10/16/19

Genetic Algorithms

Parameters and Parameter Tuning

« History

« Taxonomy

» Parameter Tuning vs Parameter Control
» EA calibration

« Parameter Tuning

— Testing
Parameters and - Effort ,
) — Recommendations
Parameter Tuning
Brief historical account Taxonomy

* 1970s/80s “GAis a robust method”

* 1970s + ESs self-adapt mutation stepsize o

+ 1986 meta-GA for optimizing GA parameters

* 1990s EP adopts self-adaptation of o as ‘standard’
* 1990s papers on changing parameters on-the-fly

* 1999 Eiben-Michalewicz-Hinterding: propose

clear taxonomy & terminology

PARAMETER SETTING

[|
PARAMETER TUNING | [PARAMETER CONTROL
(before the run) (during the run)

|

I |
‘ DETERMINISTIC H ADAPTIVE ‘

SELF-ADAPTIVE
(coded in chromosomes)

(time dependent) (feedback from search)

10/16/19

Parameter tuning

Parameter tuning: testing and comparing different
values before the “real” run — part of development

Problems:

— user “mistakes” in settings can be sources of errors or sub-
optimal performance

— takes significant time

— parameters interact: exhaustive search is not practical (or even
possible, in some cases)

— good values may become bad during the run (at different stages
of evolutionary development in the population)

Parameter control

Parameter control: setting values on-line, during the
actual run, e.g.
e predetermined time-varying schedule p = p(t)
e using (heuristic) feedback from the search process
® encoding parameters in chromosomes and rely on natural selection

Problems:
e finding optimal p is hard, finding optimal p(t) is harder
e still user-defined feedback mechanism, how to “optimize”™?
e when would natural selection work for algorithm parameters?

Notes on parameter control

» Parameter control offers the possibility to use appropriate values in
various stages of the search

» Adaptive and self-adaptive control can “liberate” users from tuning =
reduces need for EA expertise for a new application

» Assumption: control heuristic is less parameter-sensitive than the EA

BUT

» State-of-the-art is a mess: literature is a potpourri, no generic
knowledge, no principled approaches to developing control heuristics
(deterministic or adaptive), no solid testing methodology

Historical account (cont’d)

Last 20 years:
* More & more work on parameter control
— Traditional parameters: mutation and xover
— Non-traditional parameters: selection and population size
— All parameters = “parameterless” EAs (what to call these?)
— Some theoretical results (e.g. Carola Doerr)

* Not much work on parameter tuning, i.e.,

— Nobody reports on tuning efforts behind their published EAs
(common refrain: “values were determined empirically”)
— Ahandful of papers on tuning methods / algorithms

10/16/19

Parameter — performance landscape

All parameters together span a (search) space

One point — one EAinstance o <> [N @

Height of point = performance of EA instance on a given
problem

Parameter-performance landscape or utility landscape for
each { EA + problem instance + performance measure }
This landscape is likely to be complex e.g., multimodal

If there is some structure in the utility landscape, then

perhaps we can do better than random or exhaustive
search

The Tuning Problem

» Parameter values determine the success and efficiency
of a genetic algorithm

« Parameter tuning is a method in which parameter values
determined before a run and remain fixed during

» Common approaches:
— Convention, e.g. mutation rate should be low; xover rate = 0.9
— Ad hoc choices, e.g. let’s use population size of 100
— Limited experimentation, e.g. let's try a few values

The Tuning Problem
Problems

» Problems with convention and ad hoc choices are
obvious
— Were choices ever justified?
— Do they apply in new problem domains?
* Problems with experimentation
— Parameters interact — cannot be optimized one-by-one

— Time consuming: 4 parameters with 5 values each yields 625
parameter combinations. 100 runs each = 62500 runs just for
tuning — to be fair, any tuning method will be time consuming

— Best parameter values may not be in test set

The Tuning Problem
Goal

« Think of design of a GA as a separate search problem
* Then a tuning method is a search algorithm

» Such a tuning method can be used to:
— Optimize a GA by finding parameters that optimize its
performance

— Analyze a GA by studying how performance depends on
parameter values and the problems to which it is applied

« So tuning problem solutions depend on problems to be
solved, GA used, and utility function that defines how GA

quality is measured

10/16/19

The Tuning Problem
Terminology

METHOD EA Tuner
SEARCH SPACE Solution vectors Parameter vectors
QUALITY Fitness Utility
ASSESSMENT Evaluation Test

Fitness = objective function value
Utility =?
Mean Best Fitness
Average number of Evaluations to Solution
Success Rate
Robustness, ...
Combination of some of these

Defining Algorithm Quality

» GA quality generally measured by a combination of
solution quality and algorithm efficiency

 Solution quality — reflected in fitness values

 Algorithm efficiency
— Number of fitness evaluations
— CPU time
— Clock-on-the-wall time

Defining Algorithm Quality

» Three generally used combinations of solution quality
and computing time for single run of algorithm
— Fix computing time and measure solution quality
« Given maximum runtime, quality is best fitness at
termination
— Fix solution quality and measure computing time required
« Given a minimum fitness requirement, performance is the
runtime needed to achieve it
— Fix both and measure success
+ Given maximum runtime and minimum fitness requirement,
run is successful if it achieves fithess requirement within
runtime limit

Tuning Methods
Off-line vs. on-line calibration / design

Design / calibration method
Off-line > parameter tuning
On-line - parameter control

Advantages of tuning
e Easier
® Most immediate need of users

e Control strategies have parameters too - need tuning themselves
¢ Knowledge about tuning (utility landscapes) can help the design of

good control strategies
® There are indications that good tuning works better than control

10/16/19

Tuning Method
Tuning by generate-and-test

» Generate-and-test is a common search strategy
+ Since EA tuning is a search problem itself...
+ Straightforward approach:

| Generate parameter vectors |

| Test parameter vectors |

All tuning methods are a &W
form of generate-and-test _

Generate-and-test
Testing parameter vectors

Run EA with these parameters on the given problem or
problems
Record EA performance in that run e.g., by

e Solution quality = best fitness at termination

e Speed =time used to find required solution quality

EAs are stochastic > repetitions are needed for reliable
evaluation - we get statistics, e.g.,

e Average performance by solution quality, speed (MBF, AES)

e Success rate = % runs ending with success

¢ Robustness = variance in those averages over different problems
Question: how many repetitions of the test (yet another
“parameter”)

Definitions

» Because GAs are stochastic, single runs don't tell us
much about the quality of an algorithm

« Aggregate measures over multiple runs:
— MBF: Mean Best Fitness
— AES: Average evaluations to solution
— SR: Success rate

Generate-and-Test
Numeric parameters

« E.g., population size, xover rate, tournament size, ...
* Domain is subset of R, Z, N (finite or infinite)
» Values are well ordered - searchable

EA performance
EA performance

Parameter value Parameter value

Relevant parameter Irrelevant parameter

10/16/19

Generate-and-test
Symbolic parameters

« E.g., xover_operator, elitism, selection_method
« Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}

* Values not well ordered > non-searchable, must be
sampled

» Avalue of a symbolic parameter can introduce a numeric
parameter, e.g.,

— Selection = tournament - tournament size
— Populations_type = overlapping - generation gap
— Elitism = on = number of best members to keep

What is an EA?

T Wt e | wes | wes |

Representation Bit-string Bit-string Real-valued Real-valued
Overlapping pops N Y Y A
Survivor selection - Tournament Replace worst Replace worst
Parent selection Roulette wheel Uniform determ Tournament Tournament
Mutation Bit-flip Bit-flip N(0,0) N(0,0)
Recombination Uniform xover Uniform xover Discrete recomb Discrete recomb
L mmEmmEaws
Generation gap - 0.5 0.9 0.9
Population size 100 500 100 300
Tournament size - 2 3 30
Mutation rate 0.01 01 - -
Mutation stepsize - - 0.01 0.05
Crossover rate 08 0.7 1 08

What is an EA?

Make a principal distinction between EAs and EA instances and place
the border between them by:

Option 1
® There is only one EA, the generic EA scheme
® Previous table contains 1 EA and 4 EA-instances

Option 2
® An EA = particular configuration of the symbolic parameters
* Previous table contains 3 EAs, with 2 instances for one of them

Option 3
® An EA = particular configuration of parameters
* Notions of EA and EA-instance coincide
® Previous table contains 4 EAs / 4 EA-instances

Tuning effort

« Total amount of computational work is determined by
— A= number of vectors tested
— B = number of tests per vector
— C = number of fitness evaluations per test

10/16/19

Recommendations Example study: ‘Best parameters’

+ Setup:
— Problem: Sphere Function (see next slide)
— EA: defined by Tournament Parent Selection, Random Uniform
+ Think of the magic constants Survivor Selection, Uniform Crossover, BitFlip Mutation
— Tuner: REVAC spending X units of tuning effort, tuning for speed

» DO TUNE your evolutionary algorithm

+ Decide: speed or solution quality?
+ Decide: specialist or generalist EA?

- Measure and report tuning effort » Results: the best EA had the following parameter values

* Population Size: 6
+ Tournament Size: 4

» Conclusions: for this problem we need a high (parent)
selection pressure.

Sphere Function (in 3 dimensions) Example study: ‘Good parameters’

» Setup: same as before

Sphere Function

» Results: The 25 best parameters vectors have their values
within the following ranges

* Mutation Rate: [0.01, 0.011]
» Crossover Rate: [0.2, 1.0]

12)

» Conclusions: for this problem the mutation rate is much
more relevant than the crossover rate.

10/16/19

Example study: ‘interactions

+ Setup: same as before

» Results: plotting the pop.
size and generation gap of the
best parameter vectors shows

the following

Generation Gap

Population size

» Conclusions: for this problem the best results are obtained
when (almost) the complete population is replaced every

generation.

Control flow of EA calibration / design

User

GP

Symbolic
regression

Design layer

optimizes l

Algorithm layer

optimizes

Meta-GA

GA

One-max

Information flow of EA calibration / design

Design layer

t

Algorithm quality

Algorithm layer

Solution quality

10/16/19

Lower level of EA calibration / design

LLIIl]

EA The whole
field of EC

is about this

Searches '

Decision variables
Problem parameters
/ Candidate solutions

Evaluates

Space of solution vectors

Upper level of EA calibration / design

Design method

Searches l
Evaluates
°
EA

Space of parameter vectors

Design variables,
Algorithm parameters,
Strategy parameters

Optimize A = optimally use A

Applicable only to numeric parameters
Number of tested vectors not fixed, A is the maximum (stop cond.)
Population-based search:

Initialize with N << A vectors and

Iterate: generating, testing, selecting p.v.’s

Meta-EA (Greffenstette ‘86)
* Generate: ysual crossover and mutation of p.v.’s
SPO (Bartz-Beielstein et al. ‘05)
* Generate: yniform random sampling!!! of p.v.s
REVAC (Nannen & Eiben '06)
¢ Generate: ysual crossover and distribution-based mutation of p.v.'s

EVOLUTION OF DISTRIBUTIONS FOR SCHAFFER’S f3

mutation

400

Time or
fitness level

REVAC illustration

10/16/19

Optimize B = reduce B

Applicable to symbolic and numeric parameters
Number of tested vectors (A) fixed at initialization
Set of tested vectors can be created by
regular method - grid search
random method - random sampling
exhaustive method - enumeration
Complete testing (single stage) vs. selective testing (multi-stage)

Complete testing: nr. of tests per vector = B (thus, not optimizing)
Selective testing: nr. of tests per vector varies, < B
Idea:
® Execute tests in a breadth-first fashion (stages), all vectors X < B times
® Stop testing vectors with statistically significant poorer utility
Well-known methods
* ANOVA (Scheffer ‘89)
® Racing (Maron & Moore '97)

Optimize A& B

Existing work:
Meta-EA with racing (Yuan & Gallagher ‘04)

New trick: sharpening (Smit & Eiben 2009)

Idea: test vectors X < B times and increase X over time
during the run of a population-based tuner

Newest method:
REVAC with racing & sharpening = REVAC++

Which tuning method?

Differences between tuning algorithms
® Maximum utility reached
e Computational costs
® Number of their own parameters — overhead costs

* Insights offered about EA parameters (probability distribution,
interactions, relevance, explicit model...)

Similarities between tuning algorithms
e Nobody is using them
e Can find good parameter vectors

Solid comparison is missing — ongoing

Tuning “world champion” EAs

[Avg [Stdev|CECA il Avg |Stdev |CEC A |

G-CMA-ES 077 02 20 % 073 025 49 %
REVAC++ 085 024 12% 067 0.22 53 %
SPOT 076 019 22% 073 0.20 49 %
CEC-2005 097 0.32 - 143 025 -

Ranking at CEC 2005 Ranking after tuning

1. CMAES 1. SaDE

2. SaDE 2. CMAES

Main conclusion: if only they had asked us

10

Tuning vs. not tuning

g °
c

5

£ °

£

L

a

EA1 EA2

EA as is (accidental parameters)

Performance

EA1l EA2

EA as it can be (“optimal” parameters)

10/16/19

11

