
Week 11:
Recursion II

CS 220: Software Design II — D. Mathias

iterative programming is the method of programming you’ve been using
i.e., loops are exclusively used to repeat, make progress

recursive programming is a complementary method of programming
i.e., recursion is used—sometimes in conjunction with loops—to make progress
some programming languages use only recursion without loops

e.g., Scheme, Lisp, Haskell

Every iterative program can be written recursively and vice versa1

Recursion vs Iteration

1: https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Calculating factorials can be defined (iteratively) as below:

Which can be rewritten recursively:

Example: Recursion vs Iteration

n! = n · (n - 1) · (n - 2)… · 2 · 1

f(0) = 1, f(n) = n! = n · f(n - 1)

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

public static int factorialIter(int n) {
 int sum = 1;
 if (n <= 1) { return sum; }

 while (n > 1) {
 sum *= n;
 n--;
 }
 return sum;
}

Pros
some algorithms are more elegant/concise/understandable recursively

particularly true for some 340 data structures

Cons
takes up more space (i.e., memory) on the stack

rarely a problem if recursion is done well

some languages allow for tail-call optimization, which mitigates this; not supported in Java

can be difficult to understand if written poorly
but this is true of all code!

Why Recursion?

public static int factorialIter(int n) {
 int sum = 1;
 if (n <= 1) { return sum; }

 while (n > 1) {
 sum *= n;
 n--;
 }
 return sum;
}

Every loop has four parts

Parts of a Loop

public static int factorialIter {
 int sum = 1;
 if (n <= 1) { return sum; }

 while (n > 1) {
 sum *= n;
 n--;
 }
 return sum;
}

Every loop has four parts
initialization

set up a variable that will control the loop

Parts of a Loop

(int n)

public static int factorialIter(int n) {
 int sum = 1;
 if (n <= 1) { return sum; }

 while {
 sum *= n;
 n--;
 }
 return sum;
}

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop
stops

(n > 1)

Parts of a Loop

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop
stops

work
the code the loop will repeat

public static int factorialIter(int n) {
 int sum = 1;
 if (n <= 1) { return sum; }

 while (n > 1) {

 n--;
 }
 return sum;
}

sum *= n;

Parts of a Loop

Every loop has four parts
initialization

set up a variable that will control the loop

condition
a boolean expression to control when the loop
stops

work
the code the loop will repeat

progress
how the loop moves closer to termination

public static int factorialIter(int n) {
 int sum = 1;
 if (n <= 1) { return sum; }

 while (n > 1) {
 sum *= n;

 }
 return sum;
}

n--;

Parts of a Loop

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization(int n)

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization
recursive case

one or more boolean expressions to control when to
make a recursive call

/* else (n > 1) */

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization
recursive case

one or more boolean expressions to control when to
make a recursive call

 smallest value case
one or more boolean expressions to control when to
solve a small problem directly

(n <= 1)

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization
recursive case

one or more boolean expressions to control when to
make a recursive call

 smallest value case
one or more boolean expressions to control when to
solve a small problem directly

work

 return 1;

 return n * factorialRecur(n - 1);

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization
recursive case

one or more boolean expressions to control when to
make a recursive call

 smallest value case
one or more boolean expressions to control when to
solve a small problem directly

work
progress

how the recursion moves closer to termination

factorialRecur(n - 1);

public static int factorialRecur(int n) {

 if (n <= 1) {
 return 1;
 }
 /* else (n > 1) */
 return n * factorialRecur(n - 1);
}

Parts of a Recursive Method
Every recursive method has five
parts

initialization
recursive case

one or more boolean expressions to control when to
make a recursive call

 smallest value case
one or more boolean expressions to control when to
solve a small problem directly

work
progress

how the recursion moves closer to termination

1. Identify the recursive structure in the problem and how to leverage it to
solve the problem.
2. Identify the smallest value case(s). What instances are too small to make
smaller?
3. Consider a larger case (but not too large!). Assume you have a method
that can solve a problem that is smaller than that one.

you don’t yet have to know what that method is

4. If you can assume you have a method to solve that case, how can you
write the code to solve the original case?

How to Write a Recursive Method

The Fibonacci sequence is as follows:

This sequence can be described mathematically:

Example: Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, …

f(0) = 0, f(1) = 1, f(n) = f(n - 1) + f(n - 2)

1. Base case(s): f(0) = 0, f(1) = 1
2. Consider f(4) = f(3) + f(2). We’re
assuming we can already solve f(3) and
f(2).
3. Let’s write (general) code to solve f(4)!

public static int fib(int n) {

}

if (n == 0 || n == 1){
 return n;
}
/* else (n > 1) */
return fib(n - 1) + fib(n - 2);

Lots of repeat calculations!
Can be avoided through memoization, an optimization technique which
caches (i.e., saves) the results from a computation to be used in the future

Method Calls for fib(5)
fib(5)

fib(3)fib(4)

fib(3) fib(2) fib(2) fib(1)

fib(2)

fib(1) fib(0)

fib(0) fib(0)fib(1)fib(1)fib(1)

Memoization
public class Fibonacci {

}

 // the index will be n and the value at index n will be f(n)
 private static ArrayList<Integer> cache = new ArrayList<Integer>();

 public static void main(String[] args) {
 cache.add(0, 0);
 cache.add(1, 1);
 }

public static int fib(int n) {

}

if (cache.contains(n)) { // our base case is now "has fib(n) already calculated?"
 return cache.get(n); // if so, return that calculated value
}
/* else (n > 1) */
int result = fib(n - 1) + fib(n - 2);
cache.add(n, result); // haven't calculated fib(n) before? store it
return result;

Palindromes are strings that are the same forwards and backwards
we’ll assume ours don’t contain any spaces, all lowercase
e.g., “a”, “i”, “mom”, “tat”, “did”, “anna”, “”, “racecar”, “amanaplanacanalpanama”

Example: Palindrome

1. Smallest value case(s): strings of length
0 or 1 are palindromes; strings where the
first and last chars do not match are not.
2. Consider the string “nn”. Assume we
have a method to determine whether or
not “nn” is a palindrome.
3. Solve whether or not “a**a” is a
palindrome

public static boolean palindrome(String s) {

}

if (s.length() == 0 || s.length() == 1){
 return true;
}

 result = palindrome(
 s.substring(1, s.length()-1));
 return result;

 else {
 boolean result = false;
 if (s.charAt(0) ==
 s.charAt(s.length()-1))

}

Mersenne Numbers
f(1) = 1, f(n) = 2 · f(n-1) + 1

e.g., f(2) = 3, f(3) = 7, f(4) = 15

Sum values in an int array
e.g., input = [12, 3, 42, 77, 9, 101]

Convert a number in base 10 to
base 2

e.g. input = 227

hints: look at the patterns in how the
anagrams are arranged; how might you
use a second method to help?

Exercises: Recursion

Memory Management Revisited

heap: stores global
variables, and

objects (aka dynamic
memory)

stack: tracks where
the program’s current
location in execution
originated and values

of local primitive
variables (aka static

memory)

Bounded in size by the compiler
can be adjusted
filling the stack produces a StackOverflowError

Faster to access data on than the heap

The Stack Revisited

<frame1>
 <var1>
 <var2>

<frame2>
 <var1>
 <var2>

<frame6>
 <var1>
 <var2>

Thrown when the stack fills up
Usually produced by runaway
recursion

i.e., by an incorrect/lack of base case

Errors cannot be recovered from
must correct program, restart

Why don’t we get this error with
infinite loops?

 Error

public static void printAndIncRecur(int num) {

 System.out.println(num);
 printAndIncRecur(num + 1);
}

public static void printAndIncIter(int num) {

 do {
 System.out.println(num);
 num++;
 } while (true);
}

