
10/16/19

1

Genetic Algorithms

Parameters and
Parameter Tuning

Parameters and Parameter Tuning

• History
• Taxonomy
• Parameter Tuning vs Parameter Control
• EA calibration
• Parameter Tuning

– Testing
– Effort
– Recommendations

Brief historical account

• 1970s/80s “GA is a robust method”
• 1970s + ESs self-adapt mutation stepsize σ
• 1986 meta-GA for optimizing GA parameters
• 1990s EP adopts self-adaptation of σ as ‘standard’
• 1990s papers on changing parameters on-the-fly
• 1999 Eiben-Michalewicz-Hinterding: propose

clear taxonomy & terminology

Taxonomy

10/16/19

2

Parameter tuning

Parameter tuning: testing and comparing different
values before the “real” run – part of development

Problems:
– user “mistakes” in settings can be sources of errors or sub-

optimal performance
– takes significant time
– parameters interact: exhaustive search is not practical (or even

possible, in some cases)
– good values may become bad during the run (at different stages

of evolutionary development in the population)

Parameter control

Parameter control: setting values on-line, during the
actual run, e.g.

� predetermined time-varying schedule p = p(t)
� using (heuristic) feedback from the search process
� encoding parameters in chromosomes and rely on natural selection

Problems:
� finding optimal p is hard, finding optimal p(t) is harder
� still user-defined feedback mechanism, how to “optimize”?
� when would natural selection work for algorithm parameters?

Notes on parameter control

• Parameter control offers the possibility to use appropriate values in
various stages of the search

• Adaptive and self-adaptive control can “liberate” users from tuning à
reduces need for EA expertise for a new application

• Assumption: control heuristic is less parameter-sensitive than the EA

BUT

• State-of-the-art is a mess: literature is a potpourri, no generic
knowledge, no principled approaches to developing control heuristics
(deterministic or adaptive), no solid testing methodology

Historical account (cont’d)

Last 20 years:

• More & more work on parameter control
– Traditional parameters: mutation and xover

– Non-traditional parameters: selection and population size

– All parameters è “parameterless” EAs (what to call these?)

– Some theoretical results (e.g. Carola Doerr)

• Not much work on parameter tuning, i.e.,

– Nobody reports on tuning efforts behind their published EAs
(common refrain: “values were determined empirically”)

– A handful of papers on tuning methods / algorithms

10/16/19

3

Parameter – performance landscape

� All parameters together span a (search) space
� One point – one EA instance

� Height of point = performance of EA instance on a given
problem

� Parameter-performance landscape or utility landscape for
each { EA + problem instance + performance measure }

� This landscape is likely to be complex e.g., multimodal
� If there is some structure in the utility landscape, then

perhaps we can do better than random or exhaustive
search

The Tuning Problem

• Parameter values determine the success and efficiency
of a genetic algorithm

• Parameter tuning is a method in which parameter values
determined before a run and remain fixed during

• Common approaches:
– Convention, e.g. mutation rate should be low; xover rate = 0.9
– Ad hoc choices, e.g. let’s use population size of 100
– Limited experimentation, e.g. let’s try a few values

The Tuning Problem
Problems

• Problems with convention and ad hoc choices are
obvious
– Were choices ever justified?
– Do they apply in new problem domains?

• Problems with experimentation
– Parameters interact – cannot be optimized one-by-one
– Time consuming: 4 parameters with 5 values each yields 625

parameter combinations. 100 runs each = 62500 runs just for
tuning – to be fair, any tuning method will be time consuming

– Best parameter values may not be in test set

The Tuning Problem
Goal

• Think of design of a GA as a separate search problem
• Then a tuning method is a search algorithm

• Such a tuning method can be used to:
– Optimize a GA by finding parameters that optimize its

performance
– Analyze a GA by studying how performance depends on

parameter values and the problems to which it is applied

• So tuning problem solutions depend on problems to be
solved, GA used, and utility function that defines how GA
quality is measured

10/16/19

4

The Tuning Problem
Terminology

Problem Solving Algorithm Design
METHOD EA Tuner

SEARCH SPACE Solution vectors Parameter vectors

QUALITY Fitness Utility

ASSESSMENT Evaluation Test

� Fitness ≈ objective function value
� Utility = ?

� Mean Best Fitness
� Average number of Evaluations to Solution
� Success Rate
� Robustness, …
� Combination of some of these

Defining Algorithm Quality

• GA quality generally measured by a combination of
solution quality and algorithm efficiency

• Solution quality – reflected in fitness values
• Algorithm efficiency

– Number of fitness evaluations
– CPU time
– Clock-on-the-wall time

Defining Algorithm Quality

• Three generally used combinations of solution quality
and computing time for single run of algorithm
– Fix computing time and measure solution quality

• Given maximum runtime, quality is best fitness at
termination

– Fix solution quality and measure computing time required
• Given a minimum fitness requirement, performance is the

runtime needed to achieve it
– Fix both and measure success

• Given maximum runtime and minimum fitness requirement,
run is successful if it achieves fitness requirement within
runtime limit

Tuning Methods
Off-line vs. on-line calibration / design

Design / calibration method
� Off-line à parameter tuning
� On-line à parameter control

� Advantages of tuning
� Easier
� Most immediate need of users
� Control strategies have parameters too à need tuning themselves
� Knowledge about tuning (utility landscapes) can help the design of

good control strategies
� There are indications that good tuning works better than control

10/16/19

5

Tuning Method
Tuning by generate-and-test

• Generate-and-test is a common search strategy
• Since EA tuning is a search problem itself…
• Straightforward approach:

Generate parameter vectors

Test parameter vectors

TerminateAll tuning methods are a
form of generate-and-test

Generate-and-test
Testing parameter vectors

� Run EA with these parameters on the given problem or
problems

� Record EA performance in that run e.g., by
� Solution quality = best fitness at termination
� Speed ≈ time used to find required solution quality

� EAs are stochastic à repetitions are needed for reliable
evaluation à we get statistics, e.g.,
� Average performance by solution quality, speed (MBF, AES)
� Success rate = % runs ending with success
� Robustness = variance in those averages over different problems

� Question: how many repetitions of the test (yet another
“parameter”)

Definitions

• Because GAs are stochastic, single runs don’t tell us
much about the quality of an algorithm

• Aggregate measures over multiple runs:
– MBF: Mean Best Fitness
– AES: Average evaluations to solution
– SR: Success rate

Generate-and-Test
Numeric parameters

• E.g., population size, xover rate, tournament size, …
• Domain is subset of R, Z, N (finite or infinite)
• Values are well ordered à searchable

Parameter value

EA
 p

er
fo

rm
an

ce

Parameter value

EA
 p

er
fo

rm
an

ce

Relevant parameter Irrelevant parameter

10/16/19

6

Generate-and-test
Symbolic parameters

• E.g., xover_operator, elitism, selection_method
• Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}
• Values not well ordered à non-searchable, must be

sampled

• A value of a symbolic parameter can introduce a numeric
parameter, e.g.,
– Selection = tournament à tournament size
– Populations_type = overlapping à generation gap
– Elitism = on à number of best members to keep

What is an EA?

ALG-1 ALG-2 ALG-3 ALG-4
SYMBOLIC PARAMETERS

Representation Bit-string Bit-string Real-valued Real-valued

Overlapping pops N Y Y Y

Survivor selection ̶ Tournament Replace worst Replace worst

Parent selection Roulette wheel Uniform determ Tournament Tournament

Mutation Bit-flip Bit-flip N(0,σ) N(0,σ)

Recombination Uniform xover Uniform xover Discrete recomb Discrete recomb

NUMERIC PARAMETERS

Generation gap ̶ 0.5 0.9 0.9

Population size 100 500 100 300

Tournament size ̶ 2 3 30

Mutation rate 0.01 0.1 ̶ ̶
Mutation stepsize ̶ ̶ 0.01 0.05

Crossover rate 0.8 0.7 1 0.8

What is an EA?

Make a principal distinction between EAs and EA instances and place
the border between them by:

� Option 1
� There is only one EA, the generic EA scheme
� Previous table contains 1 EA and 4 EA-instances

� Option 2
� An EA = particular configuration of the symbolic parameters
� Previous table contains 3 EAs, with 2 instances for one of them

� Option 3
� An EA = particular configuration of parameters
� Notions of EA and EA-instance coincide
� Previous table contains 4 EAs / 4 EA-instances

Tuning effort

• Total amount of computational work is determined by
– A = number of vectors tested
– B = number of tests per vector
– C = number of fitness evaluations per test

10/16/19

7

Recommendations

• DO TUNE your evolutionary algorithm

• Think of the magic constants
• Decide: speed or solution quality?
• Decide: specialist or generalist EA?
• Measure and report tuning effort

Example study: ‘Best parameters’

• Setup:
– Problem: Sphere Function (see next slide)
– EA: defined by Tournament Parent Selection, Random Uniform

Survivor Selection, Uniform Crossover, BitFlip Mutation
– Tuner: REVAC spending X units of tuning effort, tuning for speed

• Results: the best EA had the following parameter values
• Population Size: 6
• Tournament Size: 4

• Conclusions: for this problem we need a high (parent)
selection pressure.

Sphere Function (in 3 dimensions) Example study: ‘Good parameters’

• Setup: same as before

• Results: The 25 best parameters vectors have their values

within the following ranges

• Mutation Rate: [0.01, 0.011]

• Crossover Rate: [0.2, 1.0]

• Conclusions: for this problem the mutation rate is much

more relevant than the crossover rate.

10/16/19

8

Example study: ‘interactions’

• Setup: same as before

• Results: plotting the pop.
size and generation gap of the
best parameter vectors shows
the following

• Conclusions: for this problem the best results are obtained
when (almost) the complete population is replaced every
generation.

Ge
ne

ra
tio

n
Ga

p

Population size

Control flow of EA calibration / design

Design layer

Application layer

Algorithm layer

optimizes

optimizes

One-max

GA

Meta-GA

Symbolic
regression

GP

User

Information flow of EA calibration / design

Design layer

Application layer

Algorithm layer

Algorithm quality

Solution quality

10/16/19

9

Lower level of EA calibration / design

Searches

Decision variables
Problem parameters
Candidate solutions

EA

Space of solution vectors

Evaluates

Application

The whole
field of EC

is about this

Upper level of EA calibration / design

Design method

Searches Design variables,
Algorithm parameters,
Strategy parameters

Space of parameter vectors

Evaluates

EA

Optimize A = optimally use A

Applicable only to numeric parameters
Number of tested vectors not fixed, A is the maximum (stop cond.)
Population-based search:

– Initialize with N << A vectors and
– Iterate: generating, testing, selecting p.v.’s

� Meta-EA (Greffenstette ‘86)
� Generate: usual crossover and mutation of p.v.’s

� SPO (Bartz-Beielstein et al. ‘05)
� Generate: uniform random sampling!!! of p.v.’s

� REVAC (Nannen & Eiben ’06)
� Generate: usual crossover and distribution-based mutation of p.v.’s

REVAC illustration

Time or
fitness level

10/16/19

10

Optimize B = reduce B

Applicable to symbolic and numeric parameters
Number of tested vectors (A) fixed at initialization
Set of tested vectors can be created by
� regular method à grid search
� random method à random sampling
� exhaustive method à enumeration
Complete testing (single stage) vs. selective testing (multi-stage)

� Complete testing: nr. of tests per vector = B (thus, not optimizing)
� Selective testing: nr. of tests per vector varies, ≤ B
� Idea:

� Execute tests in a breadth-first fashion (stages), all vectors X < B times
� Stop testing vectors with statistically significant poorer utility

� Well-known methods
� ANOVA (Scheffer ‘89)
� Racing (Maron & Moore ’97)

Optimize A & B

Existing work:
� Meta-EA with racing (Yuan & Gallagher ‘04)

New trick: sharpening (Smit & Eiben 2009)
� Idea: test vectors X < B times and increase X over time

during the run of a population-based tuner

Newest method:
� REVAC with racing & sharpening = REVAC++

Which tuning method?

� Differences between tuning algorithms
� Maximum utility reached
� Computational costs
� Number of their own parameters – overhead costs
� Insights offered about EA parameters (probability distribution,

interactions, relevance, explicit model…)
� Similarities between tuning algorithms

� Nobody is using them
� Can find good parameter vectors

� Solid comparison is missing – ongoing

Tuning “world champion” EAs

G-CMA-ES SaDE
Tuned by Avg St dev CEC Δ Avg St dev CEC Δ
G-CMA-ES 0.77 0.2 20 % 0.73 0.25 49 %
REVAC++ 0.85 0.24 12 % 0.67 0.22 53 %
SPOT 0.76 0.19 22 % 0.73 0.20 49 %
CEC-2005 0.97 0.32 - 1.43 0.25 -

Main conclusion: if only they had asked us ….

Ranking at CEC 2005
1. CMA-ES
2. SaDE

Ranking after tuning
1. SaDE
2. CMA-ES

10/16/19

11

Tuning vs. not tuning

Pe
rfo

rm
an

ce

EA 1 EA 2

Pe
rfo

rm
an

ce

EA 1 EA 2

EA as is (accidental parameters) EA as it can be (“optimal” parameters)

