UNIVERSITY of Wisconsin
 TABRBS
 COMPUTER SCIENCE

CS 224 Introduction to Python

List Comprehension Exercises

1

Exercise 1:

Use a list comprehension to create a list of Fahrenheit temperatures from a list of Centigrade temperatures.

$$
\mathrm{dF}=[1.8 * c+32 \text { for } c \text { in } d C]
$$

What does this comprehension do:

$$
\begin{aligned}
d F=[1.8 * c+32 \text { for } c \text { in } & {[r a n d i n t(0,100)} \\
& \text { for i in range }(10)]]
\end{aligned}
$$

Exercise 2:

Use a list comprehension to create a list of the odd values in a list of data.

```
odds = [i for i in data if i % 2 == 1]
```


Using a function

Let coords be a list containing 2-element lists of GPS coordinates: [[(lat1, lon1), (lat2, lon2)], [(lat3, lon3), (lat4, lon4)] ...]

Create a list of distances between the pair of cities in each sublist.

```
def distance(city1, city2): «
            # compute and return distance
dists = [distance(x, y) for }x,y\mathrm{ in coords]
```


Exercise 3:

Staying with the setup from the previous slide, create a list of the pairs of cities that are closer than threshold d:

```
close = [[x, y] for x, y in coords if distance(x, y) < d]
```


function in the filter

Exercise 4:

Let data be a list containing lists of instrument readings:
[[d0_0, d0_1, ...d0_n], [d1_0, d1_1, ...d1_m] ...]

Write a list comprehension that creates a list of the mean values of each of the sublists in data:

```
means = [sum(L)/len(L) for L in data if len(L) > 0]
```

Why is the filter necessary?

Exercise 5:

Let chars be a list of unique characters. Write a list comprehension that uses chars to create a list of 3-letter "words" such that no two letters in a word are the same.

Without the restriction of no repeated characters:

```
words = [x+y+z for }x\mathrm{ in chars for }y\mathrm{ in chars
    for z in chars]
```

This version eliminates repeated characters:

```
words = [x+y+z for }x\mathrm{ in chars for }y\mathrm{ in chars
    for z in chars if }x!=y\mathrm{ and }y!=
    and x!=z]
```


Exercise 6:

Write a list comprehension that uses a list of random integers in the range $1 . .100$ to create a list of those integers in the list that contain a 7. You are not given the list of random integers - you must create it in the comprehension.

$$
\begin{aligned}
\text { sevens }= & {[x \text { for } x \text { in }[\text { randint }(1,100) \text { for _ in }} \\
& \text { range } \left.(20)] \text { if } 7^{\prime} \text { in } \operatorname{str}(x)\right]
\end{aligned}
$$

Exercise 7:

Let L1, L2, and L3 be lists of n integers. Write a list comprehension that creates list of integers $L 4$ such that $L 4$ [i] is: $L 1$ [i] if $i \% 3$ is $0, \mathrm{~L} 2$ [i] if $i \% 3$ is 1 , or L 3 [i] if $i \% 3$ is 2 .

```
L4 = [L1[i] if i%3==0 else L2[i] if i%3==1 else
L3[i] for i in range(len(L1))]
```

9

Exercise 8:

Let L 1 be a list of random integers in the range 100 to 10000 . Write a list comprehension to create a list of integers L2 from L1 that do not contain a ' 4 ' in the second position. For example, 234 would be in L2 while 345 would not.

```
L2 = [x for x in [y for y in L1 if list(str(y))[1] != '4']]
```

