
Week 14:
Sorting Algorithms

CS 220: Software Design II — D. Mathias

• Sorted data is crucial to human usability of data
• e.g., phone book, entering grades, dates

• Sorted data is also crucial to computational efficiency in accessing data
• i.e., how can a computer most efficiently find data?

• So, how do we sort data?

Sorting

• There are dozens of sorting algorithms1

• Sorting algorithms can be evaluated in many ways
• run time
• memory usage
• general approach

• e.g., exchanging, sorting

• parallelizability
• i.e., can it be performed in parallel?

Sorting Algorithms

1: https://en.wikipedia.org/wiki/Sorting_algorithm

• selection sort (typically iterative)
• insertion sort (typically iterative)
• merge sort (typically recursive)
• quicksort (typically recursive)

Sorting Algorithms We’ll Explore

• Considered one of the classic sorting algorithms
• Very simple, but very inefficient (this tradeoff often occurs)

• Thumbnail sketch:
•scan through the array multiple times
•each time find the smallest “remaining” element
•move that element to correct position

Selection Sort

• Array is divided into two parts: sorted (left part) and unsorted (right part)
• initially, everything is unsorted

• Scan through the unsorted part for the smallest element
• Swap the smallest element with the leftmost unsorted value
• Length of sorted part increases by one, length of unsorted part
decreases by one

• Repeat

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

8 3 2 5 9 7

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 0

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

Selection Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 1

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 2

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 8 5 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 3

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 8 9 7

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 9 8

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 9 8

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 4

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 9 8

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 8 9

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 8 9

Selection Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

smallestIndex = 5

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 8 9

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Scan through the unsorted part for
the smallest element

Swap the smallest element with the
leftmost unsorted value

Length of sorted part increases by
one, length of unsorted part
decreases by one

Selection Sort

2 3 5 7 8 9

Selection Sort: Code

private static void selectionSort(int arr[]) {
 // Gradually move boundary of unsorted portion
 for (int i = 0; i < arr.length-1; i++) {

 // Find the index of the smallest unsorted item
 int smallestIndex = i;
 for (int j = i+1; j < arr.length; j++) {
 if (arr[j] < arr[smallestIndex]) {
 smallestIndex = j;
 }
 }

 // Swap
 int temp = arr[smallestIndex];
 arr[smallestIndex] = arr[i];
 arr[i] = temp;
 }
}

• Considered one of the classic sorting algorithms
• Very simple, but very inefficient

• Thumbnail sketch:
•places next unsorted element into sorted part of array by…
•…searching for correct position within the sorted part
• that position may not be the element’s final position

Insertion Sort

• Array is divided into two parts: sorted (left part) and unsorted (right part)
• initially, first element is sorted, everything else is unsorted

• Look at the leftmost unsorted value
• Move it down the sorted list until it is in the correct place
• Length of sorted part increases by one, length of unsorted part
decreases by one

• Repeat

Insertion Sort

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

8 3 2 5 9 7

Insertion Sort

8 3 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

3 8 2 5 9 7

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort

3 8 2 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

2

Insertion Sort

3 8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

8 5 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 9 7

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 79

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 8 97

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 7 98

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

32

Insertion Sort

5 7 98

Array is divided into two parts: sorted
(left part) and unsorted (right part)

Look at the leftmost unsorted value

Move it down the sorted list until it is
in the correct place

Length of sorted part increases by
one, length of unsorted part
decreases by one

Insertion Sort: Code

private static void insertionSort(int arr[]) {

 // Gradually look at each unsorted number
 for (int i = 0; i < arr.length; i++) {
 // Current value to sort
 int value = arr[i];
 int j = i-1;

 // Shift elements until value is in place
 while (j >= 0 && arr[j] > value) {
 arr[j+1] = arr[j];
 j--;
 }
 arr[j+1] = value;
 }
}

First, consider what is the best and worst case scenarios for sorting an array
Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

selection sort insertion sort

best case scenario

worst case scenario

Selection Sort & Insertion Sort

private static void insertionSort(int arr[]) {

 // Gradually look at each unsorted number
 for (int i = 0; i < arr.length; i++) {
 // Current value to sort
 int value = arr[i];
 int j = i-1;

 // Shift elements until value is in place
 while (j >= 0 && arr[j] > value) {
 arr[j+1] = arr[j];
 j--;
 }
 arr[j+1] = value;
 }
}

private static void selectionSort(int arr[]) {
 // Gradually move boundary of unsorted portion
 for (int i = 0; i < arr.length-1; i++) {

 // Find the index of the smallest unsorted item
 int smallestIndex = i;
 for (int j = i+1; j < arr.length; j++) {
 if (arr[j] == arr[smallestIndex]) {
 smallestIndex = j;
 }
 }

 // Swap
 int temp = arr[smallestIndex];
 arr[smallestIndex] = arr[i];
 arr[i] = temp;
 }
}

First, consider what are the best and worst case scenarios for each algorithm
Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

selection sort insertion sort

best case scenario

worst case scenario

First, consider what are the best and worst case scenarios for each algorithm
Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

selection sort insertion sort

best case scenario O(n2) O(n)
(already sorted)

worst case scenario O(n2) O(n2)
(reverse order)

• Considered one of the classic sorting algorithms
• More complex than selection/insertion sort

•…but more efficient!

• Thumbnail sketch:
•break the array up into individual elements
•sorts pairs of elements, then pairs of pairs, etc…until you have one unified array

Merge Sort

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray of elements
Repeat sort/merge until there is only one array

Merge Sort

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746 Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746 Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64

Merge Sort

8 3 2 5 9 746

64

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

83

Merge Sort

8 3 2 5 9 746

64 83

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

52

Merge Sort

8 3 2 5 9 746

64 83 52

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

97

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array N.B.: the individual subarrays are

already sorted, so we just need to
compare the first element in each

subarray

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

3

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

3 4

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

3 4 6

Merge Sort

8 3 2 5 9 746

64 83 52 97

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

3 4 6 8

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

2 5 7 9

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8 2 5 7 9

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8 2 5 7 9

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8 2 5 7 9

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

2 3 4 5 6 7 8 9

Merge Sort

8 3 2 5 9 746

64 83 52 97

3 4 6 8 2 5 7 9

2 3 4 5 6 7 8 9

Array is divided into its smallest unit
i.e., a single element

Sort and merge each paired subarray
of elements
Repeat sort/merge until there is only
one array

Merge Sort Analysis

8 3 2 5 9 746

64 83 52 97

3 4 6 8 2 5 7 9

2 3 4 5 6 7 8 9

Called a divide and conquer
algorithm
At each level, we look at n
elements
Calculating the run time
requires also calculating the
number of levels
O(n log(n))

both best and worst case

lo
g(

n)
 le

ve
ls

n

n

n

n

Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) O(n log(n)) isn’t
great…
…but it’s the best we
can do for a general
sorting algorithm

and we’ve proven that

https://en.wikipedia.org/wiki/
Comparison_sort#Number_of_comparisons_required_to_sort_a_list

Always performs O(n log(n))
even if the array is already sorted!

Takes up more memory
insertion and selection sort are in-place sorts

i.e., they swap items around in the same array

merge sort requires additional arrays to move from each level

Downsides to Merge Sort

• Considered one of the classic sorting algorithms
• Similar to merge sort in terms of complexity, run time

•another divide-and-conquer algorithm

• Thumbnail sketch:
• repeatedly subdivide elements by comparing to a single element called the pivot
•use recursion to sort the subdivisions

Quicksort

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 647

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 647

Quicksort

8 3 2 5 9 647

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 647

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 674

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 674

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 3 2 5 9 674

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 7 2 5 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

8 7 2 5 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 7 8 5 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 7 8 5 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 5 8 7 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 5 8 7 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 5 8 7 9 634

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 5 6 7 9 834

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

2 5 6 7 9 834

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 82 534

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 85

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

234

Quicksort

6 7 9 85234

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 85234

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 85234

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 85432

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

6 7 9 85432

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4

Quicksort

6 7 9 852

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

3 4

Quicksort

6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4

Quicksort

6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4

Quicksort

6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4

Quicksort

6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4 6 7 9 852 3

Quicksort

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

4 6 7 9 852 3

Quicksort

4 6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

4 6 7 9 852 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

4 6 7 8 952 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

Quicksort

4 6 7 8 952 3

Choose pivot
we’ll choose the last element

Subdivide in relation to the pivot
Move pivot
Sorts subdivisions, repeat until no
more divisions can be made

What does best case and
worst case mean with quicksort?

First, consider what is the best and worst case scenarios for sorting an array
not the same scenarios for the two different sorts!

Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

merge sort

best case scenario

worst case scenario

quicksort

best case scenario

worst case scenario

First, consider what is the best and worst case scenarios for sorting an array
not the same scenarios for the two different sorts!

Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

merge sort

array already sorted
(best case scenario)

array sorted backwards
(worst case scenario)

quicksort

pivots are all range midpoints
(best case scenario)

pivots are min/max in range
(worst case scenario)

First, consider what is the best and worst case scenarios for sorting an array
not the same scenarios for the two different sorts!

Then, fill out the chart below with the run time (i.e., big O):

Algorithm Analysis

merge sort

array already sorted
(best case scenario) O(n log(n))

array sorted backwards
(worst case scenario) O(n log(n))

quicksort

pivots are all range midpoints
(best case scenario) O(n log(n))

pivots are min/max in range
(worst case scenario) O(n2)

What about linked lists? Singly vs doubly linked?
What about objects? How do we define equality/inequality?

Expanding Our Sorting Efforts

What about linked lists? Singly vs doubly linked?
can use any sort that only requires accessing our values in a sequential order

i.e., insertion sort, selection sort, merge sort

quicksort requires random access, and has worse performance

What about objects? How do we define equality/inequality?

Expanding Our Sorting Efforts

What about linked lists? Singly vs doubly linked?
can use any sort that only requires accessing our values in a sequential order

i.e., insertion sort, selection sort, merge sort

quicksort requires random access, and has worse performance

What about objects? How do we define equality/inequality?
equals(Object o), compareTo(Object o)

Expanding Our Sorting Efforts

Merge Sort vs Quicksort, Array vs Linked List

merge sort quicksort

arrays

linked lists

Consider what we know about the strengths and weaknesses of access and
insertion in arrays and linked lists. How do those strengths and weaknesses
play out in these two sorting algorithms?

