
Threads

CS 224 Introduction to Python

Threads

What are threads?
• A process is a program in execution

• It has state: PC, variable values, etc
• A traditional process has a single thread of control

• One program counter
• A threaded process has multiple threads of control

• Each has a program counter and its own path
through the executable

Threads

Why do threads exist?
• To better use system resources

• When one thread in a process blocks, another may be able
to run

• Multiple threads within a process may run concurrently
• Threads are “lighter weight” than separate processes

Threads

Speaking of multiple processes…
• Sometimes multiple processes might be the way to go

• Depends on needs of the system being developed and the
programming language

• However, multiple processes incur costs that threads don’t
• Threads share the memory of the process
• This means they don’t have to use messages or other

techniques to communicate
• Switching between threads may be more efficient since less

context switching is required

Example

An example from a research problem I’ve worked on:
• System to plan a path through obstacles for autonomous vehicle

• Main algorithm is a single thread
• Graphics is a thread
• There is a processor intensive part of the algorithm that occurs

at regular intervals
• This part of the problem is decomposed and allocated to a

number of threads to run concurrently

Example

Multi-threaded web server:
• Concurrency needed – for obvious reasons
• Each client request handled in a separate thread
• Faster than handling each request in a separate process

• Any downside?

Most web requests are I/O intensive. So with multi-threading, end up
with many threads waiting on I/O. May get better performance with a
single thread that uses non-blocking, asynchronous I/O.

Python Threads

Python supports a thread library called threading that includes:
• Thread class

• start() – invokes the thread’s run() method
• run() – often overridden; what the thread does
• join() – caller blocks until the thread terminates
• name – Thread-I by default; can be assigned
• is_alive() – returns True if the thread is alive
• daemon – program terminates when no non-daemon threads remain

Producer/Consumer Problem

Problem in which multiple threads cooperate. Some produce data and others
consume it.
• shared buffer
• producer places information in buffer
• consumer uses information in the buffer
• What happens if buffer is full?
• What happens if buffer is empty?
• Are other shared objects required?

Lock

A mechanism that ensures mutual exclusion
• What is mutual exclusion?

• No two processes/threads can have simultaneous access to some resource
or code section

• For example, we may want to protect a file from simultaneous access
• How does a lock work?

• A process/thread requests the lock. If acquired, the process/thread can
proceed. Otherwise, it must wait until it acquires the lock.

• When done, the process/thread releases the lock, making it available to
others.

Semaphore

Another mechanism that ensures mutual exclusion
• How do semaphores differ from locks?

• A semaphore is very similar to a lock except that it includes an associated
value.

• How does a semaphore work?
• Binary semaphore:

• Begins with value 1. When acquired the value is decremented. If the
value is 0, the semaphore can’t be acquired. When released the value
is incremented.

• Counting semaphore:
• Begins with some value. Acquisition and release work the same. This

can allow multiple (but limited) processes/threads concurrent access.

