
11/10/21

1

Week 10:
Recursion

Software Design II (CS 220): D. Mathias

1

What is recursion?

Good Answer: recursion is (often) an alternative to iteration.

Better Answer: recursion is a valuable tool for solving certain
types of problems.

Best Answer: recursion is magic.

2

11/10/21

2

Seriously, what is recursion?

• A remarkably important concept and
programming technique
– A recursive method is simply one that calls itself

3

Question Considered Now

• How should you think about recursion so that
you can use it to develop elegant recursive
methods to solve certain problems?

4

11/10/21

3

Question Considered Next

• Why do those recursive methods work?

5

Question Considered Only Later

• How do those recursive methods work?
– Don’t worry; we will come back to this

– Trust me, it’s better this way

6

11/10/21

4

Suppose...

• You need to reverse a String
• Specification looks like this:

/**
* Reverses a String.
* ...
* @return string with chars of s in reverse order (String)
*/
private static String reverseString(String s)
{

...
}

7

Suppose...

• You need to reverse a String
• Specification looks like this:

/**
* Reverses a String.
* ...
* @return string with chars of s in reverse order (String)
*/
private static String reverseString(String s)
{

...
}

Try to
implement it
(i.e., write the
method body)

8

11/10/21

5

One Possible Solution

private static String reverseString(String s)
{

String rs = "";
for (int i = 0; i < s.length(); i++)

{
rs = s.charAt(i) + rs;

}

return rs;
}

9

Let’s trace it
s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

rs = s.charAt(i) + rs;

}

10

11/10/21

6

Let’s trace it: Iteration 1
s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = ""
i = 0

rs = s.charAt(i) + rs;

}

11

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = ""
i = 0

rs = s.charAt(i) + rs;

s = "abc"
rs = "a"
i = 0

}

Let’s trace it: Iteration 1

12

11/10/21

7

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = "a"
i = 1

rs = s.charAt(i) + rs;

s = "abc"
rs = "a"
i = 0

}

Let’s trace it: Iteration 2

13

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = "a"
i = 1

rs = s.charAt(i) + rs;

s = "abc"
rs = "ba"
i = 1

}

Let’s trace it: Iteration 2

14

11/10/21

8

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = "ba"
i = 2

rs = s.charAt(i) + rs;

s = "abc"
rs = "ba"
i = 1

}

Let’s trace it: Iteration 3

15

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = "ba"
i = 2

rs = s.charAt(i) + rs;

s = "abc"
rs = "cba"
i = 2

}

Let’s trace it: Iteration 3

16

11/10/21

9

s = "abc"
rs = ""

for (int i = 0; i < s.length(); i++) {

s = "abc"
rs = "ba"
i = 2

rs = s.charAt(i) + rs;

s = "abc"
rs = "cba"
i = 2

}

s = "abc"
rs = "cba"

Let’s trace it: Ready to Return

17

Oh, Did I Mention...

• There is already a static method in the class FreeLunch with
exactly the same specification:
/**
* Reverses a String.
* ...
* @return string with chars of s in reverse order (String)
*/
private static String reverseString(String s)
{

...
}

18

11/10/21

10

A Free Lunch Sounds Good!

• The slightly nasty thing about the FreeLunch
class is that its methods will not directly solve the
problem: you have to make the problem “smaller”
before you can use FreeLunch

• Therefore, this reverseString code will not work:
private static String reverseString(String s)
{

return FreeLunch.reverseString(s);
}

19

Recognizing the Smaller Problem

• A key to recursive thinking is the ability to
recognize a smaller instance of the same
problem “hiding inside” the problem you need to
solve

• Suppose we recognize the following property of
string reversal:
rev(<x> + a) = rev(a) + <x>
where x is a char and a is a String

20

11/10/21

11

• If we had some way to reverse a string of length 4,
say, then we could reverse a string of length 5 by:
1. removing the character on the left end

2. reversing what’s left

3. adding the character that was removed onto the right end

The Smaller Problem

21

The Smaller Problem

• If we had some way to reverse a string of length 4,
say, then we could reverse a string of length 5 by:
1. removing the character on the left end

2. reversing what’s left

3. adding the character that was removed onto the right end

This is a smaller instance of
exactly the same problem as we
need to solve.

22

11/10/21

12

Time for our Free Lunch

• We can use the FreeLunch class now:

private static String reverseString(String s)
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}

23

s = "abc"

String sub = s.substring(1);

s = "abc"
sub = "bc"

String revSub =
FreeLunch.reverseString(sub);

s = "abc"
sub = "bc"
revSub = "cb"

String result = revSub + s.charAt(0);

s = "abc"
sub = "bc"
revSub = "cb"
result = "cba"

Let’s trace it

24

11/10/21

13

Let’s trace it
s = "abc"

String sub = s.substring(1);

s = "abc"
sub = "bc"

String revSub =
FreeLunch.reverseString(sub);

s = "abc"
sub = "bc"
revSub = "cb"

String result = revSub + s.charAt(0);

s = "abc"
sub = "bc"
revSub = "cb"
result = "cba"

How do you trace over this call? By looking
at the specification, of course!

25

Almost done with Lunch

• Is this code correct?:

private static String reverseString(String s)
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}

26

11/10/21

14

Almost done with Lunch

• Is this code correct?:

private static String reverseString(String s)
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}
This call has a precondition: s must not be the
empty string (see the Java documentation)

27

Almost done with Lunch

• Is this code correct?:

private static String reverseString(String s)
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}

This call has a precondition: s must not be the
empty string (see the Java documentation)

28

11/10/21

15

Accounting for Empty s

private static String reverseString(String s)
{

if (s.length() == 0)
{

return s;
}
else
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

29

• Sorry, there is no FreeLunch!

Oh, did I mention…

30

11/10/21

16

There's No FreeLunch?!?

private static String reverseString(String s)
{

if (s.length() == 0)
{

return s;
}
else
{

String sub = s.substring(1);
String revSub = FreeLunch.reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

31

We Don’t Need a FreeLunch

private static String reverseString(String s)
{

if (s.length() == 0)
{

return s;
}
else
{

String sub = s.substring(1);
String revSub = reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

We just wrote the code for reverseString, so we
can can call our own version rather than the one
from FreeLunch.

32

11/10/21

17

A Recursive Method

}

private static String reverseString(String s)
{

if (s.length() == 0)
{

return s;
}
else
{

String sub = s.substring(1);
String revSub = reverseString(sub);
String result = revSub + s.charAt(0);
return result;

}
}

Note that the body of reverseString now calls itself,
so we just wrote a recursive method.

33

• If your code for a method is correct when it calls the
(hypothetical) FreeLunch version of the method
— remember, it must be on a smaller instance of
the problem — then your code is still correct
when you replace every call to the FreeLunch
version with a recursive call to your own version

A Crucial Theorem for Recursion

34

11/10/21

18

• If the code that makes a call to
FreeLunch.reverseString is correct, then so is
the code that makes a recursive call to
reverseString

• Remember: this is so only because the call to
FreeLunch.reverseString is for a smaller
problem, i.e., a string with smaller length

The Theorem Applied

35

No Need For Multiple Returns
private static String reverseString(String s)
{

String result = s;
if (s.length() > 0)
{

String sub = s.substring(1);
String revSub = reverseString(sub);
result = revSub + s.charAt(0);

}
return result;

}

Alternative solution with a single return. In this case,
multiple returns are not necessary and they do not provide a
better solution.

36

11/10/21

19

Another Example

• What is the first recursive algorithm you learned?
(Think about grade-school)

Addition

37

Consider adding 1 to an integer:

• Think about how you would increment (add 1 to)
a number using the grade- school arithmetic
algorithm

• Examples:

41072 41079 41999
+ 1 + 1 + 1
41073 41080 42000

38

11/10/21

20

Recognizing the Smaller Problem

• Think about how you would increment (add 1 to)
a number using the grade-school arithmetic
algorithm

• Examples:
41072 41079 41999
+ 1 + 1 + 1
41073 41080 42000

39

The Smaller Problem

• If we had some way to increment a number with 4
digits, say, then we could increment a 5-digit number by:
– taking off the one’s digit
– incrementing it and asking: is there is a “carry”?
– if there is, then incrementing what’s left
– putting back the updated one’s digit

• Important: multiple carries don’t matter

40

11/10/21

21

• If we have a way to increment a number
with 4 digits, for example, the we can
increment a 5-digit number by:
– taking off the one’s digit
– incrementing it and asking: is there is a “carry”?
– if there is, then incrementing what’s left
– putting back the updated one’s digit

• Important: multiple carries don’t matter

The Smaller Problem
This is a smaller instance of exactly the
same problem as we need to solve.

41

Time for Our Free Lunch

• We can use the FreeLunch class now:

public static void increment (NaturalNumber n)
{

int onesDigit = n.divideBy(10);
onesDigit++:
if(onesDigit == 10)
{

onesDigit = 0;
FreeLunch.increment(n);

}
n.multiplyBy10(onesDigit);

}

42

11/10/21

22

Almost Done With Lunch

• Is this code correct?:

public static void increment (NaturalNumber n)
{

int onesDigit = n.divideBy(10);
onesDigit++:
if(onesDigit == 10)
{

onesDigit = 0;
FreeLunch.increment(n);

}
n.multiplyBy10(onesDigit);

}

43

Done With Lunch

• Is this code correct?:

public static void increment (NaturalNumber n)
{

int onesDigit = n.divideBy(10);
onesDigit++:
if(onesDigit == 10)
{

onesDigit = 0;
increment(n);

}
n.multiplyBy10(onesDigit);

}

44

11/10/21

23

Theorem Applied

• If the code that makes a call to
FreeLunch.increment is correct, then so is the
code that makes a recursive call to increment

• Remember: this is so only because the call to
FreeLunch.increment is for a smaller problem,
i.e., a number less than the incoming value of n

45

Recursive Structure

• For problem P, can we leverage the power of recursion?

46

11/10/21

24

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?

47

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?

• Factorial: (n – 1)! (n – 2)! (n – 23)!

48

11/10/21

25

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?

• Factorial: (n – 1)! (n – 2)! (n – 23)!
• Fibonacci: (n – 1)! (n – 2)! (n – 12)!

49

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?

• Factorial: (n – 1)! (n – 2)! (n – 23)!
• Fibonacci: fib(n – 1) fib(n – 2) fib(n – 12)
• reverseString: remove first char, remove last char

50

11/10/21

26

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

51

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

• This is usually the easy part

52

11/10/21

27

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

• This is usually the easy part
• Can we use solutions to smaller problems to construct a

solution to P?

53

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

• This is usually the easy part
• Can we use solutions to smaller problems to construct a

solution to P?
• Factorial: given (n – 1)! we easily get n!

54

11/10/21

28

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

• This is usually the easy part
• Can we use solutions to smaller problems to construct a

solution to P?
• Factorial: given (n – 1)! we easily get n!
• Fibonacci: given fib(n – 1) and fib(n – 2) we easily get fib(n)

55

Recursive Structure

• For problem P, can we leverage the power of recursion?
• Can we divide P into one or more smaller instances?
• Can we efficiently solve the smaller instances?

• This is usually the easy part
• Can we use solutions to smaller problems to construct a

solution to P?
• Factorial: given (n – 1)! we easily get n!
• Fibonacci: given fib(n – 1) and fib(n – 2) we easily get fib(n)
• stringReverse: given rev(sub) we easily get rev(s)

56

11/10/21

29

Factorial: The canonical example

• Is this correct?

public int factorial(int n)
{

int result = n * factorial(n-1);
return result;

}

57

Factorial: The canonical example

• Why not?

public int factorial(int n)
{

int result = n * factorial(n-1);
return result;

}

58

11/10/21

30

• What should we do when an instance of P is too small to
divide into smaller problems?

Recursive Structure

59

• What should we do when an instance of P is too small to
divide into smaller problems?
• Solve it! In many cases it’s trivial.

Recursive Structure

60

11/10/21

31

• What should we do when an instance of P is too small to
divide into smaller problems?
• Solve it! In many cases it’s trivial.

• Factorial: 0! = 1 1! = 1

Recursive Structure

61

• What should we do when an instance of P is too small to
divide into smaller problems?
• Solve it! In many cases it’s trivial.

• Factorial: 0! = 1 1! = 1
• Fibonacci: fib(0) = 0 fib(1) = 1

Recursive Structure

62

11/10/21

32

• What should we do when an instance of P is too small to
divide into smaller problems?
• Solve it! In many cases it’s trivial.

• Factorial: 0! = 1 1! = 1
• Fibonacci: fib(0) = 0 fib(1) = 1
• stringReverse: stringReverse(“”) = “”

Recursive Structure

63

Factorial: The canonical example

• Is this correct?

public int factorial(int n)
{

if(n <= 1)
return n;

return n * factorial(n-1);
}

64

11/10/21

33

A way to reason about recursion

Bottom up – begin with the base case

65

• Bottom up – begin with the smallest-value case

public int factorial(int n)
{

if (n <= 1)
return 1;

return n * factorial(n-1);
}

• if n=0 or n=1, factorial(n) returns correct result ✔

A way to reason about recursion

66

11/10/21

34

• Bottom up – begin with the smallest-value case

public int factorial(int n)
{

if (n <= 1)
return 1;

return n * factorial(n-1);
}

• if n=2, factorial(n) returns 2 * factorial(1)
• We just convinced ourselves that factorial(1) is correct
• 2 * factorial(1) is the correct result for factorial(2) ✔

A way to reason about recursion

67

• Bottom up – begin with the smallest-value case

public int factorial(int n)
{

if (n <= 1)
return 1;

return n * factorial(n-1);
}

• if n=3, factorial(n) returns 3 * factorial(2)
• We just convinced ourselves that factorial(2) is correct
• 3 * factorial(2) is the correct result for factorial(3) ✔

A way to reason about recursion

68

11/10/21

35

• Bottom up – begin with the smallest-value case

public int factorial(int n)
{

if (n <= 1)
return 1;

return n * factorial(n-1);
}

• if n=4, factorial(n) returns 4 * factorial(3)
• We just convinced ourselves that factorial(3) is correct
• 4 * factorial(3) is the correct result for factorial(4) ✔

A way to reason about recursion

69

