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Genetic Algorithms

CS 419/519

Representation, Mutation, and Recombination
Outline:

• Role of representation and variation operators
• Most common representation of genomes:

• Binary
• Integer
• Real-Valued or Floating-Point
• Permutation

Scheme of an EA:
General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Role of representation and variation 
operators

• First stage of building an EA and most difficult one: 
choose right representation for the problem

• Variation operators: mutation and crossover
• Type of variation operators needed depends on chosen 

representation

• TSP problem
• What are possible representations?
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Binary Representation

• One of the earliest representations
• Genotype consists of a string of binary digits

• Generally a mistake to use binary representation of non-
binary information

Binary Representation:
Mutation

• Alter each gene independently with a probability pm

• Mutation can cause variable effect – bits have different 
significance so some cause bigger jumps in phenotype 
than others.

• Hamming cliff – using Gray code representation 
overcomes this.

Binary Representation:
Mutation rate

• pm is called the mutation rate
• Typically between 1/(pop_size * genome_length) and

1/genome_length

• 1/pop_size * genome_length: about one mutation per 
generation over entire population
• Less likely to disrupt good individuals

• 1/genome_length: about one mutation per member in 
each generation
• More likely to result in larger number of highly fit individuals

Binary Representation:
1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails
• Pc  typically in range (0.6, 0.9)
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Binary Representation:
Alternative Crossover Operators

• Why do we need other crossover(s)?
• Performance with 1-point crossover depends on the 

order that variables occur in the representation
• More likely to keep together genes that are near each other
• Can never keep together genes from opposite ends of string
• This is known as Positional Bias

Binary Representation:
n-point crossover

• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents
• Generalization of 1-point (still some positional bias)

• What if we take n-point crossover to its logical limit?

Binary Representation:
Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second child
• Inheritance is independent of position – no positional bias
• Coin doesn’t have to be fair: probabilities p and 1-p

1

Binary Representation:
Crossover OR mutation? (1/3)

• Decade long debate: which one is better / necessary 

• Answer (at least, rather wide agreement):
• it depends on the problem, but
• in general, it is good to have both
• both have another role
• mutation-only-EA is possible, xover-only-EA unlikely to work
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Binary Representation:
Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the search space, 
i.e. gaining information on the problem

Exploitation: Optimizing within a promising area, i.e. using 
information

There is co-operation AND competition between them

• Crossover is explorative, it makes a big jump to an area 
somewhere “in between” two (parent) areas

• Mutation is exploitative, it creates random small diversions, 
thereby staying near (in the area of ) the parent

Binary Representation:

Crossover OR mutation? (3/3)

• Only crossover can combine information from two 

parents

• Only mutation can introduce new information (alleles)

• Crossover does not change the allele frequencies of the 

population (thought experiment: 50% 0’s on first bit in the 

population, ?% after performing n crossovers)

• To hit the optimum you often need a ‘lucky’ mutation

Integer Representation

• Nowadays it is generally accepted that it is better to encode 
numerical variables directly (integers, floating point variables)

• Some problems naturally have integer variables, e.g. image 
processing parameters

• Others impose ordinal values on a fixed set e.g. {blue, green,
yellow, pink}

• N-point / uniform crossover operators work
• Extend bit-flipping mutation to make

• “creep” i.e. more likely to move to similar value 
• Adding a small (positive or negative) value to each gene with 

probability p.
• Random resetting (esp. categorical variables)

• With probability pm a new value is chosen at random
• Same recombination as for binary representation

Real-Valued or Floating-Point 
Representation

• Many problems occur as real-valued problems, e.g.
continuous parameter optimization !: ℝ$ ⟶ ℝ

• Genotype is a vector &',… , &* , &+ ∈ ℝ

• Examples:
• Satellite boom design: angles and spar lengths are real-valued
• Neural network training: weights are real-valued
• Problems in k-dimensional space
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Real-Valued or Floating-Point Representation: 
Mapping real values onto bit strings

z Î [x,y] Í Â represented by {a1,…,aL} Î {0,1}L

• [x,y] ® {0,1}L must be invertible (one phenotype per genotype)
• G: {0,1}L ® [x,y] defines the representation 

• Only 2L values out of infinite are represented
• L determines maximum possible precision of solution
• High precision à long chromosomes (slow evolution)

],[)2(
12

),...,(
1

0
1 yxa

xy
xaa j

L

j
jLLL Î××

-
-

+=G å
-

=
-

Real-Valued or Floating-Point Representation:
Uniform Mutation 

• General scheme of floating point mutations

• Uniform Mutation

• Analogous to bit-flipping (binary) or random resetting 
(integers)

ll xxxx xx ¢¢=¢®=  ..., , ...,, 11

[ ]iiii UBLBxx ,, Î¢

[ ]iii UBLBx , from (uniform)randomly  drawn  ¢

Real-Valued or Floating-Point Representation:
Nonuniform Mutation 

• Non-uniform mutations:
• Many methods proposed, such as time-varying range of change 

etc.
• Most schemes are probabilistic but usually only make a small 

change to value

• Most common method is to add random deviate to each variable 
separately, taken from N(0, s) Gaussian distribution and then 
curtail to range

x’i = xi + N(0,s)
• Standard deviation s, mutation step size, controls amount of 

change (2/3 of drawings will lie in range (- s to + s))

Real-Valued or Floating-Point Representation:
Self-Adaptive Mutation

• Step-sizes are included in the genome and undergo
variation and selection themselves: á x1,…,xn, s ñ

• Mutation step size is not set by user but coevolves with
solution

• Different mutation strategies may be appropriate in 
different stages of the evolutionary search process. 
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Real-Valued or Floating-Point Representation:
Self-Adaptive Mutation

• Mutate s first
• Net mutation effect: á x, s ñ à á x’, s’ ñ
• Order is important: 

• first sà s’ (see later how)
• then x à x’ = x + N(0,s’)

• Rationale: new á x’ ,s’ ñ is evaluated twice
• Primary: x’ is good if f(x’) is good 
• Secondary: s’ is good if the x’ it created is good

• Reversing mutation order this would not work

Real-Valued or Floating-Point Representation:
Crossover operators

• Discrete:
• each allele value in offspring z comes from one of its parents 

(x,y) with equal probability: zi = xi or yi

• Could use n-point or uniform
• Arithmetic

• exploits idea of creating children “between” parents (a.k.a.
intermediate recombination)

• zi = a xi + (1 - a) yi where a : 0 £ a £ 1.
• The parameter a can be:

• constant: uniform arithmetic crossover
• variable (e.g. depend on the age of the population) 
• picked at random every time

Real-Valued or Floating-Point Representation:
Single arithmetic crossover 

• Parents: áx1,…,xn ñ and áy1,…,ynñ
• Pick a single gene (k) at random, 
• child1 is:

• Reverse for other child. e.g. with a = 0.5

• How does this differ from mutation?

nkkk xxyxx  ..., ,)1( , ..., ,1 ×-+× aa

Real-Valued or Floating-Point Representation:
Simple arithmetic crossover 

• Parents: áx1,…,xn ñ and áy1,…,ynñ
• Pick a random gene (k) after this point mix values
• child1 is:

• reverse for other child. e.g. with a = 0.5

nxkxkykxx ×-+×+×-++× )1(ny ..., ,1)1(1 , ..., ,1 aaaa
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Real-Valued or Floating-Point Representation:
Whole arithmetic crossover

• Most commonly used
• Parents: áx1,…,xn ñ and áy1,…,ynñ
• Child1 is:

• reverse for other child. e.g. with a = 0.5

• a != 0.5 avoids the duplication seen above

yaxa ×-+× )1(

Real-Valued or Floating-Point Representation:
Blend Crossover

• Parents: áx1,…,xn ñ and áy1,…,ynñ
• di = abs(yi – xi)

• Random sample zi= [min(xi, yi) – αdi, min(xi, yi) + αdi]

• Original authors had best results with a = 0.5

Real-Valued or Floating-Point Representation:
Overview different possible offspring 

• Single arithmetic: 
• {s1, s2, s3, s4} 

• Simple arithmetic / whole arithmetic: 
• inner box (w = alpha 0.5)

• Blend crossover: 
• outer box 

Parents: X, Y

Permutation Representations

• Ordering/sequencing problems form a special type
• Task is (or can be solved by) arranging some objects in 

a certain order 
• Example: production scheduling: important thing is which 

elements are scheduled before others (order)
• Example: Travelling Salesman Problem (TSP) : important thing 

is which elements occur next to each other (adjacency)
• These problems are generally expressed as a 

permutation:
• if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once
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Permutation Representation:
TSP example

• Problem:
• Given n cities
• Find a complete tour with 

minimal length
• Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one 

permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG: 
for 30 cities there are 30! » 1032
possible tours

Permutation Representations:
Mutation

• Normal mutation operators lead to inadmissible solutions
• e.g. bit-wise mutation: let gene i have value j
• changing to some other value k in [1..n] would mean that k 

occurred twice and j no longer occurred 
• Therefore must change at least two values

• Mutation parameter now reflects the probability that 
some operator is applied once to the whole string, rather 
than individually in each position

Permutation Representations:
Swap mutation

• Choose two alleles at random and swap their positions

• Variation: choose two adjacent alleles at random and 
swap their positions

Permutation Representations:
Insert Mutation

• Pick two allele values at random
• Move the second to follow the first,  shifting the rest 

along to accommodate
• Note that this preserves most of the order and the 

adjacency information
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Permutation Representations:
Scramble mutation

• Pick a subset of genes at random
• Randomly rearrange the alleles in those positions

Permutation Representations:
Inversion mutation

• Pick two alleles at random and then invert the substring 
between them.

• Preserves most adjacency information (only breaks two 
links) but disruptive of order information

Permutation Representations:
Crossover operators

• “Normal” crossover operators will often lead to 
inadmissible solutions

• Many specialised operators have been devised which 
focus on combining order or adjacency information from 
the two parents

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Permutation Representations:
Order 1 crossover

• Idea is to preserve relative order that elements occur
• Informal procedure:

• 1. Choose an arbitrary part from the first parent
• 2. Copy this part to the first child
• 3. Copy the numbers that are not in the first part, to the first child:

• starting right from cut point of the copied part, 
• using the order of the second parent 
• and wrapping around at the end

• 4. Analogous for the second child, with parent roles reversed
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Permutation Representations:
Order 1 crossover

• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2

Permutation Representations:

Partially Mapped Crossover (PMX)

Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1 

2. Starting from the first crossover point look for elements in that segment of P2 

that have not been copied

3. For each of these i look in the offspring to see what element j has been copied 

in its place from P1

4. Place i into the position occupied by j in P2, since we know that we will not be 

putting j there (as is already in offspring)

5. If the place occupied by j in P2 has already been filled in the offspring by k, put 

i in the position occupied by k in P2

6. Having dealt with the elements from the crossover segment, the rest of the 

offspring can be filled from P2. 

Second child is created analogously

Permutation Representations:
Partially Mapped Crossover (PMX)

Permutation Representations:
Cycle crossover

Basic idea: 
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way. 

(a) Start with the first allele of P1. 
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1. 
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions 
they have in the first parent.

3. Take next cycle from second parent
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Permutation Representations:
Cycle crossover

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

Permutation Representations:
Edge Recombination

• Works by constructing a table listing which edges are 
present in the two parents, if an edge is common to both, 
mark with a +

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Permutation Representations:
Edge Recombination

Informal procedure: once edge table is constructed
1. Pick an initial element, entry, at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

• If there is a common edge, pick that to be next element
• Otherwise pick the entry in the list which itself has the shortest list
• Ties are split at random

5. In the case of reaching an empty list:
• a new element is chosen at random

Permutation Representations:
Edge Recombination


