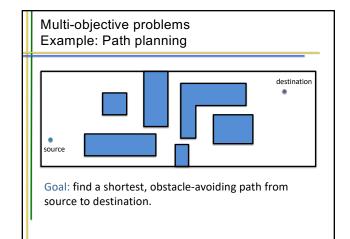


Multi-objective Evolutionary Algorithms

- Multi-objective optimization problems (MOPs)
 - Examples
 - Domination
 - Pareto optimality
 - Practical example
- EC approaches
 - Preference-based
 - Ideal
- Preserving diversity

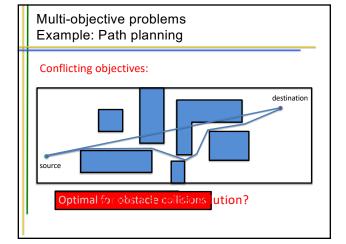
Multi-Objective Problems (MOPs)

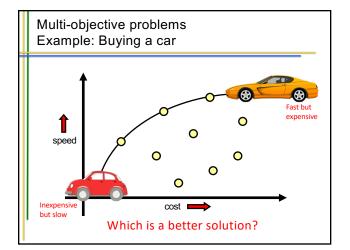
- Wide range of problems can be categorised by the presence of a number of n possibly conflicting objectives:
 - robotic path planning:
 - buying a car: speed vs. price vs. reliability
 - engineering design: lightness vs. strength
- Solving an MOP presents two problems:
 - finding set of good solutions
 - choice of best for particular application

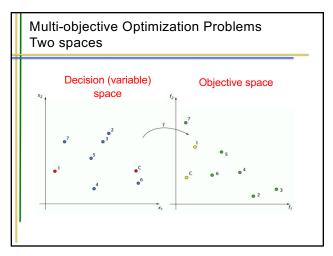


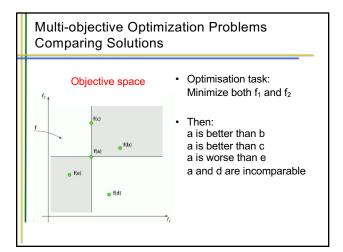
Multi-objective problems Example: Path planning

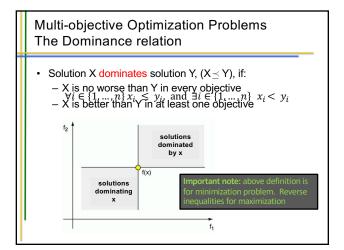
- · What are the objectives?
 - Path length (minimize)
 - Obstacle collisions (minimize)
- Any others?
 - Number of waypoints (minimize)
 - Smoothness (minimize/maximize depends on definition)
 - Intermediate destinations?









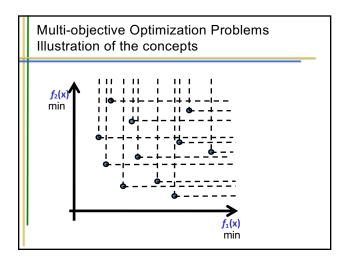


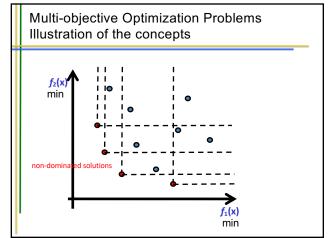
Multi-objective Optimization Problems Origins of Pareto optimization

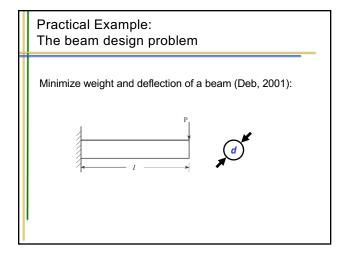
- Vilfredo Pareto (1848-1923) was an Italian economist, political scientist and philosopher
- For much of his life he was a political economist at the University of Lausanne (Switzerland)
- Manual of Political Economy (1906): described equilibrium for problems consisting of a system of objectives and constraints
- Pareto optimality(economics): an economy is is functioning optimally when no one's position can be improved without someone else's position being made worse

Multi-objective Optimization Problems Pareto optimality

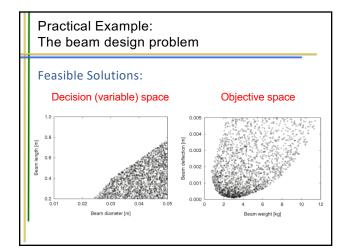
- Solution x is non-dominated among a set of solutions Q if no solution from Q dominates x
- A set of non-dominated solutions from the entire feasible solution space is the Pareto-optimal set, its members Pareto-optimal solutions
- Pareto-optimal front: an image of the Pareto-optimal set in the objective space

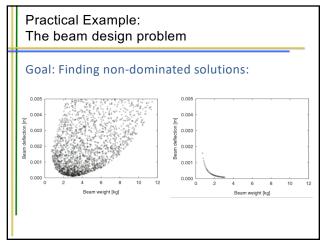


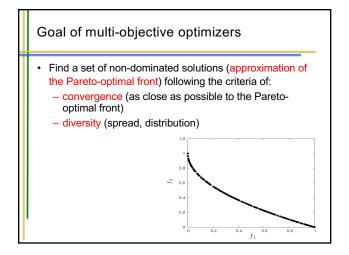




Practical Example: The beam design problem – Formal Definition		
Minimize	$f_1(d,l) = \rho \frac{\pi d^2}{4}l$	(beam weight)
• minimize	$f_2(d,l) = \delta = \frac{64Pl^3}{3E\pi d^4}$	(beam deflection)
 subject to 	$0.01 \text{ m} \le d \le 0.05 \text{ m}$	
	$0.2 \text{ m} \le l \le 1.0 \text{ m}$ $32Pl = 6$	(maximum stress)
	$\sigma_{\max} = \frac{32Pl}{\pi d^3} \le S_y$	(maximum stress)
where	$\delta \le \delta_{\text{max}}$ $\rho = 7800 \text{ kg/m}^3, P = 2 \text{ kN}$	
	E = 207 GPa	
	$S_y = 300 \text{ MPa}, \ \delta_{\max} = 0.005$	5 m







Characteristic	Singleobjective optimisation	Multiobjective optimisation	
Number of objectives	one	more than one	
Spaces	single	two: decision (variable) space, objective space	
Comparison of candidate solutions	<i>x</i> is better than <i>y</i>	x dominates y	
Result	one (or several equally good) solution(s)	Pareto-optimal set	
Algorithm goals	convergence	convergence, diversity	

Multi-objective optimization Two approaches

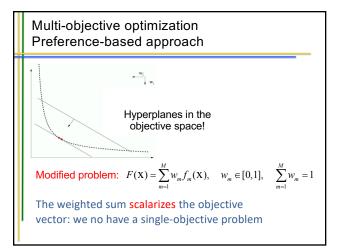
Preference-based: traditional, using single objective optimisation methods

Ideal:

possible with novel multiobjective optimisation techniques, enabling better insight into the problem

Multi-objective optimization Preference-based approach

- · Given a multiobjective optimisation problem,
- use higher-level information on importance of objectives
- to transform the problem into a singleobjective one,
- then solve it with a single objective optimization method
- to obtain a particular trade-off solution.



Multi-objective optimization Ideal approach

- · Given a multiobjective optimization problem,
- solve it with a multi-objective optimization method
- · to find multiple trade-off solutions,
- and then use higher-level information
- to obtain a particular trade-off solution.

EC approach to multi-objective optimization: Advantages

- Population-based nature of search means you can simultaneously search for set of points approximating Pareto front
- Can return a set of trade-off solutions (approximation set) in a single run
- Don't have to make guesses about which combinations of weights might be useful
- Makes no assumptions about shape of Pareto front can be convex / discontinuous etc.

EC approach to multi-objective optimization: Requirements

- Way of assigning fitness, – usually based on dominance
- Preservation of diverse set of points
 similarities to multi-modal problems
- Remembering all the non-dominated points you have seen
 - usually using elitism or an archive

EC approach:

Fitness assignment options

- Could use aggregating approach and change weights during evolution

 no guarantees
- Different parts of population use different criteria – e.g. VEGA, but no guarantee of diversity
- Dominance
 - ranking or depth based
 - fitness related to whole population
 - Question: how to rank non-comparable solutions?

EC approach: Diversity maintenance

- · Usually done by niching techniques such as:
 - fitness sharing
 - adding amount to fitness based on inverse distance to nearest neighbour (minimisation)
 - (adaptively) dividing search space into boxes and counting occupancy
- All rely on some distance metric in genotype / phenotype space

EC approach: Remembering good solutions

- Could just use elitist algorithm - e.g. (μ + λ) replacement

- Maintain an archive of non-dominated solutions – some algorithms use this as second population that can be in recombination etc.
- others divide archive into regions too, e.g. PAES

Multi-objective optimization Problem Summary

- MO problems occur very frequently
- EAs are very good at solving MO problems
- MOEAs are one of the most successful EC subareas