
3/8/22

1

Map and Zip

CS 224 Introduction to Python

1

An interesting problem…

Write a Python function called xover that takes the following parameters: one or
two lists of bits, and a probability indpb (as a real number in [0.0, 1.0]). Let the
first list be called p1 and the second p2. p2 and indpb are optional. Their
default values are None and 0.5, respectively. It does not return a value.

xover goes through p1, replacing each bit with the corresponding bit from p2
with probability indpb, if p2 was provided. Otherwise, bits in p1 are replaced
with 1 with probability indpb.

2

3/8/22

2

Solution 1

def xover(p1, p2=None, indpb=0.5):
if p2 is None:

p2 = [1] * len(p1)

for i in range(len(p1)):
if random() < indpb:

p1[i] = p2[i]

3

Solution-ish 2 – using an iterator

def xover(p1, p2=None, indpb=0.5):
if p2 is None:

p2 = [1] * len(p1)

for e in p1:
if random() < indpb:

e = <something>

Hmm, what goes here?

IMPORTANT: changing e doesn’t
change the value in p1

4

3/8/22

3

Solution-ish 3 – using an iterator

def xover(p1, p2=None, indpb=0.5):
if p2 is None:

p2 = [1] * len(p1)

for e in p1:
if random() < indpb:

p1[e] = p2[e]

Problem: confusion about the difference between an index and a value:

e is a value in p1 NOT an index into p1!

5

Solution-ish 4 – comprehension anyone?

p1 = [p1[i] if random() < indpb else 1 if p2 is None
else p2[i] for i in range(len(p1))]

Could we use a comprehension? Wouldn’t it be complicated?

Sort of and yes.

This works! Almost.
But it’s a little complicated.

6

3/8/22

4

Unwinding Solution-ish 4

p1 = [p1[i] if random() < indpb else 1 if p2 is None
else p2[i] for i in range(len(p1))]

Let’s break this down.

First: there is no filtering in this comprehension!

NOT filtering.

7

An Aside

p1 = [put f(e) in new list for each e in old list if filter]

Quick review of the format of a comprehension:

filter goes here and may affect number of
elements placed in the resulting list

8

3/8/22

5

Unwinding Solution-ish 4

p1 = [p1[i] if random() < indpb
else 1 if p2 is None
else p2[i]

for i in range(len(p1))]
What goes in new list

Iteration of old list

9

Unwinding Solution-ish 4

p1[i] if random() < indpb else
1 if p2 is None else
p2[i]

Mutually exclusive conditional logic to
determine what is put in the new list

if random() < indpb add p1[i] to list
else if p2 is None add 1 to list
else add p2[i] to list

Condition What to add

determines what is added
NOT if something is added

logically equivalent but
not valid syntax

10

3/8/22

6

A Simpler Example

flips = [‘T’ if random() < 0.5 else ‘H’ for _ in range(20)]

Record coin flips

11

Another Simpler Example

new = [L1[i] if i % 2 == 0 else L2[i]
for i in range(len(L1))]

Another example: take even numbered elements from L1 and
odd numbered elements from L2, where
L1 and L2 have the same length

12

3/8/22

7

Unwinding Solution-ish 4

p1 = [p1[i] if random() < indpb else 1 if p2 is None
else p2[i] for i in range(len(p1))]

Returning to our question:
Could we use a comprehension? Wouldn’t it be complicated?

Why does this only “sort of” work?

The comprehension works. But to use it in our function, we have to reassign
p1, thus we are no longer changing the list in the calling context.

13

Maps

In Python, a map provides another way to apply a function to each element
of an iterable (list, tuple, etc.)

def convert(deg_c):
return deg_c * 1.8 + 32

f_list = map(convert, c_list)

apply this function to this list

14

3/8/22

8

Map Example 2

s_lists = map(sorted, u_lists)

Let u_lists be a list of unsorted lists of integers. Use map to create a list
containing the same sublists but with their elements in sorted order:

15

Map Example 3

def distance(pt1, pt2):
dx = pt1[0] – pt2[0]
dy = pt1[1] – pt2[1]
return math.sqrt(dx**2 + dy**2)

dists = map(distance, sources, dests)

Find distances between corresponding locations in a list of starting
points and a list of destinations:

2 parameters

2 lists

16

3/8/22

9

Map Example 4

polys = map(lambda x: 2*x + 4, int_list)

Using an ad hoc function applied to a list of integers:

17

Zip

Create a list of tuples from some number of other lists:

result_tuples = zip(list1, list2, …, listn)

• result_tuples is a list
• each element is a tuple
• each tuple contains n elements – one from each list

18

3/8/22

10

Zip Example 1

combos = zip(digits, words, romans)

digits = [1, 2, 3]
words = [‘one’, ‘two’, ‘three’]
romans = [‘i’, ‘ii’, ‘iii’]

combos: [(1, ‘one’, ‘i’), (2, ‘two’, ‘ii’),
(3, ‘three’, ‘iii’)]

19

Zip Example 2

order = zip(nums, [i for i in range(len(nums))])

sorted_order = sorted(order, key=lambda x: x[0])

nums = unsorted list of n integers

Take an unsorted list and create a list of tuples that contain the values and their
position in the original list:

20

