
Week 06 (Part 2):
Generics

CS 220: Software Design II — D. Mathias

Array List Revisited

...

ArrayList

— DEFAULT_CAPACITY : int
— data : String[]
— size : int

Our implementation isn’t flexible
can only hold string values

How can we create a data structure that
holds any object type?

option 1: use Object type and cast
option 2: generics

Object is the class at the top of
the Java class hierarchy

everything descends from it

Problems
clunky to cast frequently
potential exceptions at runtime

Option 1: Use Object Type and Cast

Object obj1 = new Professor("Mathias", “David");
Object obj2 = "some string";

// this is a hassle
String str2 = (String) obj2;

// this causes a ClassCastException
String str2 = (String) obj1;

generics allow a class to use placeholder values for different variable types
that the programmer will specify during variable declaration

no more casting!

Introduced in Java 5
Ensures types can be checked at compile time, rather than runtime

i.e., prevents ClassCastExceptions

Option 2: Generics

Placed after the class identifier in the
signature in angle brackets

multiple generic variables? comma
separated

Can only represent class types
no primitives!
more on this later…

Generics Basics

public class Box<T>{

private T containedObject;

public Box(T t) {
containedObject = t;

}

public T getObject() {
return (T) containedObject;

}

}

Named with a single capital letter
visually different than an actual class type
convention

Common conventions (not required):
E for an element (used lots by Collection)
K for key
V for value
N for number
T for type
S, U, V for additional types

Generics Basics

public class Box<T>{

private T containedObject;

public Box(T t) {
containedObject = t;

}

public T getObject() {
return (T) containedObject;

}

}

Cannot use primitive types as generic types
wrapper classes are class types that correspond to and hold primitive
values

introduced to make primitives work with generics

Can convert between primitive type and wrapper class

Wrapper Classes

char
boolean

byte
short

int
long

float
double

Character
Boolean

Byte
Short
Integer
Long
Float
Double

primitive
type

wrapper
class

Rarely use wrapper class constructor to
convert a primitive value to an object
autoboxing automatically converts a
primitive value to its wrapper class type
unboxing automatically converts the
primitive value stored in a wrapper
object to its primitive type
This is done during assignment or when
used as arguments to corresponding
types

Autoboxing and Unboxing

// autoboxing during assignment
Integer objInt = 42;
Double objDouble = 98.6;
Character objChar = '!';
Boolean objBoolean = true;

// unboxing during assignment
int intVal = objInt;
double doubleVal = objDouble;
char charVal = objChar;
boolean booleanVal = objBoolean;

// unboxing during method call
// will see examples in Eclipse...

Cannot have arrays of generic types
why? it’s complicated…ask in CS 421 & CS 442

How can we implement a generic array in ArrayList?
answer: have the array hold type Object, ArrayList will take care of casting

Generics and Arrays

Write a class called Pair that does the following:
holds two values of (possibly) different types (use generics)
constructor should take in these two values and store them in global variables
two get methods for getting the different parts of the pair

feel free to name these as you see fit

This class could be used to hold…
…an x, y coordinate
…a student object and their grade
…many different things!

Exercise: Pair Class

