
4/13/22

1

Modules

CS 224 Introduction to Python

1

What is a module?

• Technically, it is any file containing Python code

• Can define functions, classes, and variables

• Can contain “runnable” code

• Think of it as similar to a library

• Module name is filename without .py extension

2

4/13/22

2

A small example
spam.py

a = 37

def foo():
print(‘foo: a = {}’.format(a))

def bar():
print(‘bar: calling foo’)
foo()

class Spam(object):
def grok(self):

print(‘Spam.grok’)

3

Using our module

• To use a module, import it in another program

• This causes the following to happen:
• Creates a namespace that serves as a container for all objects

defined in the corresponding source code file
• Executes code contained within the module
• Creates a name within the code that imported the module that

refers to the module namespace

4

4/13/22

3

Using our module

import spam

x = spam.a
print(x) # prints 37

spam.foo() # calls foo function

s = spam.Spam() # creates Spam instance
s.grok() # invokes grok method

5

More about import

• As we know, we can change the name that refers to a module using
the as qualifier
• import spam as sp

• Using this we can be clever and make code more general

if format == ‘xml’:
import xmlreader as reader

elif format == ‘csv’:
import csvreader as reader

data = reader.read_data(filename)

6

4/13/22

4

Selective import

• We’ve also seen use of the from statement
from spam import foo
foo() # calls the function
spam.foo() # error: no spam namespace

• As we see in the example above, using from does not create a
namespace
• Items are added to the current namespace
• Does not change their scoping rules (see example on next slide)

7

Understanding Selective import

from spam import foo

a = 42
foo() # prints 37

Reference to foo is in current namespace but within foo, a is still bound
to the global variable in the module in which foo was defined

8

4/13/22

5

Understanding Selective import

from spam import bar

def foo():
print(‘This is new foo’)

bar() # call to foo within bar
is to spam.foo

Logic is the same as on previous slide: call to foo in bar is still reference
to spam.foo even though bar is in current namespace

9

Selective import with *

• Wildcard can be used with the from statement
from spam import *
foo() # calls the function
spam.foo() # error: no spam namespace

• As we see in example above, even though we are importing
everything in spam, from does not create a namespace
• Items are added to the current namespace

10

4/13/22

6

Selective import with *

• As the author of a module, you can control what is exported with *

spam.py module
__all__ = [‘bar’, ‘Spam’] # names exported with *

• Does not prevent direct importation of elements not in the list. The
following is valid even though foo is not in the list:

from spam import foo

11

Selective import with *

• As the author of a module, you can control what is exported with *

spam.py module
__all__ = [‘bar’, ‘Spam’, ‘dada’]

• Results in an error since there is no attribute ‘dada’ in the module

12

4/13/22

7

Running as Main Program

• Modules can make good use of __name__
• Use the if case to run code that tests module functionality

check if running as program rather than module
if __name__ == ‘__main__’:

running as main – put test or sample code here
else:

imported as a module – do anything needed
in this case

13

Module Search Path

• The import path is contained in sys.path
• First entry is empty string for current directory
• We can modify the path by adding additional elements
• directories – fully specified
• zip files – can contain multiple modules

import sys # loads sys module
sys.path.append(‘/Users/mathias/my_python_libs’)
sys.path.append(‘new_modules.zip’)

14

