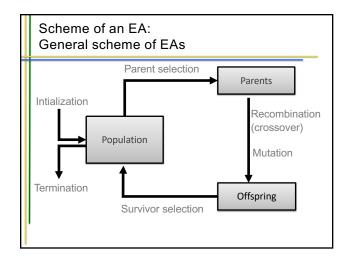


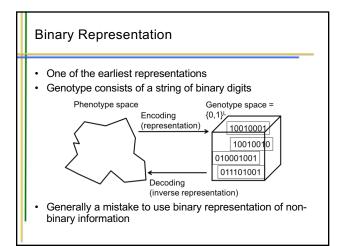
Representation, Mutation, and Recombination Outline:

- Role of representation and variation operators
- Most common representation of genomes:
 - Binary
 - Integer
 - Real-Valued or Floating-Point
 - Permutation



Role of representation and variation operators

- First stage of building an EA and most difficult one: choose *right* representation for the problem
- Variation operators: mutation and crossover
- Type of variation operators needed depends on chosen representation
- TSP problemWhat are possible representations?



Binary Representation: Mutation
Alter each gene independently with a probability p _m
 Child 010010110001011001 Mutation can cause variable effect – bits have different significance so some cause bigger jumps in phenotype than others. Hamming cliff – using Gray code representation overcomes this.

Binary Representation: Mutation rate

- p_m is called the mutation rate
 - Typically between 1/(pop_size * genome_length) and 1/genome_length
- 1/pop_size * genome_length: about one mutation per generation over entire population
 Less likely to disrupt good individuals
- 1/genome_length: about one mutation per member in each generation
- More likely to result in larger number of highly fit individuals

Binary Representation: 1-point crossover

- Choose a random point on the two parents
- · Split parents at this crossover point
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)

parents	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
children																		
				1	11	0	0	0	0	0	0	0	0	0	0	0	0	0

Binary Representation: Alternative Crossover Operators

• Why do we need other crossover(s)?

- Performance with 1-point crossover depends on the order that variables occur in the representation
 - More likely to keep together genes that are near each other
 Can never keep together genes from opposite ends of string
 - This is known as *Positional Bias*

Binary Representation: n-point crossover

- Choose n random crossover points
- · Split along those points
- Glue parts, alternating between parents
- Generalization of 1-point (still some positional bias)

Binary Representation: Uniform crossover

- · Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child
- Inheritance is independent of position no positional bias
- Coin doesn't have to be fair: probabilities p and 1-p

children

 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 0
 1

 1
 0
 1
 1
 0
 0
 1
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 0
 0
 1
 1
 <t

Binary Representation: Crossover OR mutation? (1/3)

- Decade long debate: which one is better / necessary
- Answer (at least, rather wide agreement):it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA unlikely to work

Binary Representation: Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem

Exploitation: Optimizing within a promising area, *i.e.* using information

There is co-operation AND competition between them

· Crossover is explorative, it makes a big jump to an area somewhere "in between" two (parent) areas

• Mutation is exploitative, it creates random small diversions, thereby staying near (in the area of) the parent

Binary Representation: Crossover OR mutation? (3/3)

- · Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0's on first bit in the population, ?% after performing n crossovers)
- To hit the optimum you often need a 'lucky' mutation

Integer Representation

- Nowadays it is generally accepted that it is better to encode numerical variables directly (integers, floating point variables) Some problems naturally have integer variables, e.g. image
- processing parameters
- Others impose ordinal values on a fixed set e.g. {blue, green, yellow, pink}
- N-point / uniform crossover operators work
- Extend bit-flipping mutation to make
 - "creep" i.e. more likely to move to similar value
 - Adding a small (positive or negative) value to each gene with probability p.
 Random resetting (esp. categorical variables)
 With probability p_m a new value is chosen at random
- Same recombination as for binary representation

Real-Valued or Floating-Point Representation

- Many problems occur as real-valued problems, e.g. continuous parameter optimization $f: \mathbb{R}^n \to \mathbb{R}$
- Genotype is a vector $\langle x_1, ..., x_k \rangle$, $x_i \in \mathbb{R}$
- · Examples:
 - · Satellite boom design: angles and spar lengths are real-valued
 - · Neural network training: weights are real-valued
 - · Problems in k-dimensional space

Real-Valued or Floating-Point Representation: Mapping real values onto bit strings

 $z \, \in \, [x,y] \sqsubseteq \, \mathscr{R} \text{represented by} \, \{a_1, \ldots, a_L\} \in \{0,1\}^L$

[x,y] → {0,1}^L must be invertible (one phenotype per genotype)
 Γ: {0,1}^L → [x,y] defines the representation

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

- Only 2^L values out of infinite are represented
- L determines maximum possible precision of solution
- High precision \rightarrow long chromosomes (slow evolution)

Real-Valued or Floating-Point Representation: Uniform Mutation

• General scheme of floating point mutations $\overline{x} = \langle x_1, ..., x_l \rangle \rightarrow \overline{x}' = \langle x'_1, ..., x'_l \rangle$

$$x_i, x_i' \in [LB_i, UB_i]$$

- Uniform Mutation
- x'_i drawn randomly (uniform) from $[LB_i, UB_i]$
- Analogous to bit-flipping (binary) or random resetting (integers)

Real-Valued or Floating-Point Representation: Nonuniform Mutation

- Non-uniform mutations:
 - Many methods proposed, such as time-varying range of change etc.
 - Most schemes are probabilistic but usually only make a small change to value
 - Most common method is to add random deviate to each variable separately, taken from N(0, $\sigma)$ Gaussian distribution and then curtail to range

```
x'_{i} = x_{i} + N(0,\sigma)
```

• Standard deviation $\sigma,$ mutation step size, controls amount of change (2/3 of drawings will lie in range (- σ to + σ))

Real-Valued or Floating-Point Representation: Self-Adaptive Mutation

- Step-sizes are included in the genome and undergo variation and selection themselves: $\langle \ x_1,...,x_n, \ \sigma \ \rangle$
- Mutation step size is not set by user but coevolves with solution
- Different mutation strategies may be appropriate in different stages of the evolutionary search process.

Real-Valued or Floating-Point Representation: Self-Adaptive Mutation

• Mutate σ first

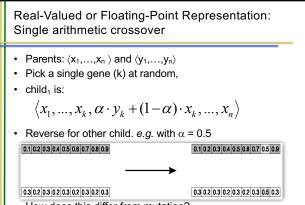
- Net mutation effect: $\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$
- · Order is important:
- first $\sigma \rightarrow \sigma'$ (see later how)
- then $x \rightarrow x' = x + N(0,\sigma')$
- Rationale: new $\langle x', \sigma' \rangle$ is evaluated twice
 - Primary: x' is good if f(x') is good
- Secondary: σ' is good if the x' it created is good
- · Reversing mutation order this would not work

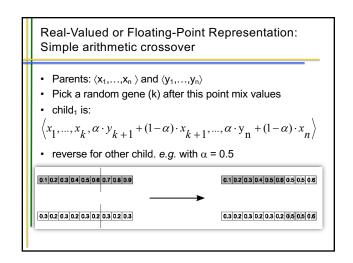
Real-Valued or Floating-Point Representation: Crossover operators

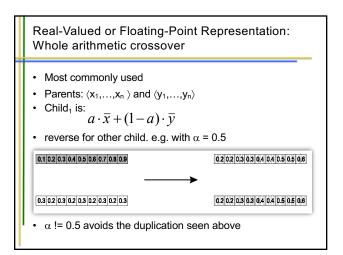
• Discrete:

- each allele value in offspring *z* comes from one of its parents (x, y) with equal probability: $z_i = x_i$ or y_i
- Could use n-point or uniform
- Arithmetic
- exploits idea of creating children "between" parents (a.k.a. intermediate recombination)
- $z_i = \alpha x_i + (1 \alpha) y_i$ where $\alpha : 0 \le \alpha \le 1$.
- The parameter α can be:

 - constant: uniform arithmetic crossover
 variable (*e.g.* depend on the age of the population)
 picked at random every time

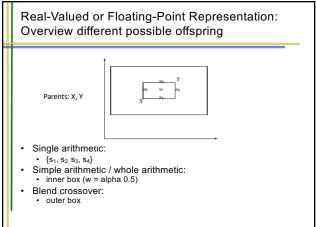


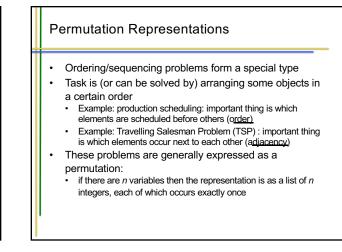




Real-Valued or Floating-Point Representation: Blend Crossover

- Parents: $\langle x_1, \dots, x_n \; \rangle \; and \; \langle y_1, \dots, y_n \rangle$
- $d_i = abs(y_i x_i)$
- Random sample $z_i = [min(x_i, y_i) \alpha d_i, min(x_i, y_i) + \alpha d_i]$
- Original authors had best results with α = 0.5





Permutation Representation: **TSP** example

· Problem:

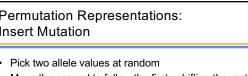
- · Given n cities
- Find a complete tour with minimal length •

- Encoding:
 - Label the cities 1, 2, ..., n One complete tour is one
- permutation (*e.g.* for n =4 [1,2,3,4], [3,4,2,1] are OK) Search space is BIG:
- for 30 cities there are $30! \approx 10^{32}$ possible tours

Permutation Representations: Mutation

- Normal mutation operators lead to inadmissible solutions • e.g. bit-wise mutation: let gene *i* have value *j*
 - changing to some other value k in [1..n] would mean that k occurred twice and *j* no longer occurred
- · Therefore must change at least two values
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather • than individually in each position

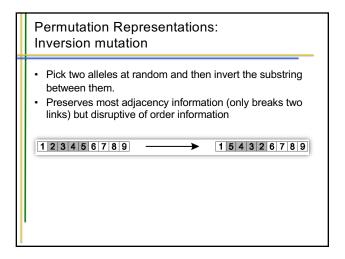
Permutation Representations: Swap mutation		Permutation Repre Insert Mutation
Choose two alleles at random and swap their positions		 Pick two allele values Move the second to fo along to accommodate
123456789	Note that this preserve adjacency information	
 Variation: choose two adjacent alleles at random and swap their positions 		123456789

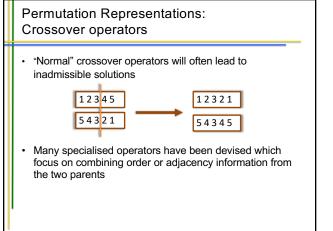


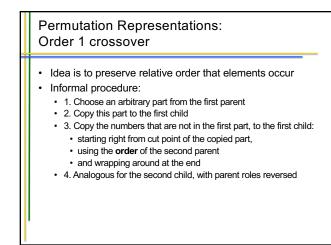
- blow the first, shifting the rest e
- es most of the order and the

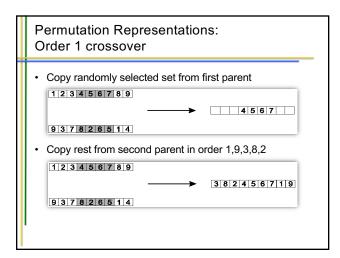
1 2 5 3 4 6 7 8 9 ►

Permutation Representations: Scramble mutation
Pick a subset of genes at randomRandomly rearrange the alleles in those positions
$135426789 \longrightarrow 135426789$







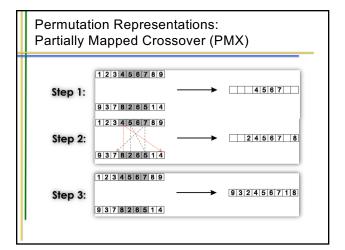


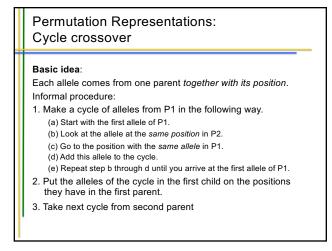
Permutation Representations: Partially Mapped Crossover (PMX)

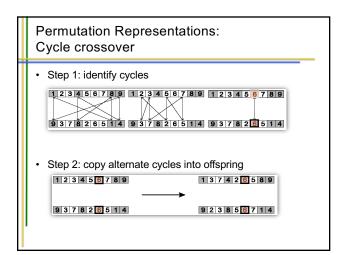
Informal procedure for parents P1 and P2:

- 1. Choose random segment and copy it from P1
- 2. Starting from the first crossover point look for elements in that segment of P2 that have not been copied
- For each of these *i* look in the offspring to see what element *j* has been copied in its place from P1
- Place *i* into the position occupied by *j* in P2, since we know that we will not be putting *j* there (as is already in offspring)
 If the place occupied by *j* in P2 has already been filled in the offspring by *k*, put
- If the place occupied by *j* in P2 has already been filled in the offspring by *k*, put *i* in the position occupied by *k* in P2
 Having dealt with the elements from the crossover segment, the rest of the
- Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously







Permutation Representations: Edge Recombination												
 Works by constructing a table listing which edges are present in the two parents, if an edge is common to both, mark with a + e.g. [123456789] and [937826514] Element Edges Element Edges 1 2,5,4,9 6 2,5+,7 2 1,3,6,8 7 3,6,8+ 3 2,4,7,9 8 2,7+,9 4 1,3,5,9 9 1,3,4,8 5 1,4,6+ 												

Permutation Representations: Edge Recombination

Informal procedure: once edge table is constructed

- 1. Pick an initial element, entry, at random and put it in the offspring
- 2. Set the variable *current element = entry*
- 3. Remove all references to *current element* from the table
- 4. Examine list for current element:
 - If there is a common edge, pick that to be next element
 - Otherwise pick the entry in the list which itself has the shortest list
 - Ties are split at random
- 5. In the case of reaching an empty list:
 a new element is chosen at random

