
4/5/22

1

Inheritance

CS 224 Introduction to Python

1

What is inheritance?

• Inheritance is the mechanism for creating a class that modifies or specializes
an existing class.

• The existing class is the base class or superclass.

• The new class is the derived class or subclass.

• The subclass inherits all attributes of the superclass (data and methods).

• The subclass can redefine (override) anything it inherits.

2

4/5/22

2

Recall our Account class

class Account(object):
def __init__(self, name, balance):

self.name = name
self.balance = balance

def deposit(self, amt):
self.balance += amt

def withdraw(self, amt):
self.balance -= amt

def inquiry(self):
return self.balance

3

A class Derived from Account

class EvilAccount(Account):

def inquiry(self):
if random.randint(0, 4) == 1:

return self.balance * 1.25
else:

return self.balance

20% of the time, return an artificially high balance to “help” the account holder
overdraw their account which increases fees paid to Wells Fargo the bank.

overrides the method
in Account

4

4/5/22

3

How does it work?
An access (dot operator) of an attribute (data or method) for an
instance of EvilAccount, looks first in EvilAccount. If the item
isn’t found there, Python looks in the superclass, Account.

It doesn’t stop there. If the item isn’t found in Account, Python looks
in Account’s superclass. This continues until reaching object, the
root of the class tree.

5

Adding to EvilAccount

class EvilAccount(Account):

def __init__(self, name, balance, ef):
Account.__init__(self, name, balance)
self.evil_factor = ef

def inquiry(self):
if random.randint(0, 4) == 1:

return self.balance * self.evil_factor
else:

return self.balance

Superclass __init__
not automatically
invoked.

defining a new attribute

6

4/5/22

4

Create an EvilAccount object

checking2 = EvilAccount(‘Jane’, 10000, 1.1):

checking2.inquiry()
checking2.deposit(100)
checking2.inquiry()

EvilAccount method

superclass method

7

EvilerAccount

class EvilerAccount(EvilAccount):

def deposit(self, dep):
self.withdraw(5) # convenience fee
EvilAccount.deposit(self, dep)

Explicit invocation of superclass deposit method

self must be provided here since no
instance provided before the dot

8

4/5/22

5

EvilerAccount

class EvilerAccount(EvilAccount):

def deposit(self, dep):
self.withdraw(5) # convenience fee
super().deposit(dep)

You don’t have to explicitly name the superclass

A more general version:

NOTE: super() is Python3 specific

9

Multiple Inheritance

What is it?
Allows a class to inherit features from more than one superclass.

Why do we need it?
Some types exhibit characteristics of multiple other types so extending
them both is desirable/necessary.

10

4/5/22

6

Example

An iPhone 11 is a smart phone.
It has some characteristics of a phone
It has some characteristics of a computer

Phone alone doesn’t describe it because not all phones are computers.

Computer alone doesn’t describe it because not all computers are phones.

11

Multiple Inheritance:

class DepositCharge(object):
fee = 5
def deposit_fee(self):

self.withdraw(self.fee)

class WithdrawCharge(object):
fee = 3
def withdraw_fee(self):

self.withdraw(self.fee)

Consider these two new classes related to Account:

12

4/5/22

7

Multiple Inheritance:

class MoreEvilerAccount(EvilAccount, DepositCharge
WithdrawCharge):

def deposit(self, amt):
self.deposit_fee()
super().deposit(amt)

def withdraw(self, amt):
self.withdraw_fee()
super().withdraw(amt)

multiple inheritance
Now we create a new account type:

13

Multiple Inheritance:

d = MoreEvilerAccount(‘Tim’, 100000000, 1.2)
d.deposit(10)
d.inquiry()

Let’s use these new classes:

deposit method of
MoreEvilerAccount:
calls deposit_fee method
of DepositCharge class

inquiry method of
EvilAccount

14

4/5/22

8

Hmm, this is subtle:

d = MoreEvilerAccount(‘Tim’, 100000000, 1.2)
d.deposit_fee()
d.withdraw_fee()

What’s going on here?:

DepositCharge.deposit_fee

fee is $5

WithdrawCharge.withdraw_fee

fee is…? $5 !!?

15

Explanation

• fee is a class variable. It is defined twice:
once in DepositCharge and once in WithdrawCharge.

• The value in DepositCharge was used in both calls.
Why? Because the order of classes listed in the
class definition for MoreEvilerAccount defines a
priority. DepositCharge is listed before
WithdrawCharge so it has higher priority.

16

4/5/22

9

Polymorphism

What is it?
Within the context of inheritance, ability to use an instance without
regard to its type.

Why do we need it?
• To simplify implementations of subclasses: there is no need to override

every attribute of superclass A in subclass B since instances of B can
directly access attributes in A.

• Allows passing object of subclass type B as a parameter when an object
of superclass type A is expected (in general – doesn’t apply to Python)

17

Polymorphism

How does it work?
It is handled entirely by the attribute lookup process.

Consider class C that is a subclass of B. B is, in turn, a subclass of A.
Let c be an instance of C. In a reference to c.attr, attr is
searched for in the following, in this order:
• instance c
• class C
• class B
• class A
• class object

18

