

1

What is recursion?

Good Answer: recursion is (often) an alternative to iteration.

Better Answer: recursion is a valuable tool for solving certain types of problems.

Best Answer: recursion is magic.

Seriously, what is recursion?

- A remarkably important concept and programming technique
- A recursive method is simply one that calls itself

Question Considered Now

- How should you think about recursion so that you can use it to develop elegant recursive methods to solve certain problems?

Question Considered Next

- Why do those recursive methods work?

5

Question Considered Only Later

- How do those recursive methods work?
- Don't worry; we will come back to this
- Trust me, it's better this way

Suppose...

- You need to reverse a String
- Specification looks like this:
/**
* Reverses a String.
* ...
* @return string with chars of s in reverse order (String)
*/
private static String reverseString(String s)
\{
\}

7

Suppose...

- You need to
- Specification /**
* Reverses
* ...
* @return string w. chars of s in reverse order (String)
*/
private static String feverseString(String s) \{
\}

One Possible Solution

```
private static String reverseString(String s)
{
    String rs = "";
    for (int i = 0; i < s.length(); i++)
    {
        rs = s.charAt(i) + rs;
    }
    return rs;
}
```

9

Let's trace it

Let's trace it: Iteration 1

Let's trace it: Iteration 1

Let's trace it: Iteration 2

Let's trace it: Iteration 2

Let's trace it: Iteration 3

Let's trace it: Iteration 3

Let's trace it: Ready to Return

17

Oh, Did I Mention...

- There is already a static method in the class FreeLunch with exactly the same specification:
/**
* Reverses a String.
* ...
* @return string with chars of s in reverse order (String)
*/
private static String reverseString(String s)
\{
\}

A Free Lunch Sounds Good!

- The slightly nasty thing about the FreeLunch class is that its methods will not directly solve the problem: you have to make the problem "smaller" before you can use FreeLunch
- Therefore, this reverseString code will not work:

```
private static String reverseString(String s)
```

\{
return FreeLunch.reverseString(s);
\}

Recognizing the Smaller Problem

- A key to recursive thinking is the ability to recognize a smaller instance of the same problem "hiding inside" the problem you need to solve
- Suppose we recognize the following property of string reversal:

```
rev(<x> + a) = rev(a) + <x>
where x is a char and a is a String
```


The Smaller Problem

- If we had some way to reverse a string of length 4 , say, then we could reverse a string of length 5 by:

1. removing the character on the left end
2. reversing what's left
3. adding the character that was removed onto the right end

The Smaller Problem

- If we had some way t say, then we could re

This is a smaller instance of exactly the same problem as we need to solve.

1. removing the characte .reft end
2. reversing what's left
3. adding the character that was removed onto the right end

Time for our Free Lunch

- We can use the FreeLunch class now:

```
private static String reverseString(String s)
{
    String sub = s.substring(1);
    String revSub = FreeLunch.reverseString(sub);
    String result = revSub + s.charAt(0);
    return result;
}
```


Let's trace it

	$s=$ "abc"
String sub = s.substring (1);	
	$\begin{aligned} & s=\text { "abc" } \\ & s u b=" b c " \end{aligned}$
```String revSub = FreeLunch.reverseString(sub);```	
	$\begin{aligned} & s=\text { "abc" } \\ & \text { sub = "bc" } \\ & \text { revSub = "cb" } \end{aligned}$
String result = revSub + s.charAt (0);	
	$\begin{aligned} & s=" a b c " \\ & \text { sub }=" b c " \\ & \text { revSub }=" c b " \\ & \text { result }=\text { "cba" } \end{aligned}$

## Let's trace it

|  | How do you trace over this call? By looking <br> at the specification, of course! |
| :--- | :--- | :--- |
| String s |  |

## Almost done with Lunch

- Is this code correct?:

```
private static String reverseString(String s)
{
 String sub = s.substring(1);
 String revSub = FreeLunch.reverseString(sub);
 String result = revSub + s.charAt(0);
 return result;
}
```


## Almost done with Lunch

- Is this code correct?:
private static String reverseString(String s)
\{
String sub = s.substring(1);
String revSub = Free nch.reverseString(sub);
String result = rev s.charAt(0); return result;
\}
This call has a precondition: s must not be the empty string (see the Java documentation)

27

## Almost done with Lunch

```
- Io .". in
This call has a precondition: s must not be the
p: empty string (see the Java documentation) string s)
{
 String sub = s.subsu
 String revSub = FreeLuncr erseString(sub);
 String result = revSub + s.charAt(0);
 return result;
}
```


## Accounting for Empty s

```
private static String reverseString(String s)
 if (s.length() == 0)
 {
 return s;
 }
 else
 {
 String sub = s.substring(1);
 String revSub = FreeLunch.reverseString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
```


## Oh, did I mention...

- Sorry, there is no FreeLunch!


## There's No FreeLunch?!?

```
private static String reverseString(String s)
 if (s.length() == 0)
 {
 return s;
 }
 else
 {
 String sub = s.substring(1);
 String revSub = FreeLunch.reverseString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
```

31

## We Don't Need a FreeLunch

```
private static String reverseString(String s)
{
 if (s.length() == 0) We just wrote the code for reverseString, so we
 return s;
 }
 else
 {
 String sub = s.substrin A;
 String revSub = reversestring(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
```


## A Recursive Method

```
private static String reverseString(String s)
 if (s.length() == 0)
 {
 return s;
 }
 else
 {
 String sub = s.substring
 String revSub = reverseString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
```

33

## A Crucial Theorem for Recursion

- If your code for a method is correct when it calls the (hypothetical) FreeLunch version of the method - remember, it must be on a smaller instance of the problem - then your code is still correct when you replace every call to the FreeLunch version with a recursive call to your own version


## The Theorem Applied

- If the code that makes a call to

FreeLunch.reverseString is correct, then so is the code that makes a recursive call to reversestring

- Remember: this is so only because the call to FreeLunch.reverseString is for a smaller problem, i.e., a string with smaller length


## No Need For Multiple Returns

```
private static String reverseString(String s)
{
 String result = s;
 if (s.length() > 0)
 {
 String sub = s.substring(1);
 String revSub = reverseString(sub);
 result = revSub + s.charAt(0);
 }
 return result;
}
 Alternative solution with a single return. In this case,
 multiple returns are not necessary and they do not provide a
 better solution.
```


## Another Example

- What is the first recursive algorithm you learned? (Think about grade-school)


## Addition

37

## Consider adding 1 to an integer:

- Think about how you would increment (add 1 to) a number using the grade- school arithmetic algorithm
- Examples:

$$
\begin{array}{rlr}
41072 & 41079 & 41999 \\
+\quad 1 & +\quad 1 & +\quad 1 \\
\hline 41073 & +41080 & 42000
\end{array}
$$

## Recognizing the Smaller Problem

- Think about how you would increment (add 1 to) a number using the grade-school arithmetic algorithm
- Examples:



## The Smaller Problem

- If we had some way to increment a number with 4 digits, say, then we could increment a 5-digit number by:
- taking off the one's digit
- incrementing it and asking: is there is a "carry"?
- if there is, then incrementing what's left
- putting back the updated one's digit
- Important: multiple carries don't matter


## The Smaller Problem

- If we have a $w^{\text {This is a smaller instance of exactly the }}$ with 4 digits, fo same problem as we need to solve. increment a 5-digit n
by:
- taking off the one's digit
- incrementing it and asking: is ere is a "carry"?
- if there is, then incrementing what's left
- putting back the updated one's digit
- Important: multiple carries don't matter

41

## Time for Our Free Lunch

- We can use the FreeLunch class now:

```
public static void increment (NaturalNumber n)
{
 int onesDigit = n.divideBy(10);
 onesDigit++:
 if(onesDigit == 10)
 {
 onesDigit = 0;
 FreeLunch.increment(n);
 }
 n.multiplyBy10(onesDigit);
}
```


## Almost Done With Lunch

- Is this code correct?:
public static void increment (NaturalNumber n) \{
int onesDigit = n.divideBy(10);
onesDigit++:
if(onesDigit == 10)
\{
onesDigit = 0;
FreeLunch.increment(n);
\}
n.multiplyBy10(onesDigit);
\}

43

## Done With Lunch

- Is this code correct?:
public static void increment (NaturalNumber n) \{
int onesDigit $=$ n.divideBy(10);
onesDigit++:
if(onesDigit == 10)
\{
onesDigit = 0;
increment(n);
\}
n.multiplyBy10(onesDigit);
\}


## Theorem Applied

- If the code that makes a call to FreeLunch.increment is correct, then so is the code that makes a recursive call to increment
- Remember: this is so only because the call to FreeLunch.increment is for a smaller problem, i.e., a number less than the incoming value of $n$


## Recursive Structure

- For problem P, can we leverage the power of recursion?


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Factorial: $(n-1)$ ! $(n-2)$ ! $(n-23)$ !


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Factorial: $(n-1)$ ! $(n-2)$ ! $(n-23)$ !
- Fibonacci: $(n-1)$ ! $(n-2)$ ! $(n-12)$ !


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Factorial: $(n-1)$ ! $(n-2)$ ! $(n-23)$ !
- Fibonacci: fib(n-1) fib(n-2) fib(n-12)
- reverseString: remove first char, remove last char


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Can we efficiently solve the smaller instances?


## Recursive Structure

- For problem P, can we leverage the power of recursion?
- Can we divide P into one or more smaller instances?
- Can we efficiently solve the smaller instances?
- This is usually the easy part


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Can we efficiently solve the smaller instances?
- This is usually the easy part
- Can we use solutions to smaller problems to construct a solution to P?

53

## Recursive Structure

- For problem P, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Can we efficiently solve the smaller instances?
- This is usually the easy part
- Can we use solutions to smaller problems to construct a solution to P ?
- Factorial: given $(\mathrm{n}-1)$ ! we easily get n !


## Recursive Structure

- For problem $P$, can we leverage the power of recursion?
- Can we divide $P$ into one or more smaller instances?
- Can we efficiently solve the smaller instances?
- This is usually the easy part
- Can we use solutions to smaller problems to construct a solution to P?
- Factorial: given ( $\mathrm{n}-1$ )! we easily get n !
- Fibonacci: given fib(n-1) and fib(n-2) we easily get fib(n)


## Recursive Structure

- For problem P , can we leverage the power of recursion?
- Can we divide P into one or more smaller instances?
- Can we efficiently solve the smaller instances?
- This is usually the easy part
- Can we use solutions to smaller problems to construct a solution to P?
- Factorial: given ( $n-1$ )! we easily get $n$ !
- Fibonacci: given fib(n-1) and fib(n-2) we easily get fib(n)
- stringReverse: given rev(sub) we easily get rev(s)


## Factorial: The canonical example

- Is this correct?
public int factorial(int n) \{
int result $=n$ * factorial(n-1); return result;
\}

57

## Factorial: The canonical example

- Why not?
public int factorial(int n) \{
int result $=\mathrm{n}$ * factorial(n-1); return result;
\}


## Recursive Structure

- What should we do when an instance of $P$ is too small to divide into smaller problems?

59

## Recursive Structure

- What should we do when an instance of $P$ is too small to divide into smaller problems?
- Solve it! In many cases it's trivial.


## Recursive Structure

- What should we do when an instance of $P$ is too small to divide into smaller problems?
- Solve it! In many cases it's trivial.
- Factorial: 0 ! = 1 1! = 1

61

## Recursive Structure

- What should we do when an instance of $P$ is too small to divide into smaller problems?
- Solve it! In many cases it's trivial.
- Factorial: $0!=1$ 1! = 1
- Fibonacci: $\mathrm{fib}(0)=0 \mathrm{fib}(1)=1$


## Recursive Structure

- What should we do when an instance of $P$ is too small to divide into smaller problems?
- Solve it! In many cases it's trivial.
- Factorial: $0!=1$ 1! = 1
- Fibonacci: $\mathrm{fib}(0)=0 \mathrm{fib}(1)=1$
- stringReverse: stringReverse("") = ""


## Factorial: The canonical example

- Is this correct?

```
public int factorial(int n)
{
 if(n <= 1)
 return n;
 return n * factorial(n-1);
}
```


## A way to reason about recursion

Bottom up - begin with the base case

65

## A way to reason about recursion

```
- Bottom up - begin with the smallest-value case
 public int factorial(int n)
 \{
 if (\(\mathrm{n}<=1\))
 return 1;
 return \(n\) * factorial(n-1);
 \}
- if \(n=0\) or \(n=1\), factorial(\(n\)) returns correct result \(\sqrt{ }\)
```


## A way to reason about recursion



67

## A way to reason about recursion

```
- Bottom up - begin with the smallest-value case
 public int factorial(int \(n\))
 \{
 if (\(\mathrm{n}<=1\))
 return 1;
 return \(n\) * factorial(n-1);
 \}
- if \(n=3\), factorial(n) returns 3 * factorial(2)
- We just convinced ourselves that factorial(2) is correct
- \(3^{*}\) factorial(2) is the correct result for factorial(3) \(\sqrt{ }\)
```


## A way to reason about recursion

```
- Bottom up - begin with the smallest-value case
 public int factorial(int n)
 \{
 if (\(\mathrm{n}<=1\))
 return 1;
 return \(n\) * factorial(n-1);
 \}
- if \(n=4\), factorial(n) returns 4 * factorial(3)
- We just convinced ourselves that factorial(3) is correct
- 4 * factorial(3) is the correct result for factorial(4) \(\sqrt{ }\)
```

