
Week 10:
Analysis of Algorithms: A Brief Introduction

CS 220: Software Design II   —   D. Mathias



Your programming journey thus far:

“Please just let this program work.”
(and maybe do so elegantly)



Recent technological advancements are enabling greater data collection
ubiquitous computing: computers/sensors that are everywhere

Collecting Data



There is a lot of data to store and 
process.

Take CS 364 (Databases) to learn more 
about this!



Consider a piece of software or website you like to use. Would you 
use it if…

…it didn’t do what you expected it to do?
…it prevented your computer from doing anything else while it was running?
…it took many seconds (or even minutes! hours! days!) to complete an action?

Programs that work also need to be usable:
memory-efficient
execute quickly

Other Program Considerations



algorithm analysis: determining resources necessary to execute an 
algorithm

*** typically consider the worst-case scenario ***

Resources considered:
space (i.e., memory)
time (i.e., speed)

Memory is now very cheap and plentiful; speed is the bottleneck

Algorithm Analysis



Directly affects a user’s experience/satisfaction
unhappy users don’t continue to use software (unless forced to)
if a program is used repeatedly, even a small difference in speed can become 
problematic

Makes a difference in the performance of critical applications
e.g., self-driving cars need to analyze many inputs and make quick decisions

Determines whether a problem is solvable by a computer within our lifetime1

Why Speed?

1: https://en.wikipedia.org/wiki/NP-completeness#NP-complete_problems



big O notation: mathematical notation to characterize the speed of an algorithm 
as a function of the size of  its input (i.e., runtime or computational complexity)

i.e., will more data mean my algorithm takes longer to run? how much longer?

Big O Notation

O(1), constant

O(n), linear

O(n log(n)), linearithmic

O(n2), quadratic

n (size measure of input)

time

O(log(n)), logarithmic

O(2n)exponential



Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) Every input we add will 
proportionally increase 
the amount of time the 
algorithm runs

e.g., if an input of size 1 
takes 3 units of time, an 
input of size 2 will take 6 
units of time

Not too bad!



Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) Every input we add will 
increase the time 
necessary to run the 
algorithm, but not by 
much

O(log(n)) = slight 
increase for each input, 
but not proportional like 
O(n)
O(1) = no increase at all!

Great!



Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) Every input will more than 
proportionally increase 
the time to run the 
algorithm

e.g., if an input of size 1 
takes 3 units of time, an 
input of size 2 might take 7 
or 8 units of time, size 10 
might take 80 units of time

Is this good?  — It 
depends on the problem



Big O Notation

O(1)

O(n)

O(n log(n))

O(n2)

n (# of inputs)

time

O(log(n))

O(2n) Every additional input will 
drastically increase the 
runtime (more than 
double!)

e.g., if an input of size 1 
takes 3 units of time, an 
input of size 2 might take 20 
units of time

Is this good? — It 
depends on the problem.



Surprising number of problems that seem easy to 
solve are actually very difficult for computes to 
solve

might take millions of years of computational time!

Part of the focus of the question “does P = NP?”
P = problems that are relatively easy for computers to 
solve
NP = problems that computers can easily verify a solution 
to, but are not easy for computers to solve; we can’t yet 
prove definitively that computers cannot solve them in a 
reasonable amount of time

Really Slow Algorithms

1: https://medium.com/@niruhan/p-vs-np-problem-8d2b6fc2b697

2: https://medium.com/omarelgabrys-blog/the-big-scary-o-notation-ce9352d827ce



algorithm: a segment of code that solves some problem
calculating a person’s age
searching for a number in an array
sorting numbers in an array

All code, including an algorithm, is made up of statements, units of 
instruction

Anatomy of an Algorithm



Each atomic operation (i.e., an 
operation that cannot be broken 
down further) is a single unit of work
Examples:

declaration
assignment
casting
mathematical operations
return

Example: Algorithm

int a, b;
double c;

a = 5;
b = 3;
c = (a * a) + (b * b);
c = Math.sqrt(c);



Each atomic operation (i.e., an 
operation that cannot be broken 
down further) is a single unit of work
Examples:

declaration
assignment
casting
mathematical operations
return

Example: Algorithm

int a, b;              // 2
double c;              // 1

a = 5;                 // 1
b = 3;                 // 1
c = (a * a) + (b * b); // 4
c = Math.sqrt(c);      // ?



Add together the runtime of 
sequential statements

Example: Algorithm

int a, b;              // 2
double c;              // 1

a = 5;                 // 1
b = 3;                 // 1
c = (a * a) + (b * b); // 4
//  c = Math.sqrt(c);  // ?

// 2 + 1 + 1 + 1 + 4 = 9 = O(9)



O(1)

O(20)

O(9)

Don’t want to count out every line
is there a difference, practically, between 
O(1), O(9), O(20)?

We want to generally describe the 
shape (i.e., trend) of the graph

Simplifying Analysis

int a, b;              // 2
double c;              // 1

a = 5;                 // 1
b = 3;                 // 1
c = (a * a) + (b * b); // 4
//  c = Math.sqrt(c);  // ?

// 2 + 1 + 1 + 1 + 4 = 9 = O(9)

n (# of inputs)

time



O(1)

O(20)

O(9)

Don’t want to count out every line
is there a difference, practically, between 
O(1), O(9), O(20)?

We want to generally describe the 
shape (i.e., trend) of the graph

Simplifying Analysis

int a, b;              // 2
double c;              // 1

a = 5;                 // 1
b = 3;                 // 1
c = (a * a) + (b * b); // 4
//  c = Math.sqrt(c);  // ?

// 2 + 1 + 1 + 1 + 4 = 9 = O(1)

n (# of inputs)

time



O(1) Algorithm

int a, b;
double c;

a = 5;
b = 3;
c = (a * a) + (b * b);
//  c = Math.sqrt(c);

Algorithm made up entirely of atomic 
operations



O(n) Algorithm

Loop runtimes are calculated by:
1. calculating the runtime of everything 
inside the loop
2. multiplying that value by the number 
of times the loop runs (i.e., number of 
inputs, n)

int[] grades = // instantiate and fill new array

for (int i = 0; i < grades.length; i++) {
    System.out.print(grades[i] + ", ");
}



O(n) Algorithm

Loop runtimes are calculated by:
1. calculating the runtime of everything 
inside the loop
2. multiplying that value by the number 
of times the loop runs (i.e., number of 
inputs, n)

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1



Simplifying Analysis

Drop all the terms except the 
most expensive one

2n (linear) is more expensive than 1 
(constant)

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1



Simplifying Analysis

Drop all the terms except the 
most expensive one

2n (linear) is more expensive than 1 
(constant)

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1
// 2n



Simplifying Analysis

Drop all the terms except the 
most expensive one

2n (linear) is more expensive than 1 
(constant)

Remove the constant multiplier
remember, we’re looking for the trend 
of the graph

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1
// 2n



Simplifying Analysis

Drop all the terms except the 
most expensive one

2n (linear) is more expensive than 1 
(constant)

Remove the constant multiplier
remember, we’re looking for the trend 
of the graph

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1
// 2n
// O(n)



Simplifying Analysis

int[] grades = // 1 to instantiate, n to fill

for (int i = 0; i < grades.length; i++) { // n
    System.out.print(grades[i] + ", "); // 1
}

// 1 + n + n * 1
// 1 + n + n
// 2n + 1
// 2n
// O(n)

n (# of inputs)

time
O(n)

O(2n)



O(n2) Algorithm

Nested loops work like 
regular loops:

1. start at innermost loop
2. calculate runtime for that loop
3. move to next outer loop, 
using result from inner loop as 
input for outer loop
4. repeat until out of loops

int[][] grades = // instantiate and fill new 2D array

for (int row = 0; row < grades.length; row++) {

    for (int col = 0; col < grades[row].length; col++) {

        System.out.print(grades[row][col] + ", ");
    }

    System.out.println();
}



O(n2) Algorithm

Nested loops work like 
regular loops:

1. start at innermost loop
2. calculate runtime for that loop
3. move to next outer loop, 
using result from inner loop as 
input for outer loop
4. repeat until out of loops

int[][] grades = // will ignore this for now

// n
for (int row = 0; row < grades.length; row++) {
    // n
    for (int col = 0; col < grades[row].length; col++) {
        // 1
        System.out.print(grades[row][col] + ", ");
    }
    // 1
    System.out.println();
}



int[][] grades = // will ignore this for now

// n
for (int row = 0; row < grades.length; row++) {
    

    // 1
    System.out.println();
}

O(n2) Algorithm

Nested loops work like 
regular loops:

1. start at innermost loop
2. calculate runtime for that loop
3. move to next outer loop, 
using result from inner loop as 
input for outer loop
4. repeat until out of loops

    // n
    for (int col = 0; col < grades[row].length; col++) {
        // 1
        System.out.print(grades[row][col] + ", ");
    }

// n * 1 = n - inner loop



// n
for (int row = 0; row < grades.length; row++) {
    // n
    for (int col = 0; col < grades[row].length; col++) {

    }
    // 1
    System.out.println();
}

// n - inner loop
// n * (n + 1) - outer loop
// n2 + n

int[][] grades = // will ignore this for now

        // 1
        System.out.print(grades[row][col] + ", ");

O(n2) Algorithm

Nested loops work like 
regular loops:

1. start at innermost loop
2. calculate runtime for that loop
3. move to next outer loop, 
using result from inner loop as 
input for outer loop
4. repeat until out of loops



Simplifying Analysis

Drop all the terms except the 
most expensive one

n2 (quadratic) is more expensive 
than n (linear)

int[][] grades = // will ignore this for now

// n
for (int row = 0; row < grades.length; row++) {
    // n
    for (int col = 0; col < grades[row].length; col++) {
        // 1
        System.out.print(grades[row][col] + ", ");
    }
    // 1
    System.out.println();
}

// n - inner loop
// n * (n + 1) - outer loop
// n2 + n



Simplifying Analysis

Drop all the terms except the 
most expensive one

n2 (quadratic) is more expensive 
than n (linear)

int[][] grades = // will ignore this for now

// n
for (int row = 0; row < grades.length; row++) {
    // n
    for (int col = 0; col < grades[row].length; col++) {
        // 1
        System.out.print(grades[row][col] + ", ");
    }
    // 1
    System.out.println();
}

// n - inner loop
// n * (n + 1) - outer loop
// n2 + n
// O(n2)



General rules
1. add up the runtime associated with sequential statements
2. reduce to the highest order term
3. remove any constant coefficients (e.g., 2, 3)

Remember, the big O associated with an algorithm is not an exact number 
of instructions! It describes the trend of the algorithm

Calculating Runtime Complexity



Exercise: Calculating Runtime Complexity

for (int r = 0; r < arr.length; r++) {
    
    for (int c = 0; c < arr[r].length; c++) {
        
        arr[r][c] = r * c;
    }
}

for (int r = 0; r < arr.length; r++) {
        
        System.out.print(arr[r][0] + " ");
    }
}

if (r % 2 == 0) {
    arr[r] = r * 2;
}

else {

    int i = arr.length;

    while (i >= 0) {
        
        arr[r] *= arr[i];
    }
}

exercise 1 exercise 2



Exercise: Calculating Runtime Complexity

for (int r = 0; r < arr.length; r++) {
    
    for (int c = 0; c < arr[r].length; c++) {
        
        arr[r][c] = r * c;
    }
}

for (int r = 0; r < arr.length; r++) {
        
        System.out.print(arr[r][0] + " ");
    }
}

if (r % 2 == 0) {
    arr[r] = r * 2;
}

else {

    int i = arr.length;

    while (i >= 0) {
        
        arr[r] *= arr[i];
    }
}

exercise 1 exercise 2



Exercise: Calculating Runtime Complexity

// n
for (int r = 0; r < arr.length; r++) {
    // n
    for (int c = 0; c < arr[r].length; c++) {
        // 2
        arr[r][c] = r * c;
    }
}

// n
for (int r = 0; r < arr.length; r++) {
        // 1
        System.out.print(arr[r][0] + " ");
    }
}

exercise 1 exercise 2

if (r % 2 == 0) {
    arr[r] = r * 2;
}

else {

    int i = arr.length;

    while (i >= 0) {
        
        arr[r] *= arr[i];
    }
}



Exercise: Calculating Runtime Complexity

// n
for (int r = 0; r < arr.length; r++) {
    // n
    for (int c = 0; c < arr[r].length; c++) {
        // 2
        arr[r][c] = r * c;
    }
}

// n
for (int r = 0; r < arr.length; r++) {
        // 1
        System.out.print(arr[r][0] + " ");
    }
}

// (n * n * 2) + (n * 1) = 2n2 + n = O(n2)

exercise 1 exercise 2

if (r % 2 == 0) {
    arr[r] = r * 2;
}

else {

    int i = arr.length;

    while (i >= 0) {
        
        arr[r] *= arr[i];
    }
}



Exercise: Calculating Runtime Complexity

// n
for (int r = 0; r < arr.length; r++) {
    // n
    for (int c = 0; c < arr[r].length; c++) {
        // 2
        arr[r][c] = r * c;
    }
}

// n
for (int r = 0; r < arr.length; r++) {
        // 1
        System.out.print(arr[r][0] + " ");
    }
}

// (n * n * 2) + (n * 1) = 2n2 + n = O(n2)

exercise 1 exercise 2

if (r % 2 == 0) {
    arr[r] = r * 2;
}

else {

    int i = arr.length;

    while (i >= 0) {
        
        arr[r] *= arr[i];
    }
}



Exercise: Calculating Runtime Complexity

exercise 1 exercise 2

// n
for (int r = 0; r < arr.length; r++) {
    // n
    for (int c = 0; c < arr[r].length; c++) {
        // 2
        arr[r][c] = r * c;
    }
}

// n
for (int r = 0; r < arr.length; r++) {
        // 1
        System.out.print(arr[r][0] + " ");
    }
}

// (n * n * 2) + (n * 1) = 2n2 + n = O(n2)

// 4
if (r % 2 == 0) {
    arr[r] = r * 2;
}
// 0
else {
    // 1
    int i = arr.length;
    // n
    while (i >= 0) {
        // 2
        arr[r] *= arr[i];
    }
}



Exercise: Calculating Runtime Complexity

exercise 1 exercise 2

// n
for (int r = 0; r < arr.length; r++) {
    // n
    for (int c = 0; c < arr[r].length; c++) {
        // 2
        arr[r][c] = r * c;
    }
}

// n
for (int r = 0; r < arr.length; r++) {
        // 1
        System.out.print(arr[r][0] + " ");
    }
}

// (n * n * 2) + (n * 1) = 2n2 + n = O(n2)

// 0
else {
    // 1
    int i = arr.length;
    // n
    while (i >= 0) {
        // 2
        arr[r] *= arr[i];
    }
}

// 2 * n + 1 = 2n + 1 = O(n)

// 4
if (r % 2 == 0) {
    arr[r] = r * 2;
}



General rules
1. add up the runtime associated with sequential statements
1. focus on the loops

if there are loops, those are always your most expensive terms

2. reduce to the highest order term
3. remove any constant coefficients (e.g., 2, 3)

Remember, the big O associated with an algorithm is not an exact number 
of instructions! It describes the trend of the algorithm.

Calculating Runtime Complexity



Best- vs Worst-Case Scenario

What is the best-case scenario for 
this particular array?
What is the worst-case scenario?
What are the runtimes for each?

int[] arr = // instantiate and fill new array
int num = // number we are searching for

for (int i = 0; i < arr.length; i++) {
    if (arr[i] == num) {
        return i;
    }
}

arr (int[])

5 13 0 4 27 8



Best- vs Worst-Case Scenario

int[] arr = // instantiate and fill new array
int num = // number we are searching for

for (int i = 0; i < arr.length; i++) {
    if (arr[i] == num) {
        return i;
    }
}

arr (int[])

5 13 0 4 27 8

num (int)

5

What is the best-case scenario for 
this particular array?
What is the worst-case scenario?
What are the runtimes for each?



Best- vs Worst-Case Scenario

int[] arr = // instantiate and fill new array
int num = // number we are searching for

for (int i = 0; i < arr.length; i++) {
    if (arr[i] == num) {
        return i;
    }
}

arr (int[])

5 13 0 4 27 8

num (int)

10

What is the best-case scenario for 
this particular array?
What is the worst-case scenario?
What are the runtimes for each?



Best- vs Worst-Case Scenario

int[] arr = // instantiate and fill new array
int num = // number we are searching for

for (int i = 0; i < arr.length; i++) {
    if (arr[i] == num) {
        return i;
    }
}

arr (int[])

0 60 75 83 92 99

num (int)

99

What is the best-case scenario for 
this particular array?
What is the worst-case scenario?
What are the runtimes for each?



The ability to make informed choices between different algorithms/data 
structures relies on the ability to…

…understand the data you have and how it is organized (if at all)
…understand the best and worst case scenarios for accessing that data

Doing this well enables you to write more efficient programs!

Why Is This All Important?



Seemingly has identical functionally due to the Collections interface
i.e., adding in an array list and linked list will both add the value in the same place

Runtime of these operations depends on the data structure

Array Lists vs Linked Lists



array list singly linked list doubly linked list

add value to beginning

add value to end

remove value at beginning

remove value at end

search for value (best case)

search for value (worst case)

access value at position 0

access value at position n

Fill in the following chart with worst-case runtimes
assume array list never needs to grow/shrink as part of the calculations
access of a position in an array is O(1)

Exercise: Runtime Analysis



Fill in the following chart with worst-case runtimes
assume array list never needs to grow/shrink as part of the calculations
access of a position in an array is O(1)

Exercise: Runtime Analysis

array list singly linked list doubly linked list

add value to beginning O(n) O(1) O(1)

add value to end O(1) O(n) O(1)

remove value at beginning O(n) O(1) O(1)

remove value at end O(1) O(n) O(1)

search for value (best case) O(1) O(1) O(1)

search for value (worst case) O(n) O(n) O(n)

access value at position 0 O(1) O(1) O(1)

access value at position n O(1) O(n) O(1)



Fill in the following chart with runtimes for lists of some arbitrarily long length
assume array list never needs to grow/shrink as part of the calculations
access of a position in an array is O(1)

Exercise: Runtime Analysis

array list singly linked list doubly linked list

add value to beginning O(n) O(1) O(1)

add value to end O(1) O(n) O(1)

remove value at beginning O(n) O(1) O(1)

remove value at end O(1) O(n) O(1)

search for value (best case) O(1) O(1) O(1)

search for value (worst case) O(n) O(n) O(n)

access value at position 0 O(1) O(1) O(1)

access value at position n O(1) O(n) O(1)


