
Week 11:
Search Algorithms

CS 220: Software Design II   —   D. Mathias



Common activity when working with data

Searching



A linear search looks at each 
element in a data structure, in 
order, until encountering the 
desired element(s)

Linear Search

grades (int[])

0 1 2 3 4 14

100 77 99 86 86 8668 49 95 82 83

7 115 6 8

int toFind = 86;
for (int i = 0; i < grades.length; i++) {
    if (grades[i] == toFind) {
        System.out.print(i + ", ");
    }
}

70 64 4087

1312109



What if we can guarantee that 
there is at most one element that 
will match?

i.e., the element will appear either 0 
or 1 times

Linear Search

grades (int[])

0 1 2 3 4 14

100 77 99 65 86 8868 49 95 82 83

7 115 6 8

int toFind = 86;
for (int i = 0; i < grades.length; i++) {
    if (grades[i] == toFind) {
        System.out.print(i);
        break;
    }
}

70 64 4087

1312109



What if there can be multiple 
instances of the number, and the 
list is sorted?
What should the loop code be to 
terminate as quickly as possible?

Linear Search

grades (int[])

0 1 2 3 4 14

40 65 77 86 88 10049 64 68 70 82

7 115 6 8

int toFind = 86;
for (int i = 0; i < grades.length; i++) {
    

    // to write

}

86 95 9986

1312109



What if there can be multiple 
instances of the number, and the 
list is sorted?
What should the loop code be to 
terminate as quickly as possible?

Linear Search

grades (int[])

0 1 2 3 4 14

40 65 77 86 88 10049 64 68 70 82

7 115 6 8

int toFind = 86;
for (int i = 0; i < grades.length; i++) {
    if (grades[i] == toFind) {
        System.out.print(i);
    } else if (grades[i] > toFind) {
        break;
    }
}

86 95 9986

1312109



Fill in the following chart with runtimes using linear search

Exercise: Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

unsorted list sorted list (no repeats)

search for the smallest value

search for the largest value

search for the median value

search for a value that doesn’t exist

search for some random value that 
does exist (worst case)

e.g., we’re looking 
for the number 
100, but don’t 
realize it’s the 

largest number in 
the array



Fill in the following chart with runtimes using linear search

Exercise: Runtime Analysis

unsorted list sorted list (no repeats)

search for the smallest value O(n) O(1)

search for the largest value O(n) O(1)

search for the median value O(?) O(1)

search for a value that doesn’t exist O(n) O(n)

search for some random value that 
does exist (worst case) O(n) O(n)

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109



Fill in the following chart with runtimes using linear search

Exercise: Runtime Analysis

unsorted list sorted list (no repeats)

search for the smallest value O(n) O(1)

search for the largest value O(n) O(1)

search for the median value O(?) O(1)

search for a value that doesn’t exist O(n) O(n)

search for some random value that 
does exist (worst case) O(n) O(n)

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

} relies on 
absolute 

positions in the 
array

}relies on relative 
positions in the 

array



Search Strategies

• Linear Search is not the only way to find a value in an array

• Strategies:
• Linear search
• Random guessing
• Any others?



Let’s play a game

• I’m going to think of a number in [1. 1000].
• You have two goals:

• Determine the number
• Use the smallest possible number of guesses



Binary Search

A binary search uses a divide and conquer approach to subdivide a sorted 
list to find a number

divide and conquer approaches take a problem and break it down into smaller problems

Basic premise:
array to search in is the whole array; start at midpoint
is the number to find higher than the midpoint? search above; lower? search below
redefine the array to search in as either the above or below half; repeat



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86

>



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86

>



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86
>



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86
>



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86

>



Binary Search

Start at midpoint in range to search in
Decide if number to find is higher or lower than midpoint
Redefine the range to either upper or lower half of array
Repeat

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

toFind = 86

>



Considering binary search…
what is the best case scenario?
what is the worst case scenario?

Use the array below as an example if helpful

Exercise: Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109



O(log(n)) Algorithm

Most divide and conquer 
algorithms involve a worst-case 
runtime with a log(n) term
For Binary Search, log(n) is an 
approximation of the number of 
divisions necessary to arrive at an 
answer in the worst-case scenario

>

>

>



Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) O(log(n)) is actually 
pretty good!



Aside: logarithms

What is logb n?

A way to think about logs:

         To what power must I raise b to get n?

What is log10 1000? 

What is log5 625?

What is log2 32768?



Fill in the following chart with runtimes using binary search

Exercise: Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

sorted list (no repeats)

search for the smallest value

search for the largest value

search for the median value

search for a value that doesn’t exist

search for some random value that does 
exist (worst case)



Fill in the following chart with runtimes using binary search

Exercise: Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

sorted list (no repeats)

search for the smallest value O(log(n))

search for the largest value O(log(n))

search for the median value O(1)

search for a value that doesn’t exist O(log(n))

search for some random value that does 
exist (worst case) O(log(n))



Fill in the following chart with runtimes using binary search

Exercise: Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

sorted list (no repeats)

search for the smallest value O(log(n)) O(1)

search for the largest value O(log(n)) O(1)

search for the median value O(1)

search for a value that doesn’t exist O(log(n))

search for some random value that does 
exist (worst case) O(log(n))



Compare and contrast - where are we doing worse vs better? Is the tradeoff 
worth it?

Runtime Analysis

grades (int[])

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

sorted list (linear search) sorted list (binary search)

search for the smallest value O(1) O(log(n)) O(1)

search for the largest value O(1) O(log(n)) O(1)

search for the median value O(1) O(1)

search for a value that doesn’t exist O(n) O(log(n))

search for some random value that does 
exist (worst case) O(n) O(log(n))



Runtime Analysis

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

What value(s) are you looking for…

sorted list (linear search) sorted list (binary search)

best case

worst case



Runtime Analysis

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

What value(s) are you looking for…

sorted list (linear search) sorted list (binary search)

best case 40

worst case



Runtime Analysis

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

What value(s) are you looking for…

sorted list (linear search) sorted list (binary search)

best case 40

worst case 100



Runtime Analysis

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

What value(s) are you looking for…

sorted list (linear search) sorted list (binary search)

best case 40 82

worst case 100



Runtime Analysis

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

What value(s) are you looking for…

sorted list (linear search) sorted list (binary search)

best case 40 82

worst case 100 40, 64, 68, 77, 83, 87, 95, 100



Code: Binary Search (iterative)

private static int binarySearch(int arr[], int toFind) {
    int begin = 0;

int end = arr.length - 1;

while (begin <= end) {
int mid = (begin + end) / 2;  // Find the midpoint

if (arr[mid] == toFind) {  // Found it!
return mid;

} else if (arr[mid] < toFind) {  // mid value too small
begin = mid + 1;

} else { /* arr[mid] > toFind */  // mid value too large
end = mid - 1;

}
}

return -1;  // Failed search
}



Code: Binary Search (recursive)

private static int binarySearch(int arr[], int toFind) {
    return binSearchHelper(arr, toFind, 0, arr.length - 1);
}

private static int binSearchHelper(int arr[], int toFind, int begin, int end) {
    if (begin > end) {
        return -1;  // Failed search
    }
    int mid = (begin + end) / 2;  // Find the midpoint
    if (arr[mid] == toFind) {  // Found it!
        return mid;
    } else if (arr[mid] < toFind) {  // mid value too small
        return binSearchHelper(arr, toFind, mid + 1, end);
    } else { /* arr[mid] > toFind */ // mid value too large
        return binSearchHelper(arr, toFind, begin, mid - 1);
    }
}



Discussed linear and binary search on arrays
runtimes would be comparable for an array list

What about a singly linked list?
can linear search be performed on one?
what about binary search on a singly linked list?
what would the runtimes be like?

Searching on Data Structures



Consider the following chart for a singly linked list

Linked Lists & Search

unsorted linked 
list (linear 

search)

sorted linked list 
(linear search)

sorted array 
(linear search)

sorted linked list 
(binary search)

sorted array 
(binary search)

search for the smallest value O(n) O(1) O(1) O(1) O(log(n))

search for the largest value O(n) O(n) O(1) O(n) O(log(n))

search for the median value O(n) O(n) O(1) O(n) O(1)
search for a value that doesn’t 

exist
O(n) O(n) O(n) O(n log(n)) O(log(n))

search for some random value that 
does exist (worst case) O(n) O(n) O(n) O(n log(n)) O(log(n))



Big O Notation

O(1)

O(n)

O(n log n)

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) O(n log n) is 
significantly larger than 
O(n) and O(log n) as n 
gets large…



Linked Lists & Search

unsorted linked 
list (linear 

search)

sorted linked list 
(linear search)

sorted array 
(linear search)

sorted linked list 
(binary search)

sorted array 
(binary search)

search for the median value O(n) O(n) O(1) O(n) O(1)

0 1 2 3 4 14

40 65 77 83 88 10049 64 68 70 82

7 115 6 8

87 95 9986

1312109

>
49 6440 65 68 70 77

> > > >


