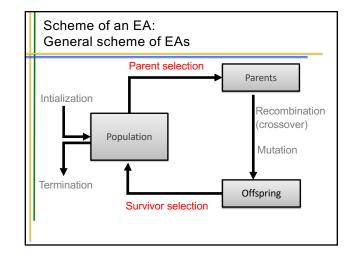


New Reading (all students)

- Later this week, we will discuss methods to maintain population diversity
 - Reading: - Extinction Events Can Accelerate Evolution, Joel Lehman and Risto Miikkulainen. PLOS| one, 2015.

Fitness, Selection and Population Management

- Selection is the second fundamental force for evolutionary systems
 - What is the first fundamental force?
 variation
- Components exist of:
 - Population management models
 - Selection operators
 - Preserving diversity



Population Management Models: Introduction

• $\mu - \lambda$ method:

- $-\mu$: population size
- $-\lambda$: number of individuals to replace
- · Generational model
 - $\lambda = \mu$: all parents replaced by children each generation
 - Typically, μ children created, though could be more
- · Steady-state model
 - + $\lambda < \mu$: some parents remain
 - λ can be as small as 1
 - What happens if λ is 0?
- Generation Gap
 - The proportion of the population replaced: λ/μ

Population Management Models: Fitness based competition

- Selection can occur in two places:
 - Selection from current generation to take part in mating (parent selection)
 - Selection from parents + offspring to go into next generation (survivor selection)
- Selection operators are representation-independent - They depend on the individual's fitness (and sometimes secondary measures)

Parent Selection: **Fitness-Proportionate Selection**

- Probability for individual *i* to be selected for mating in a population size μ with FPS is: $P_{FPS}(i) = f_i / \sum_{j=1}^{n} f_j$ •
- · Problems include
 - Highly fit members can rapidly take over if rest of population is much less fit: Premature Convergence
 At end of runs: fitnesses are similar, loss of selection pressure

 - Highly susceptible to fitness function translation (shifting)
- Scaling can fix last two problems - Windowing: $f'(i) = f(i) - \beta_g$ for generation g where β is worst fitness in this (last k) generations
- Sigma Scaling: $f'(i) = \max(f(i) (\overline{f} c \bullet \sigma_f), 0)$ where c is a constant, usually 2

Individual	Fitness for function f	Selection Prob for <i>f</i>	Fitness for f+10	Sel prob for <i>f</i> + 10	Fitness for f+100	Sel prob for <i>f</i> + 100	
А	1	0.1	11	0.275	101	0.326	
В	4	0.4	14	0.35	104	0.335	
С	5	0.5	15	0.375	105	0.339	
Sum	10	1.0	40	1.0	310	1.0	

Definition: Selection Pressure

- Degree of emphasis on selecting fitter individuals
 High selection pressure: higher probability of choosing fitter members
 - Low selection pressure: lower probability of choosing fitter members
- Formal definition: probability of choosing best member over probability of choosing average member.
- How would you characterize selection pressure = 1?

Parent Selection: Rank-based Selection

- Attempt to remove problems of FPS by basing selection
 probabilities on *relative* rather than *absolute* fitness
- Rank population according to fitness and then base selection probabilities on rank (fittest has rank μ-1 and worst rank 0)
- This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the fitness evaluation time
- · Ranking schemes not sensitive to fitness function translation

	Rank-based Selection: Linear Ranking									
$P_{\text{lin-rank}}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$ • Parameterised by factor <i>s</i> : 1< <i>s</i> ≤ 2 – measures advantage of best individual • Simple 3 member example										
		Individual	Fitness for function <i>f</i>	Rank	Sel prob FPS	Sel prob LR (s = 2)	Sel prob LR (s = 1.5)			
		А	1	0	0.1	0.0	0.167			
		В	4	1	0.4	0.33	0.33			
		С	5	2	0.5	0.67	0.5			
		Sum	10		1.0	1.0	1.0			

Rank-based selection: Exponential Ranking

Linear Ranking is limited in selection pressure

$$P_{exp-rank}(i) = \frac{c^{\mu-i}}{\sum_{j=1}^{\mu} c^{\mu-j}}$$

Denominator normalizes probabilities to ensure the sum is 1.0

Note:
$$\sum_{j=1}^{\mu} c^{\mu-j} = \frac{c^{\mu}-1}{c-1}$$

.

So:
$$P_{exp-rank}(i) = \frac{c-1}{c^{\mu}-1}c^{\mu-i}, \quad i \in \{1, ..., \mu\}$$

• 0 < c < 1, closer to 1 yields lower exponentiality

	Rank-based selection: Exponential Ranking								
	Individual	Rank	Sel prob LR (s = 2)	Sel prob LR (s = 1.5)	Sel prob ER (c = 1/e)	Sel prob ER (c = 0.1)	Sel prob ER (c = 0.8)		
	А	1	0.000816	0.010408	3.314 e-22	9.000 e-50	3.568 e-06		
	В	5	0.004082	0.012041	1.809 e-20	9.000 e-46	8.711 e-06		
	С	10	0.008163	0.014082	2.685 e-18	9.000 e-41	2.658 e-05		
	D	20	0.016326	0.018163	5.915 e -14	9.000 e-31	2.476 e-04		
	E	50	0.040816	0.030408	0.63212	0.9	0.200003		
	Sum (of all 50)		1.0	1.0	1.0	1.0	1.0		
ľ									

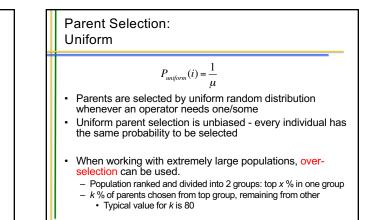
Parent Selection: Tournament Selection

- All methods above rely on global population statistics
 Could be a bottleneck esp. with very large population or on parallel architecture
 - Relies on presence of external fitness function which might not exist: e.g. evolving game players, evolutionary art
- Idea for a procedure using only local fitness information:
 Pick k members uniformly at random then select the best one
 - from these
 - Repeat to select more individuals

Parent Selection: Tournament Selection

- Probability of selecting member *i* will depend on:
 - Rank of i
 - Size of sample k
 higher k increases selection pressure
 - **.**
 - Whether contestants are picked with replacement
 Picking without replacement increases selection process
 - Picking without replacement increases selection pressure

 Without replacement, least fit k-1 individuals can never win
 a tournament
 - Window replacement, even the least fit individuals can in a tournament
 With replacement, even the least fit individual has probability (1/µ)^k of being selected (all tournament participants are that member)
 - Whether fittest contestant always wins (deterministic) or wins with probability p (stochastic)



Survivor Selection

- · Managing the process of reducing the working memory of the EA from a set of μ parents and λ offspring to a set of μ individuals forming the next generation
- The parent selection mechanisms can also be used for selecting survivors
- Survivor selection can be divided into two approaches: Age-Based Selection
 - · Fitness is not taken into account
 - In SSGA can implement as "delete-random" (not
 - recommended) or as first-in-first-out (a.k.a. delete-oldest)
 - Fitness-Based Replacement

Survivor Selection: Fitness-based replacement

. Elitism

- Always keep at least one copy of the fittest solution so far
- Widely used in both population models (GGA, SSGA)
- GENITOR: a.k.a. "delete-worst"
- From Whitley's original Steady-State algorithm (he also used linear ranking for parent selection) Rapid takeover: use with large populations (slows takeover)
- Round-robin tournament
- Tournament competitions are: P(t): μ parents and P'(t): μ offspring Pairwise competitions in round-robin format:
- Each solution x from $P(t) \cup P'(t)$ is evaluated against q other randomly chosen solutions
- For each comparison, a "win" is assigned if *x* is better than its opponent The µ solutions with the greatest number of wins are retained for the next generation
- Parameter q allows tuning selection pressure Typically q = 10, but can be as large as $\mu 1$

Survivor Selection: Fitness-based replacement

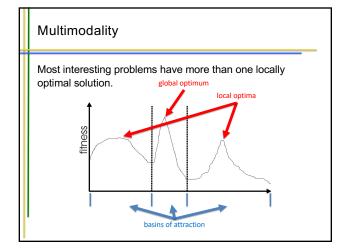
- (μ,λ)-selection
 - based on the set of children only $(\lambda > \mu)$
- choose best µ
- (μ+λ)-selection
 - based on the set of parents and children
 - choose best µ
- Often (μ,λ)-selection is preferred for:
 - Better in leaving local optima
 - Better in following moving optima
- Historically, $\lambda \approx 7 \cdot \mu$ was a good setting. More recently,
- $\lambda \approx 3 \cdot \mu$ is more popular

Selection Pressure - a different view

- Takeover time τ^* is a measure to quantify selection pressure
- The number of generations it takes until the application of selection completely fills the population with copies of the best individual
- For (μ,λ)-selection Goldberg and Deb showed:

$$\tau^* = \frac{\ln \lambda}{\ln(\lambda / \mu)}$$

• For proportional selection in a GA with $\mu = \lambda$, the takeover time is: $\lambda \ln \lambda$ (about 460 for pop size = 100)



Multimodality: Genetic Drift

Finite population with global mixing and selection eventually convergence around one optimum •

Why?

- Suppose population evenly divided between 2 optima
- _
- Eventually, due to random nature of variation operators, population is likely to skew slightly toward one optimum This increases likelihood of choosing parents favoring that optimum _
- Then it is likely that over time population converges in that direction
- Not always desirable: might want to identify several possible peaks; sub-optimum can be more attractive Common in evolved design problems - human judgements such as aesthetics might be important

Definition: Niche

- A niche is a subpopulation located in some area of the search space.
 - Niching can help ensure diversity
 - Also important when multiple optima should be represented in the population

Approaches for Preserving Diversity: Introduction

- · Explicit vs implicit
- Implicit approaches:
 - Impose an equivalent of geographical separation · neighborhoods
 - Impose an equivalent of speciation
 - · Species (subpopulations) that restrict mating
- Explicit approaches
 - Make similar individuals compete for resources (fitness)
 - Make similar individuals compete with each other for survival

Approaches for Preserving Diversity: Introduction

Different spaces:

- Genotype space

- Set of representable solutions
- Phenotype space
- The end result
- Neighborhood structure may bear little relation to genotype space
- Algorithmic space
 - Equivalent of the geographical space on which life on earth has evolved
 - Structuring the population of candidate solutions – Across multiple cores, for example

Explicit Approaches for Preserving Diversity: Fitness Sharing

- Reduces fitness of individuals within a given niche by scaling ("sharing") their fitness in proportion to the size of the niche
- Controls number of members in niche since individuals
 allocated to niches in proportion to the niche fitness
- need to set the size of the niche σ_{share} in either genotype or phenotype space
- · run EA as normal but after each generation set

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i,j))} \quad sh(d) = \begin{cases} 1 - d/\sigma & d \le \sigma \\ 0 & otherwise \end{cases}$$

Explicit Approaches for Preserving Diversity: Fitness Sharing

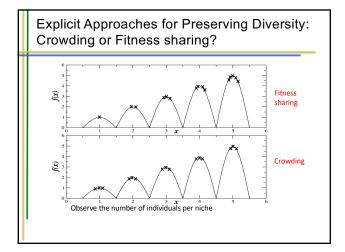
- d is distance between two members in same space (phenotype or genotype) as σ_{share}
- Note: if we used sh(d) = 1 for d < σ_{share} then the sum that reduces the fitness would simply count the number of neighbours, i.e., individuals closer than σ_{share}
- Using 1 d/ σ_{share} instead of 1 implies that we count distant neighbours less
- Can change "shape" of sharing function by introducing $\alpha : (1 d/\,\sigma_{share})^{\alpha}$
 - $-\alpha = 1$: linear
 - α > 1: affects decrease with distance

Explicit Approaches for Preserving Diversity: Crowding

- · Attempts to distribute individuals evenly amongst niches
- relies on the assumption that offspring will tend to be close to parents
- uses a distance metric in either phenotype or genotype space
- randomly shuffle and pair parents
- · produce 2 offspring per pair of parents

Explicit Approaches for Preserving Diversity: Crowding

- Set up competitions between parents and children number the two p's (parents)and the two o's (offspring) based on competition in which they participate
 - Arrange competitions such that intercompetition distances are minimized:
 - if $d(p_1,o_1) + d(p_2,o_2) < d(p_1,o_2) + d(p_2,o_1)$
 - then let o₁ compete with p₁ and o₂ compete with p₂
- Winners move on to next generation
- Reduces likelihood that niches lose members since • competition between parent and child that are similar



Explicit Approaches for Preserving Diversity: Extinction

- · Key idea: reboot the population with significant infusion of new members
- Periodically kill large portion of the population and rebuild
- · Many implementation choices that impact performance

Explicit Approaches for Preserving Diversity: Extinction

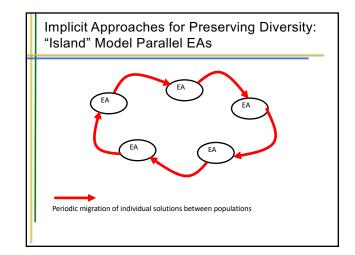
Design choices:

- What triggers an extinction event? Typically at fixed intervals
 - Other options?
- How much of population to kill? Typically 50% 75% How to rebuild population?
- Typically random members
- Sometimes members created from survivors are used as well
- How quickly to rebuild population?
- Always instantaneous
- Does it have to be that way?

Implicit Approaches for Preserving Diversity: Automatic Speciation

- Only mate with genotypically / phenotypically similar members
- Add bits (tags) to problem representation

 that are initially randomly set
 - subject to recombination and mutation
 - when selecting partner for recombination, only pick members with a good match
 Initially, similar tags do not imply similar solutions but within a
 - Initiality, similar tags to not initially similar solutions but within a small number of generations, they correlate
- Speciation does not guarantee diversity but does increase likelihood of diverse population

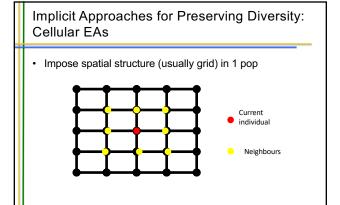


Implicit Approaches for Preserving Diversity: "Island" Model Parallel EAs

- Run multiple, independent populations in parallel
- After a (usually fixed) number of generations (an *Epoch*), exchange individuals between populations
- Repeat until ending criteria met (optimal solution, max time, max generations, etc)
- Partially inspired by parallel/clustered systems – On such systems, typically one population per core

Island Model: Parameters

- · How often to exchange individuals ?
 - too quick: all sub-populations converge to same solution
 - too slow: wastes time
 - most authors use range~ 25-150 generations
- can do it adaptively (stop each pop when no improvement for (say) 25 generations)
- How many, which individuals to exchange ?
- usually ~2-5, but depends on population size.
- Copied vs moved
- Martin *et al* found that better to exchange randomly selected individuals than best
- · Operators can differ between the sub-populations



Implicit Approaches for Preserving Diversity: Cellular EAs

- Consider each individual to exist on a point on a (usually rectangular toroid) grid
- Selection (hence recombination) and replacement happen using concept of a neighborhood *a.k.a.* deme
- Leads to different parts of grid searching different parts of space, good solutions diffuse across grid over a number of gens

Implicit Approaches for Preserving Diversity: Cellular EAs

- Assume rectangular grid so each individual has 8
 immediate neighbors
- Equivalent of 1 generation is:
 - pick individual in pop at random
 - pick one of its neighbours using roulette wheel
 - crossover to produce 1 child, mutate
 - replace individual if fitter
 - cycle through population until done