
CS 224 Introduction to Python Spring 2022

Programming Assignment 3

University of Wisconsin – La Crosse Due: April 25

The Point Scattering Problem: In the circle packing problem, one attempts to

arrange, without overlapping, some number n of circles within another geometric shape,

typically a rectangle or a larger circle. If the n circles are the same size, the problem

is known as congruent circle packing. A typical instance of this problem consists of a

square s with side length r1 and integer n. The answer is the largest r2 such that n

circles with radius r2 can be placed in s with no overlap. (An equivalent formulation

is: given n and r2, find the smallest r1.) Circle packing in a circle is related but more

difficult. Though congruent circle packing in a circle is the subject of much research in

the mathematics community, optimal results remain unproven for values of n as small

as 14.

We consider an equivalent variation of congruent circle packing in a circle, sometimes

referred to as the point scattering problem. An instance of this problem consists of a

unit circle c and an integer n that represents a number of points to arrange in c. The

goal is to maximize the minimum distance between any two of the n points. This.

problem is easy to state and understand but requires significant computation even

for small instances. The figure above shows a point scattering instance for n = 10.

Interestingly, instance difficulty does not increase monotonically with number of points.

For example, an optimal solution has been proven for n = 19 but not for any n ∈ [14..18]

or greater than 19, though conjectures exist.

1

Genetic Algorithms: Genetic algorithms are population-based approximation al-

gorithms that excel at finding good solutions to computationally expensive problems

using rules based on the principles of Darwinian evolution. Key among these is survival

of the fittest. In nature, survival of the fittest rewards faster zebras while those that

are slower are eaten by lions. In a genetic algorithm, this takes the form of a fitness

function that allows the algorithm to evaluate and compare solutions to the problem.

Better solutions survive while worse ones are eliminated. Another important aspect of

using a GA to solve a problem is finding a way to encode a solution to the problem

in an effective and efficient way. This is known as a representation. Though there are

many variations, the basic structure of a genetic algorithm is:

1. Create a “population” of size n of randomly generated candidate solutions

2. Do the following in each of a pre-defined number of generations:

(a) Create offspring by combining parts of the representations from two existing

solutions

(b) Randomly make small mutations in the offspring

(c) Evaluate the offspring using the fitness function

(d) Combine the offspring with the existing population

(e) Choose the best n members for survival (the others are eaten by lions)

3. Choose the best solution based on fitness

The Assignment: I have provided a genetic algorithm for the point scattering prob-

lem, implemented in point scatter.py. Look through the code in that file. Pay

particular attention to the code for the GA which is in the function named evolve.

You must not edit the code in point scatter.py. The GA depends on three classes

that you will write: Population, Individual, Point. You must write these in files

named population.py, individual.py, and point.py, respectively.

The Point Class: Points are in polar coordinates. The attributes are:

∗ radius: Distance from the origin. Maximum values is 1.

∗ theta: Angle in radians.

You must provide the following methods but may include others as needed:

∗ init : Sets attributes to random values.

∗ str : Returns a readable string representation of a Point object.

∗ mutate: Mutates a point by adding small deltas to the attributes of the

Point. The delta values should be positive or negative with equal probability.

Use the R FACTOR and T FACTOR constants from constants.py to scale the

values. For each attribute, generate a random value within the full range

for that attribute and then divide by the appropriate factor. You are free to

2

explore different values for the factor constants. Ensure that radius remains

in range.

The Individual Class: An Individual represents a solution to the problem and

consists of a number of points, where the number is determined by the global

constant NUM POINTS. The attributes are:

∗ points: A list of Point objects.

∗ fitness: The current fitness value of the individual.

You must provide the following methods but may include others as needed:

∗ init : Creates a list of points and sets fitness to −1.

∗ str : Creates a readable string representation of the points in an Individual

object.

∗ distance: Returns the distance between two points in the individual. The

points are parameters to the method. Note that the distance formula for

polar coordinates is not the same as that for Cartesian coordinates.

∗ evaluate: This is the fitness function. It returns the minimum distance

between any two points in the individual. Recall that our goal in the point

scattering problem is to maximize that minimum value.

∗ min dist: Similar to evaluate except that it returns the minimum distance

and the indices of the two points that generated the minimum distance. This

is used to manually verify results and for the plot generated at the end of the

GA run.

∗ crossover: Performs crossover on two individuals (the one to which the

method was applied and a second that is passed as a parameter). It takes a

second parameter called indpb with default value 0.75. We are implementing

called uniform crossover. Consider index i into the lists of points for the

two individuals. With probability 1− indpb, the two points at index i are

exchanged. This is done independently for each valid index.

∗ mutate: Mutates an individual by determining independently whether to

mutate each point with probability indpb, where that is a parameter with

default value 0.7. Calls the Point mutate method.

The Population Class: The population consists of a number of individuals,

where the number is specified by a global constant in constants.py. This class

contains a single attribute:

∗ pop: A list of Individual objects.

You must provide the following methods but may include others as needed:

∗ init : Takes an option parameter, representing a list of individuals, with

default value of the empty list. If the list is not empty, it is assigned to the

3

n Best-known n Best-known

2 2.0* 12 0.66015273*

3 1.73205080* 13 0.61803398*

4 1.41421356* 14 0.60088416

5 1.17557050* 15 0.56796286

6 1.0* 16 0.55318521

7 1.0* 17 0.52742146

8 0.86776747* 18 0.51763809

9 0.76536686* 19 0.51763809*

10 0.71097823* 20 . 0.48516360

Table 1: Maximized minimum distances for specified number of points in the unit circle. The

Best-known column indicates the best known distances, where the * indicates the distance

has been proven to be optimal.

pop attribute. Otherwise, the attribute is populated with randomly generated

Individual objects.

∗ str : Returns a readable string representation of the individuals in the

population.

∗ evaluate: Evaluates every individual in the population.

∗ shuffle: Randomly permutes the population.

∗ sort: Sorts the pop attribute of the Population object. Takes parameters

key and reverse.

Miscellaneous Details: Look at the contents of constants.py to familiarize yourself

with the values there. Once your code works, you will want to change some of the to

experiment. For example, you will want to try different values for NUM POINTS. You

will also want to perform runs with different numbers of generations, GENS. In general,

longer runs provide better results, though the law of diminishing returns kicks in at

some point. Runs of 20000 generations are certainly reasonable, though for testing you

will want to use a much smaller value, such as 200.

Table 1 provides optimal or conjectured optimal results for 2 to 20 points. Note that

larger values of NUM POINTS require larger numbers of generations and that as the

number of points increases the time required per generation also increases.

4

Submission: Information on submitting your program appears below.

Adhere to common coding conventions and comment your code.. Include a comment

at the top of each Python file that looks like this:

#

CS 224 Fall 2021

Programming Assignment 3

#

Description of what the code in this file does

#

Author: Your name here

Date: Month XX, 2021

#

Name your code files as indicated above. All code files, including point scatter.py

and constants.py, must be in a directory named Lastname-Prog03 where Lastname

is replaced with your last name. You must zip your directory prior to submission.

Submit your solution via Canvas by 11:59 PM on the due date.

5

