
3/28/22

1

Introduction to Classes

CS 224 Introduction to Python

1

An Example Python Class

class Account(object):
def __init__(self, name, balance):

self.name = name
self.balance = balance

def deposit(self, amt):
self.balance += amt

def withdraw(self, amt):
self.balance -= amt

def inquiry(self):
return self.balance

keyword

superclass

special method to
initialize instanceinstance variables

instance methods

2

3/28/22

2

The Details

• object is the root of the class tree
• use it as superclass when you are not extending
another class

• __init__ implicitly defines instance variables

• self is a parameter to all instance methods
• but you don’t include it in the parameter list
when you call an instance method

• technically you can use any identifier in place
of self (but don’t do it!)

3

Augmenting the Example:
class Account(object):

num_accounts = 0
def __init__(self, name, balance):

self.name = name
self.balance = balance
Account.num_accounts += 1

def __del__(self):
Account.num_accounts -= 1

def deposit(self, amt):
self.balance += amt

def withdraw(self, amt):
self.balance -= amt

special method to
cleanup, etc.

class variable

4

3/28/22

3

More Details

• class variables are like static variables in Java
• they belong to the class not to an instance
• all instances share a single copy of a class
variable

• __del__ is often absent
• it is used to do things such as update class
variables (as in our example), close network
connections, release locks, etc.

• calling del on an object does not necessarily
invoke __del__ -- del reduces reference count

5

Creating Instances:
from account import Account

checking = Account(’David’, 50000)
savings = Account(‘David’, 1000000)

it’s payday
checking.deposit(25000)

Hey honey, can I buy a Ferrari 488?
if savings.inquiry() > 500000:

print(“Go shopping. Make sure it’s red.”)

print(‘Created: {}‘.format(Account.num_accounts))

Create two Account instances

self does not
appear here

access class
variable

prints 2

6

3/28/22

4

Exercise
• Exercise: create a Python class called Car
• This class should include:
• Three attributes

• make
• model
• Year

• Class variable num_cars that tracks the number of cars created
• An __init__ method
• Method print_description that prints the attributes for a Car instance
• Setter methods for each of the attributes

• Write a main method that creates a couple of Car instances and
applies methods to them

7

Exercise solution
class Car(object):

num_cars = 0
def __init__(self, make, model, year):

self.make = make
self.model = model
self.year = year
num_cars += 1

8

3/28/22

5

Exercise solution
def print_description(self):

print(‘Make: {}’.format(self.make))
print(‘Model: {}’.format(self.model))
print(‘Year: {}’.format(self.year))

def set_make(self, new_make):
self.make = new_make

def set_model(self, new_model):
self.model = new_model

def set_year(self, new_year):
self.year = new_year

9

Exercise solution

def main():
f488 = Car(‘Ferrari’, ‘488’, ‘2019’)
jcw = Car(‘MINI’, ‘Cooper S’, ‘2003’)

f488.print_description()
jcw.set_model(‘Cooper S JCW’)

print(‘Number of cars = {}’.format(Car.num_cars))

if __name__ == ‘__main__’:
main()

10

