

Parameters and Parameter Tuning

- History
- Taxonomy
- Parameter Tuning vs Parameter Control
- EA calibration
- Parameter Tuning
 - Testing
 Effort

 - Recommendations

Brief historical account				
 1970s/80s "GA is a robust method" 1970s + ESs self-adapt mutation stepsize σ 1986 meta-GA for optimizing GA parameters 1990s EP adopts self-adaptation of σ as 'standard' 1990s papers on changing parameters on-the-fly 1999 Eiben-Michalewicz-Hinterding: propose clear taxonomy & terminology 				

Parameter tuning

Parameter tuning: testing and comparing different values before the "real" run - part of development

Problems:

- user "mistakes" in settings can be sources of errors or suboptimal performance
- takes significant time
- parameters interact: exhaustive search is not practical (or even possible, in some cases)
- good values may become bad during the run (at different stages of evolutionary development in the population)

Parameter control

Parameter control: setting values on-line, during the actual run, e.g.predetermined time-varying schedule p = p(t)

- · using (heuristic) feedback from the search process
- · encoding parameters in chromosomes and rely on natural selection

Problems:

- finding optimal p is hard, finding optimal p(t) is harder
- still user-defined feedback mechanism, how to "optimize"?
- when would natural selection work for algorithm parameters?

Notes on parameter control

- Parameter control offers the possibility to use appropriate values in various stages of the search
- Adaptive and self-adaptive control can "liberate" users from tuning \rightarrow reduces need for EA expertise for a new application
- Assumption: control heuristic is less parameter-sensitive than the EA

BUT

State-of-the-art is a mess: literature is a potpourri, no generic knowledge, no principled approaches to developing control heuristics (deterministic or adaptive), no solid testing methodology

Historical account (cont'd)

Last 20 years:

- More & more work on parameter control
- Traditional parameters: mutation and xover
 - Non-traditional parameters: selection and population size
 - All parameters → "parameterless" EAs (what to call these?)
 - Some theoretical results (e.g. Carola Doerr)
- Not much work on parameter tuning, i.e.,
- Nobody reports on tuning efforts behind their published EAs (common refrain: "values were determined empirically")
- À handful of papers on tuning methods / algorithms

The Tuning Problem

- Parameter values determine the success and efficiency of a genetic algorithm
- Parameter tuning is a method in which parameter values determined before a run and remain fixed during
- Common approaches:
 - Convention, e.g. mutation rate should be low; xover rate = 0.9
 - Ad hoc choices, e.g. let's use population size of 100
 - Limited experimentation, e.g. let's try a few values

The Tuning Problem Problems

- Problems with convention and ad hoc choices are obvious
 - Were choices ever justified?
 - Do they apply in new problem domains?
- Problems with experimentation
- Parameters interact cannot be optimized one-by-one
- Time consuming: 4 parameters with 5 values each yields 625 parameter combinations. 100 runs each = 62500 runs just for tuning – to be fair, any tuning method will be time consuming
- Best parameter values may not be in test set

The Tuning Problem Goal

- Think of design of a GA as a separate search problem
- Then a tuning method is a search algorithm
- Such a tuning method can be used to:
 Optimize a GA by finding parameters that optimize its performance
 - Analyze a GA by studying how performance depends on parameter values and the problems to which it is applied
- So tuning problem solutions depend on problems to be solved, GA used, and utility function that defines how GA quality is measured

The Tuning Pro Terminology	blem				
	Problem Solving	Algorithm Design			
METHOD	EA	Tuner			
SEARCH SPACE	Solution vectors	Parameter vectors			
QUALITY	Fitness	Utility			
ASSESSMENT	Evaluation	Test			
 Fitness ≈ objective function value Utility = ? Mean Best Fitness Average number of Evaluations to Solution Success Rate Robustness, Combination of some of these 					

Defining Algorithm Quality

- GA quality generally measured by a combination of solution quality and algorithm efficiency
- · Solution quality reflected in fitness values
- · Algorithm efficiency
 - Number of fitness evaluations
 - CPU time
 - Clock-on-the-wall time

Defining Algorithm Quality

- Three generally used combinations of solution quality and computing time for single run of algorithm
 - Fix computing time and measure solution quality
 - Given maximum runtime, quality is best fitness at termination
 - Fix solution quality and measure computing time required
 Given a minimum fitness requirement, performance is the runtime needed to achieve it
 - Fix both and measure success
 - Given maximum runtime and minimum fitness requirement, run is successful if it achieves fitness requirement within runtime limit

Tuning Methods

Off-line vs. on-line calibration / design

Design / calibration method

- Off-line → parameter tuning
- On-line → parameter control
- Advantages of tuning
- Easier
- Most immediate need of users
- Control strategies have parameters too → need tuning themselves
 Knowledge about tuning (utility landscapes) can help the design of good control strategies
- There are indications that good tuning works better than control

Generate-and-test Symbolic parameters

- E.g., xover_operator, elitism, selection_method
- Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}
 Values not well ordered → non-searchable, must be sampled
- A value of a symbolic parameter can introduce a numeric parameter, e.g.,
 - Selection = tournament \rightarrow tournament size
 - Populations_type = overlapping \rightarrow generation gap
 - Elitism = on \rightarrow number of best members to keep

What is an EA?

	ALG-1	ALG-2	ALG-3	ALG-4	
SYMBOLIC PARAMETERS					
Representation	Bit-string	Bit-string	Real-valued	Real-valued	
Overlapping pops	N	Y	Y	Y	
Survivor selection	-	Tournament	Replace worst	Replace worst	
Parent selection	Roulette wheel	Uniform determ	Tournament	Tournament	
Mutation	Bit-flip	Bit-flip	N(0, o)	N(0, σ)	
Recombination	Uniform xover	Uniform xover	Discrete recomb	Discrete recomb	
NUMERIC PARAMETERS					
Generation gap	-	0.5	0.9	0.9	
Population size	100	500	100	300	
Tournament size	-	2	3	30	
Mutation rate	0.01	0.1	-	-	
Mutation stepsize	-	-	0.01	0.05	
Crossover rate	0.8	0.7	1	0.8	

What is an EA?

Make a principal distinction between EAs and EA instances and place the border between them by:

- Option 1
 - There is only one EA, the generic EA scheme
 - Previous table contains 1 EA and 4 EA-instances
- Option 2
 - An EA = particular configuration of the symbolic parameters
 - Previous table contains 3 EAs, with 2 instances for one of them
- Option 3
 - An EA = particular configuration of parameters
 - Notions of EA and EA-instance coincide
 - Previous table contains 4 EAs / 4 EA-instances

Tuning effort

- · Total amount of computational work is determined by
 - A = number of vectors tested
 - B = number of tests per vector
 - C = number of fitness evaluations per test

Recommendations

- DO TUNE your evolutionary algorithm
- Think of the magic constants
- Decide: speed or solution quality?
- Decide: specialist or generalist EA?
- Measure and report tuning effort

Example study: 'Best parameters'

Setup:

- Problem: Sphere Function (see next slide)
- EA: defined by Tournament Parent Selection, Random Uniform Survivor Selection, Uniform Crossover, BitFlip Mutation
- Tuner: REVAC spending X units of tuning effort, tuning for speed
- <u>Results</u>: the best EA had the following parameter values
 <u>Population Size</u>: 6
 - Tournament Size: 4
- <u>Conclusions:</u> for this problem we need a high (parent) selection pressure.

Optimize B = reduce B

Applicable to symbolic and numeric parameters Number of tested vectors (A) fixed at initialization Set of tested vectors can be created by

- regular method → grid search
 random method → random sampling
- exhaustive method \rightarrow enumeration
- Complete testing (single stage) vs. selective testing (multi-stage)
- Complete testing: nr. of tests per vector = B (thus, not optimizing) Selective testing: nr. of tests per vector varies, ≤ B
- Idea:
- Execute tests in a breadth-first fashion (stages), all vectors X < B times Stop testing vectors with statistically significant poorer utility
- Well-known methods •
- ANOVA (Scheffer '89)
 Racing (Maron & Moore '97)

Optimize A & B

Existing work:

• Meta-EA with racing (Yuan & Gallagher '04)

New trick: sharpening (Smit & Eiben 2009)

• Idea: test vectors X < B times and increase X over time during the run of a population-based tuner

Newest method:

• REVAC with racing & sharpening = REVAC++

Which tuning method?

- Differences between tuning algorithms
 - Maximum utility reached
 - · Computational costs
 - Number of their own parameters overhead costs
 - · Insights offered about EA parameters (probability distribution, interactions, relevance, explicit model...)
- Similarities between tuning algorithms
 - · Nobody is using them
 - Can find good parameter vectors
- Solid comparison is missing ongoing

