node... they would simply have the same address.

The last mem() block in Listing 12 holds only a single data value, and is represented by the middle
node of the list of memblock_list_t instances.

5.2.3. Symbol Table. dt must implement a symbol table, since labels are permitted. Traditionally, the
symbol table is a key-value pair where the key is the label, and the value is the memory address named by
that label. However, since dt permits registers to also be named, the symbol table in dt must accommodate
this additional need.

The symbol table in dt is also implemented as a linked list, with nodes of type
struct symtab_entry_type/symtab_entry_t. The difference between a named memory lo-
cation versus a named register is differentiated by the type member variable. The name string holds
the name of the definition, and value holds either the address (for named memory locations) or register

Figure 2. Internal data structure representation of an example .dt program.

number (for named registers).

Continuing the example program from Listing 12, the resulting symbol table would have four nodes, two
for each of the named registers ("val" corresponds to register $t0, and "addr" for register $sp). The
first instruction of the program (the lw) is labeled "first" and has the address 0x00400000, and
finally, the join-node after the if-statement has the name "__internal_nwlrbbmq" and technically
does have an address of 0x0040000c.

6. Known Bugs and Limitations

Both the dt language and the dt high-level assembler are works in progress. In [3], we outline ideas for
features that we would like to incorporate into future versions of DuctTape. However, we also acknowledge
that there are existing features that are less than perfect or have outright problems at the time of this
publication. The following lists these known limitations.

1) The starting address of ELF64 executables must be 0x000000400000. But this is not checked
by dt when assembling.

2) There is no way to have more than one mem() block in ELF64 executables. Thus, it is not possible
to initialize memory locations outside of the expected .text segment. To maximize the utility of dt,
it should be possible to arbitrarily add additional loadable segments to the ELF64 output.

3) There has been some forethought to eventually support RV64F and RV64D floating-point instruc-
tions. For example, there are assembler directives for initializing memory locations with IEEE 754
32- and 64-bit floating-point values. However, the scanner does not recognize the floating-point
instructions or the floating-point registers. The existing .float and .double directives have not
been tested at all.

4) dt does do some sanity-checking, for example checking that mem() blocks do not have addresses
that overlap. However there is no sanity-checking of bit widths. Several machine instruction en-
codings have bit fields for immediate values and offsets, and currently these can be specified when
writing the instructions in assembly. But dt currently truncates bit values if the .dt programmer
accidentally uses a value requiring more bits than permitted by the instruction encodings.

5) dt currently has no way to define constants. A dt programmer can set a memory location aside,
then read that memory location with a load instruction. But there is no way to define a label for
an immediate value or offset.

References

[1] “Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification,” 1995, Specification.
[Online]. Available: https://refspecs.linuxbase.org/elf/elf.pdf

[2] “HiFive Unleashed,” 2020, Product Brief. [Online]. Available: https://www.sifive.com/boards/hifive-unleashed

[3] J. Severeid and E. Forbes, “dt: A High-level Assembler for RISC-V,” in Proceedings of the 53rd Midwest
Instruction and Computing Symposium, April 2020.

[4] A. Waterman and K. Asanovic, “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document
Version 20191214-draft,” December 2019, Manual. [Online]. Available: https://riscv.org/specifications/

https://refspecs.linuxbase.org/elf/elf.pdf
https://www.sifive.com/boards/hifive-unleashed
https://riscv.org/specifications/

	Introduction
	Installation and Command-line Options
	Installation
	Command-line Usage

	dt Language Syntax
	dt Program Organization
	Assembly Syntax
	Comments
	mem() Blocks
	Definitions
	Data and Immediate Values
	Instructions

	High-Level Language Syntax
	Assignments
	Block Statements

	Code Examples
	Bubble Sort
	Matrix Multiply

	Output File Formats
	Checking Output Format
	ELF64 File Format
	Flat Memory Image File Format – Text
	Flat Memory Image File Format – Binary

	dt Source Code
	dt Files
	dt Data Structures and Functions
	Instructions
	mem() Block Representation
	Symbol Table

	Known Bugs and Limitations
	References

