U.\‘IV.ERSITY 0 VVISCO_NSIN Week 1 3
LA CROSSE
COMPUTER SCIENCE StaCkS and Queues

CS 220: Software Design Il — D. Mathias

The Collection and List Interfaces

+ + + + + + + +

Collection
{1nterface}

add(E e) : boolean
clear()
contains(Object o) : boolean
equals(Object o) : boolean
1sEmpty() : boolean
1terator() : Iterator<E>
remove(Object o) : boolean
size() : 1nt

&

List
{1interface}

add(int i1ndex, E e) : boolean
1ndex0Of(Object o) : 1nt

Collection describes a group of
objects

L1st holds data in a linear fashion

Together, we can ask questions like...
what is the last index of a particular value?
IS the list empty?
how many values are in there?

Two different ways to implement

array
linked nodes

Linear Data Structures

ArraylList and LinkedL1ist are relatively unconstrained data structures

data Is held in a linear fashion
can (seemingly) contain as many values as required

can add/remove/change values anywhere

What if we want constraints on our linear data structure?

Constrained Linear Data Structures

Consider the following scenarios
representing vetims customers and their order at the DMV
edit or browser history
student IDs at a university
Amazon wish list items and their quantity

What are the constraints and/or uniqgue data storage requirements in each
of these scenarios?

consider how data is added/removed
relationship between different pieces of data

Abstract Data Types

abstract data types (ADT) describe how methods should modify the stored
data, without specifying what underlying actions are required

Other common ADTs used in programming

>
— m =
queues __ sets -- -
A
N m
stacks . maps mwm ,m
— -

Stacks

Constrains our linear data structure such that we can only add and remove
elements from the top

often referred to as a last in, first out data structure
l.e., the last value added will be the first value removed

Good for getting elements back in the reverse order they are added

Have already seen one particular use of this with Java memory
management

[[

The Stack Class

Stack Related to Collection, List
push adds an element to the top of the
+ Stack(Q | stack
s pop removes and returns the element

+ top() : E from the top of the stack
+ 1sEmpty() : boolean

top (or peek) returns (but does not

remove) the element from the top of the
stack

1sEmpty returns whether or not the stack
IS empty

Implementing the Stack Class

<E> {
<E> stack = /* i1nstantiation omitted */;

push(E e) {
// TODO: 1mplement me

pop(Q) 1
// TODO: 1mplement me

top() {
// TODO: 1mplement me

Implementing the Stack Class

<E> {
<E> stack = /* i1nstantiation omitted */;

push(E e) {
stack.add(@, e);

pop() {

stack.remove(0);

topO {

stack.get(0);

Implementing the Stack Class

<E> {
<E> stack = /* i1nstantiation omitted */;

push(E e) {
stack.add(@, e);

pop() {
(isEmpty()) {
stack.remove(0);

topO {

(isEmpty()) {
stack.get(0);

Exercise: Using Stacks

< > myStack =

> myStack.push("A");
myStack.push(),
.out.println(myStack.top());

myStack. push();

('myStack.i1sEmpty()) {
.out.println(myStack.pop());

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A");
> myStack.push();
System.out.println(myStack.top());

myStack. push();

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A™);
myStack.push(),
> System.out.println(myStack.top());

myStack. push();

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

"stack"

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A");

myStack.push(),

System.out.println(myStack.top());
> myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

"stack”
stack

myStack

Exercise: Using Stacks

< > myStack =

myStack.push();

myStack.push();
System.out.println(myStack.top());
myStack. push();
('myStack.i1sEmpty()) {
System.out.println(myStack.pop()); "example”
"stack”
stack
HAH

myStack

Exercise: Using Stacks

< > myStack =

myStack.push();

myStack.push();
System.out.println(myStack.top());
myStack. push();
('myStack.i1sEmpty()) {
System.out.println(myStack.pop()); "example”
"stack”
stack
HAH

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A");

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

>}
"stack”
stack
example AT

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A");

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

"stack"

stack
example

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A");

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

"stack"

stack
example

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A™);

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

stack
example
stack

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A™);

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

stack
example
stack

myStack

Exercise: Using Stacks

< > myStack =

myStack.push("A™);

myStack.push(),
System.out.println(myStack.top());
myStack. push(D;

('myStack.i1sEmpty()) {
System.out.println(myStack.pop());

stack
example
stack

myStack

Exercise: Using Stacks

< > myStack =

myStack.push();

myStack.push(),
.out.println(myStack.top());

myStack. push();

('myStack.i1sEmpty()) {
.out.println(myStack.pop());

stack
example
stack

A
myStack

Exercise: Using Stacks

< > myStack =

myStack.push();

myStack.push(),
.out.println(myStack.top());

myStack. push();

('myStack.i1sEmpty()) {
.out.println(myStack.pop());

stack
example
stack

A
myStack

Queues

Constrains our linear data structure such that we can only add elements to
the end and remove elements from the beginning

often referred to as a first in, first out data structure

Good for getting elements back in the order they are added
Just like queues for a music playlist, lines for ordering tickets...

The Queue Class

Queue

+ Queue()

+ enqueue(E e) : boolean
+ dequeue() : E

+ front() : E

+ 1sEmpty() : boolean

(For some reason, Java
designers decided to change the
commonly used method names.)

LA 2
—

Related to Collection, List

engueue (or add) adds an element to
the end of the queue

degueue (or poll) removes and returns
the element from the front of the queue

front (or peek) returns (but does not

remove) the element from the front of the
gueue

1sEmpty returns whether or not the
gqueue Is empty

Implementing the Queue Class

<E> {
<E> queue = /* 1instantiation omitted */;

enqueue(kE e) {

// TODO: 1mplement me

dequeue() {
// TODO: 1mplement me

front() {
// TODO: 1mplement me

Implementing the Queue Class

<E> {
<E> queue = /* 1instantiation omitted */;

enqueue(E e) {
queue.add(e);

dequeue() {

(isEmpty()) {
queue.remove(0);

front() {

(1sEmpty()) {
queue.get(0);

Exercise: Using Queues

< > myQueue = : myQueue

> myQueue.enqueue("A");
myQueue . enqueue()
.out.println(myQueue.front());

myQueue. enqueue();

('myQueue.1sEmpty()) {
.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue = : myQueue

myQueue.enqueue("A");
> myQueue . enqueue();
System.out.println(myQueue.front());

myQueue. enqueue();

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue = ; myQueue
myQueue.enqueue("A"); np
myQueue. enqueue();
> System.out.println(myQueue.front());
myQueue . enqueue(); "queue"

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue = ; myQueue
myQueue.enqueue("A"); np
myQueue. enqueue();
System.out.println(myQueue.front());
> myQueue . enqueue(); "queue"

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > my(Queue myQueue

myQueue.enqueue("A"); .
. A

myQueue . enqueue();
System.out.println(myQueue.front());
myQueue . enqueue() "queue"

(!'myQueue.i1sEmpty()) {

System.out.println(myQueue.dequeue()); "example”

Exercise: Using Queues

< > my(Queue myQueue

myQueue.enqueue("A"); .
. A

myQueue . enqueue();
System.out.println(myQueue.front());
myQueue . enqueue() "queue"

(!'myQueue.i1sEmpty()) {

System.out.println(myQueue.dequeue()); "example”

Exercise: Using Queues

< > my(Queue myQueue
myQueue.enqueue("A"); " "
myQueue . enqueue(); AHEHE
System.out.println(myQueue.front());
myQueue.enqueue(); "example"

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

>}

> >

Exercise: Using Queues

< > my(Queue myQueue
myQueue.enqueue("A"); " "
myQueue . enqueue(); AHEHE
System.out.println(myQueue.front());
myQueue.enqueue(); "example"

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

> >

Exercise: Using Queues

< > my(Queue myQueue
myQueue.enqueue("A"); " "
myQueue . enqueue(); AHEHE
System.out.println(myQueue.front());
myQueue.enqueue(); "example"

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

> >

Exercise: Using Queues

< > myQueue ; myQueue

myQueue.enqueue("A");
myQueue.enqueue(
System.out.println(myQueue.front());
myQueue . enqueue(D;

) "example”

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue ; myQueue

myQueue.enqueue("A");
myQueue.enqueue(
System.out.println(myQueue.front());
myQueue . enqueue(D;

) "example”

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue ; myQueue

myQueue.enqueue("A");
myQueue.enqueue(
System.out.println(myQueue.front());
myQueue . enqueue(D;

) "example”

('myQueue.1sEmpty()) {
System.out.println(myQueue.dequeue());

Exercise: Using Queues

< > myQueue = : myQueue

myQueue.enqueue("A");
myQueue . aenqueue();
.out.println(myQueue.front());

myQueue. enqueue();

('myQueue.1sEmpty()) {
.out.println(myQueue.dequeue());

queue
example

Exercise: Using Queues

< > myQueue = : myQueue

myQueue.enqueue("A");
myQueue . enqueue();
.out.println(myQueue.front());

myQueue. enqueue();

('myQueue.1sEmpty()) {
.out.println(myQueue.dequeue());

queue
example

Using Lists for Stacks and Queues

Stack and queue implementations ultimately need some underlying
structure to hold the data

just like linked lists need list nodes and array lists need arrays

Can use either arrays or linked lists to store the stack/queue data’

notice that our stack/queue implementations (in lecture) rely on the List interface,
which is implemented by both types of lists

Stack Implementation Revisited

<E> {
<E> stack = /* i1nstantiation omitted */;

push(E e) {
stack.add(@, e);

pop() {
(isEmpty()) {

stack.remove(0);

topO {

(isEmpty()) {
stack.get(0);

How would this do
from a runtime
perspective with...

a linked list?

an array list?

Queue Implementation Revisited

<E> {
<E> queue = /* 1instantiation omitted */;

(E e) {
queue.add(e);

dequeue() {
(1sEmpty()) {

queue.remove(d);

front() {

(1sEmpty(Q)) {
queue.get(0);

How would this do
from a runtime
perspective with...

a linked list?

an array list?

What Does Java Provide?

There is a Stack class which looks like what is presented in the slides

can also use LinkedL1st, which provides implementations of push, pop, and peek

Queue is only an interface

easiest to use LinkedL1ist, which provides implementations of add, poll, and peek

Problem Solving w/Stacks & Queues

Queues are fairly straightforward

need to store something in the order it comes In? use a queue!

Stacks are more interesting
want to do something in reverse? use a stack!

can also emulate recursive algorithms in an iterative fashion

recursion implicitly leverages Java’s runtime stack for memory management

we can instead explicitly maintain our own stack for an algorithm

Search using Stacks & Queues

Depth-first search begins at some starting point (i.e., a roof) and explores as
far down a path as it can before backtracking and exploring another path

implemented using a stack

Breadth-first search begins at some starting point (i.e., a roof) and explores
all surrounding neighbors before exploring all of their neighbors

iImplemented using a queue

Depth-First Search

Add each neighbor to the stack

Once all neighbors are added, pop the top of the stack and explore that
node

Will continue down a path until their are no neighbors to add

Depth-First Search

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

3,1

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

3,2

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

4,2

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

4,3

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

2,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

1,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

0,0

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

myStack

Add each neighbor
to the stack

Once all neighbors
are added, pop the
top of the stack and
explore that node

Will continue down a
path until their are no
neighbors to add

Depth-First Search

Add each neighbor to the stack

Once all neighbors are added, pop the top of the stack and explore that
node

Will continue down a path until their are no neighbors to add

Order visited: 2,1 3,1 32 42 43 2,0 1,0 0,0

Breadth-First Search

Add each neighbor to the queue

Once all neighbors are added, poll the front of the queue and explore that
node

Will continue exploring levels of neighbors until their are no neighbors to
add

Breadth-First Search

myQueue

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

2.0

3,1

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

3,1

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

3,1

1,0

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

1,0

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

1,0

3,2

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

3,2

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

3,2

0,0

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

0,0

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

0,0

4,2

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

4,2

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

4,3

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

myQueue

Add each neighbor to
the queue

Once all neighbors
are added, poll the
front of the queue
and explore that node

WIll continue
exploring levels of
neighbors until their
are no neighbors to
add

Breadth-First Search

Add each neighbor to the queue

Once all neighbors are added, poll the front of the queue and explore that
node

Will continue exploring levels of neighbors until their are no neighbors to
add

Order visited: 2,1 2,0 3,1 1,0 3,2 0,0 42 4.3

